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Highlights:

What are the main findings?
• Higher frequency of data collection improves the performance of power consumption

models, as shown by improved RMSE, MAPE, CV, and R2 scores.
• SVM with Radial kernels outperformed other models, capturing non-linear patterns

effectively, while DNN models showed signs of overfitting.
What is the implication of the main finding?
• More frequent data collection and the inclusion of historical power features have a

greater impact on model accuracy than climate data.
• Careful model selection, particularly with SVM-Radial, is essential for optimizing energy

consumption forecasting in both academic and industrial settings.

Abstract: Power consumption prediction is a crucial component in enhancing the efficiency
and sustainability of building operations. This study investigates the impact of data collec-
tion frequency and model selection on the predictive accuracy of power consumption in
two distinct building types: an Academic one with 15-min interval data and an Industrial
one with hourly data. Various machine learning models, including Support Vector Machine
(SVM) with Radial and Sigmoid kernels, Random Forest (RF), and Deep Neural Networks
(DNNs), across different data splits and feature sets, were considered. Our analysis reveals
that higher data collection frequency generally improves model performance, as indicated
by lower RMSE, MAPE, and CV values, alongside higher R² scores. The inclusion of more
historical power consumption features was also found to have a more significant impact
on the accuracy of predictions than including climate condition features. Moreover, the
SVM-Radial model consistently outperformed others, particularly in capturing complex,
non-linear patterns in the data. However, the DNN model, while competent in some met-
rics, showed elevated MAPE values, suggesting potential overfitting issues. These findings
suggest that careful consideration of data frequency, features, and model selection is essen-
tial for optimizing power prediction, contributing to more efficient power management
strategies in building operations.

Keywords: power consumption prediction; machine learning models; predictive analytics;
feature analysis; random forest (RF); support vector machine (SVM); deep neural networks
(DNNs)

1. Introduction
The rising global energy demand and the urgent need to address environmental

challenges such as global warming have placed energy efficiency and emissions reduction at
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the forefront of sustainable development. In 2021, building operations accounted for 30% of
global energy consumption and 27% of energy-related carbon emissions, making buildings
a significant source of greenhouse gases [1]. Accurate Short-term Load Forecasting (STLF)
in buildings is crucial for managing and optimizing energy use, essential for reducing
carbon emissions in rapidly urbanizing regions like China [2]. Over the past decade,
extensive energy consumption monitoring platforms have been developed, collecting vast
amounts of data that can be leveraged to enhance building operations and efficiency [3].

The transition to electrification, driven by the need to reduce greenhouse gas emis-
sions, has further emphasized the importance of accurate energy consumption prediction
in buildings [4]. The integration of distributed generation and storage solutions, along with
the adoption of Zero-Emission Building (ZEB) concepts, underscores the need for robust
predictive models that can adapt to dynamic and uncertain environments [5]. Artificial In-
telligence (AI) techniques, particularly those leveraging large amounts of data generated by
smart meters and Internet of Things (IoT) devices, offer significant potential for improving
building energy efficiency [6].

Additionally, understanding the historical evolution of energy prediction models
provides important context for the development and maturity of current hybrid models.
From simple calculations in the 1970s to statistical models in the 1980s, and the rise of
Machine Learning (ML) and AI from the mid-1990s onwards, each stage has contributed
to the current advancements [5,7]. The infrastructure needed to implement AI models,
including the collection and processing of large amounts of data, is fundamental to the
practical application of these predictive models [8,9]. Furthermore, policies and regulations
that promote energy efficiency play a crucial role in the adoption and effectiveness of
energy prediction models [10].

The type and location of a building are critical factors in selecting an appropriate
model for energy consumption prediction, as they influence the consumption patterns and
dynamics [11,12]. Depending on the type of building (e.g., offices, industrial, academic, res-
idential) and its environmental conditions (e.g., warm/cold, humid/dry), the consumption
pattern can vary significantly. For instance, office buildings in colder climates may have dif-
ferent heating requirements and power usage patterns than residential buildings in warmer
regions. Consequently, the effectiveness of a particular model can vary depending on these
factors. Thus, tailoring predictive models to the specific characteristics of each building
type and its environment is essential for accurate and effective energy management.The
literature review [13] reveals a limited number of studies on the topic of industrial and
academic building load forecasting. The majority of algorithms employed in STLF are
recurrent neural networks (RNNs), including long short-term memory (LSTM) and gated
recurrent unit (GRU) variants, convolutional neural networks (CNNs), and autoencoders.

In [14], the authors compare and contrast the efficacy of three statistical models—the
Changepoint model, Support Vector Machine (SVM), and Basis functions—in developing
a general predictor for industrial energy consumption. They use the weather, operating
schedule, and equipment data as inputs in their analysis. Additionally, [15,16] evaluate
various Deep Learning (DL) and ML algorithms, respectively, to identify the optimal approach
for power forecasting in industrial buildings. In addition to assessing the predictive capacity
of RNN algorithms, the authors of reference [17] also examine the impact of varying input
parameters on the outcomes. In [18], a deterministic and probabilistic load forecast for the
subsequent 24-h period on a university campus was generated using an artificial neural
network (ANN) model based on the similar-day method. This methodology incorporates
meteorological data, temporal factors, and recency as predictor variables and inputs. In [19],
ANN-based models are employed to forecast the hourly university campus load daily. The
inputs to these models comprise a combination of the total load, temperature, and small-scale
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loads. The authors in [20] employ ANN to forecast energy consumption in an academic
building for the next hour and all hours of an entire year. The models utilize temperature,
day of the year, and day type as inputs. Additionally, STLF incorporates the previous hour’s
energy consumption data.

Among the various ML techniques, ANNs, support vector regression (SVR), and
deep neural networks (DNNs) have been widely applied in energy prediction tasks [21].
However, these models often struggle to capture the temporal dependencies inherent in
time series energy data. Deep learning models, such as LSTM networks and convolutional
neural networks (CNN), have shown superior performance in extracting features from large
datasets and detecting hidden patterns [22]. While LSTM and CNN offer advantages in cap-
turing temporal dependencies and detecting complex patterns, they often require extensive
computational resources and training data, which may limit their practical applicability,
especially in scenarios with limited data availability or computational constraints.

In contrast, using discrete data offers several advantages over time series data. Discrete
data typically present a reduced risk of overfitting, as they involve fewer data points and
less complex patterns, making models more robust and generalizable [23]. The preparation
of discrete data is simpler compared to the intricate preprocessing required for time series
data, facilitating quicker and more straightforward data handling [24]. Implementing mod-
els with discrete data is generally easier, allowing for faster deployment and testing without
the need for extensive computational resources [25]. Additionally, the interpretability of
models trained on discrete data is enhanced, providing clearer insights into the factors
influencing energy consumption and leading to actionable insights for decision-makers.
However, it is essential to acknowledge that the choice between using discrete data and
time series data depends on various factors, including the nature of the problem, the
availability of data, and the specific objectives of the predictive modeling task.

Random Forest (RF), Support Vector Machine (SVM), and Deep Neural Network
(DNN) models are well suited for handling discrete data, offering significant advantages
over traditional methods due to their ability to capture complex relationships and patterns
within the data [26,27]. In particular, SVM—especially with Radial and Sigmoid ker-
nels—was selected for its effectiveness in managing non-linear patterns in relatively small
datasets, aligning well with the discrete nature of our data. RF was chosen for its robustness
in handling complex, high-dimensional feature sets and its ability to mitigate overfitting
through ensemble learning. DNN was incorporated for its proficiency in modeling intricate,
non-linear relationships and extracting deep features from larger datasets.

While most of the research in the STLF has focused on residential buildings, this
paper focuses on the study of an industrial building and an academic building, which
are located in different locations and with different data sampling. The present study
performs a comprehensive analysis of the impact of different input variables, machine
learning algorithms, and test and validation split ratios on consumption predictions for two
different building types. Unlike most studies that use climate as an input, the characteristics
of these buildings do not allow climatology to affect the predictions. In summary, this
study focuses on evaluating the effectiveness of different ML models for predicting the
electrical consumption of buildings 24 h in advance. For that purpose, a Persistent Model
(PM), predicting future consumption based on consumption exactly 24 h prior, serves as a
baseline to assess the performance of the ML models.

Research Questions and Hypotheses

Building on the context of global energy challenges and the critical role of accurate
power consumption predictions, this study seeks to address key research questions aimed at
improving predictive accuracy across diverse building types and environmental conditions:
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RQ1. Which features (e.g., previously consumed power, temperature, irradiation) are most
influential in predicting power consumption in academic vs. industrial buildings?

RQ2. To what extent do climatic conditions (oceanic vs. continental Mediterranean)
influence the predictive accuracy of power consumption models in different types of
buildings?

RQ3. What impact does the frequency of data collection (15-min intervals for the Academic
building vs. hourly for the Industrial building) and the split between train, validation, and
test sets have on the performance of these machine learning models?

RQ4. How does the choice of kernel in SVM (Radial vs. Sigmoid) affect the ability of
the model to capture non-linear relationships in power consumption data from different
building types?

RQ5. How does the accuracy of power consumption predictions vary among different
machine learning models (RF, SVM with Radial and Sigmoid kernels, DNN) when applied
to buildings with distinct architectural functions (academic vs. industrial)?

Based on these questions, the following hypotheses are proposed:

Hypothesis 1 (H1). Humidity and occupancy rates will be the most influential features in predict-
ing power consumption in the Academic building, while temperature and equipment usage will be
more critical in the Industrial building.

Hypothesis 2 (H2). The climatic conditions will have a more significant impact on the accuracy of
predictions in the Industrial building than in the Academic building due to the extreme temperature
fluctuations typical of continental Mediterranean climates.

Hypothesis 3 (H3). The prediction accuracy of power consumption models will be higher for the
Academic building, which has a higher frequency of data collection (15-minute intervals), compared
to the Industrial building, where data are collected hourly.

Hypothesis 4 (H4). The Radial kernel in SVM will provide better predictive accuracy for power
consumption in both buildings compared to the Sigmoid kernel, due to its superior ability to model
complex, non-linear relationships in the data.

Hypothesis 5 (H5). The DNN model will outperform RF and SVM in predicting power consump-
tion in both the Academic and Industrial buildings due to its ability to capture complex non-linear
relationships.

These questions and hypotheses will guide the analysis and comparison of the selected
ML models, providing insights into their applicability and effectiveness for building power
consumption prediction under varying conditions.

2. Methodology
The foundation of predicting building power consumption lies in effective feature

selection and comprehensive model training. This process begins with gathering and
preprocessing relevant data, followed by identifying critical features that influence power
consumption. Subsequently, models are trained and validated to ensure accuracy and
reliability in their predictions. This structured approach (see Figure 1) is essential for
developing precise models tailored to the specific characteristics of different buildings.
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Figure 1. Diagram of the methodology.

2.1. Data Collection

Gathering power consumption data for different building types is essential for accurate
forecasting. The Academic and Industrial buildings each have their own monitoring
platform, with different data collection frequencies tailored to their specific needs. For the
Academic building, data were collected at 15-min intervals over a period of 3 academic
years, from September 2016 to July 2019. This resulted in a total of 92,160 readings, or 960
full days (see Table 1). In contrast, for the Industrial building, data were collected over a
period of 1 year, from March 2022 to February 2023, at 1-h intervals. This resulted in a total
of 8759 readings, or 365 full days. The power consumption data for both buildings were
sourced from energy meters installed and maintained by the local electricity distributor,
in accordance with the IEC 62053-11 standard, ensuring compliance with international
guidelines for meter accuracy and reliability.

Table 1. Raw data. Statistics of Academic building.

Raw Data Consumption (kW)

Length Frequency Days Min. Max. Mean Stand. dev.

Academic 92,160 15 min 960 0 10,410 20.24 40.87

Local meteorological data for each site were retrieved from the web application Solcast,
ensuring the data frequency matched the consumption data for precise integration and
analysis. This harmonized approach allows for effective feature selection and model
training, crucial for predicting power consumption accurately.

2.2. Data Preprocessing

This step ensures the data are suitable for predictive models, enhancing their ac-
curacy and efficiency. The preprocessing involves data cleaning, outlier identification,
normalization, feature selection, and data division to create a robust dataset for building
power consumption prediction. The data for the Industrial building have already been
preprocessed, eliminating the need for further data cleaning and outlier identification (see
Table 2).
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Table 2. Clean data. Statistics of both Academic and Industrial buildings.

Clean Data Consumption (kW)

Length Frequency Days Min. Max. Mean Stand. Dev.

Academic 69,216 15 min 721 0.15 64.66 23.65 14.74
Industrial 8759 1 h 365 10 119 41.82 23.21

2.2.1. Data Cleaning

First, the Academic building data were filtered. Repeated samples were identified and
removed. A total of 1168 samples with NaN values were identified (1.27% of the data). In
cases with a single or double NaN value, it was replaced with the previous or subsequent
non-null value. In cases with three or more NaN values, the entire day was removed. In
total, 28 days with three or more NaN values were removed.

2.2.2. Outlier Identification

Next, Academic building outliers were identified. Values outside the range of 100 W
and 100,000 W were removed. A total of 15,745 measurements below 100 W were removed,
corresponding to a period when the data storage system did not store the data correctly.
Four other measurements exceeding 100 kW were identified and removed. Finally, five
days without 15-min measurements were identified and removed.

Outliers were identified using a standard deviation method. To do this, the samples
were separated into groups considering whether they were holidays or weekdays, work
hours or non-work hours, and whether the chiller was on or off, defined in Section 3.
Outliers were replaced using the same criterion as the NaN values. A total of 1234 working
hours samples out of 21,666 total samples were outliers (5.7%). A total of 540 non-working
hours samples out of 51,582 total samples were outliers (1%).

2.2.3. Normalization

The consumed power was normalized using min-max normalization, Equation (1), to
obtain values in a range from 0 to 1 in the Academic and Industrial buildings.

Pnormalized =
P − Pmin

Pmax − Pmin
(1)

2.2.4. Feature Selection

In order to optimize the effectiveness of the model, relevant input data for the imple-
mentation of the algorithm were selected. This was achieved by graphing the consumption
curves in 24-h windows, which allowed for the visual selection of a subset of the charac-
teristics available for use in the model. This step is found in Section 3.2 after the in-depth
analysis of the two case studies (Academic and Industrial buildings). Furthermore, the im-
pact of climatic variables on the power consumption of buildings is analyzed in Section 3.2.

2.2.5. Data Division

To evaluate the learning capacity of the models under different training, validation,
and test set proportions, we conducted a detailed analysis studying two distinct cases for
each dataset:

Case 1. Split of around 72% of the data allocated to train, 18% to validation, and 10% to
test.

Case 2. Split of around 80% of the data allocated to train, 10% to validation, and 10% to
test.
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To ensure representativeness, data were segmented into 24-h blocks in order to be able
to visualize whole days during the tests of each model, and each dataset maintained a bal-
anced representation of weekdays, weekends, and holidays. Consequently, the proportions
varied between the Academic and Industrial datasets, but the trends remained consistent,
ensuring systematic and comparable analysis (see Figure 2).

Figure 2. Dataset split for training, validation, and test.

2.3. Prediction Models

The following models are the ones used [26,27]:

• RF is particularly useful due to its ability to handle multiple features and capture
complex patterns. RF constructs an ensemble of decision trees, each trained on random
subsets of the dataset, which not only enhances accuracy but also helps mitigate
overfitting. Additionally, the ease of interpretation of RF results is an advantage, as it
allows for understanding which features are most influential in the predictions.

• SVM is powerful for prediction tasks because it handles both linear and non-linear
relationships in data. SVM seeks the optimal hyperplane that maximizes the separation
between classes or patterns. It is effective with high-dimensional datasets, providing
robust solutions.
The choice of kernel function is crucial in SVM as it defines how data are transformed
and separated, significantly enhancing SVM’s predictive power and generalization
ability.

– The Radial Basis Function (RBF) kernel, also known as the Gaussian kernel or
just the Radial kernel, is popular due to its efficiency in modeling non-linear
relationships. However, it may overfit small or noisy datasets.

– The Sigmoid kernel is another option that offers flexibility in modeling various
relationships, but may underperform compared to the RBF kernel in highly
non-linear environments.

• DNN is a deep learning architecture consisting of multiple layers of interconnected
neurons. DNNs are particularly effective for learning complex and non-linear repre-
sentations of data, making them suitable for tasks involving intricate patterns and
relationships. One of the primary advantages of DNNs is their ability to automatically
learn relevant features from the data, which enhances their performance in modeling
intricate patterns.
Due to its effectiveness and efficiency, the Rectified Linear Unit (ReLU) activation
function is chosen. It facilitates a faster training of the model, reduces the likelihood
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of overfitting and helps in capturing complex patterns by not suffering from the
vanishing gradient problem.

The hyperparameters used can be found in Appendix A.

2.4. Evaluation Metrics of the Models

To evaluate the accuracy of the different models, six different metrics are used: Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Coefficient of Determination (R2), and Coefficient
of Variation (CV). These can be obtained though Equations (2)–(7).

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (2)

RMSE =
√

MSE (3)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (4)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ · 100 (5)

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − ȳ)2 (6)

CV =
RMSE

ȳ
· 100 (7)

where y, ŷ, and ȳ are the real value, predicted value, and mean of the prediction, respectively,
and n is the total number of samples, in our case n = 24 for Industrial and n = 96 for
Academic.

3. Case Study
3.1. Buildings Description

The two case studies are:
Academic building: located in Arrasate, Spain, which has an oceanic climate with

mild to cool conditions, moderate temperatures with little annual variation, and abundant
rainfall. It has five floors and covers a total area of 7640 m2, comprising offices, classrooms,
and laboratories. In addition to its academic functions, the building is also a research
facility, housing energy-intensive laboratories with significant cooling needs, for example,
a chiller for the HVAC system. It is a smart building, equipped with automated manage-
ment systems and heat recovery systems that optimize energy use and maintain efficient
operation.

Industrial building: located in Burgos, Spain, where the climate is continental Mediter-
ranean, featuring harsh winters and hot summers, with irregular and scarce rainfall. The
building includes a large production area and office spaces, spanning a total of 11,800 m2.
Due to the nature of the activities conducted within, the building has high energy consump-
tion directly related to its industrial production processes. It must support the extreme
temperature fluctuations typical of the region, ensuring stable and efficient operational
conditions year-round.

3.2. Data Analysis and Correlations

After the data preprocessing performed in Section 2.2 (see Table 2), an in-depth analysis
was carried out in order to select the appropriate features.
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The Academic building (see Figure 3a) indicates an increase in consumption related to
a chiller in the air conditioning system over several days. Furthermore, it is straightforward
to differentiate between holiday and non-holiday periods (shown in purple and green,
respectively) as well as the working hours between 7 a.m. and 6 p.m.

(a)Academic building.

(b)Industrial building.

Figure 3. Daily consumption patterns of both (a) Academic and (b) Industrial building.

A visual analysis of the Industrial building’s consumption patterns (see Figure 3b)
allows distinguishing between days when the workday ends at 7 p.m. (in orange) and at
11 p.m. (in green). The workday always begins at 7 a.m. Furthermore, days with elevated
power consumption within a specified time frame are identified as base power (power
consumption exceeds 78 kW between 7 a.m. and 7 p.m.). Non-working days, which are
clearly distinguishable due to the absence of power consumption, are indicated in purple.

All these characteristics, because of their direct implications for consumption, will be
used as inputs for the models.

Pearson Correlation

The influence of prior consumption and environmental variables on power consump-
tion was investigated. To this end, the Pearson correlation coefficient was calculated for
different time windows, spanning one month and one year. The environmental factors
that were under investigation were as follows: outside air temperature, global horizontal
irradiation, cloud opacity, and outside relative humidity.

The parameter with the highest correlation in both Industrial and Academic buildings
is the consumption 24 h before (see Table 3), and the second highest, the consumption 48 h
before.
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Table 3. Correlation between factors concerning the consumption for both Industrial and Academic
buildings.

Academic Industrial

Working
Hours Off-Hours Working

Hours Off-Hours

Temperature 0.205508 0.012566 −0.196301 −0.177106
Irradiation 0.176214 0 0.033515 −0.033712

Workday Holiday Workday Holiday

Pprev 24 h 0.816096 0.926576 0.887726 0.154234
Pprev 48 h 0.710268 0.915227 0.854311 0.272240

In general, there is a low correlation between these parameters with consumption; the
results for air temperature and irradiation can be seen in Table 3. The Academic building
has an automated energy management system that allows for more efficient and sustainable
use of energy. Thus, with the combination of high internal loads, together with advanced
control systems, internal heat sources, zonal temperature control, and energy management
strategies, climatic factors do not affect energy consumption in the Academic building.
Nevertheless, a slight correlation exists between air temperature and power consumption in
the Industrial building during working hours, with the strength of the correlation varying
across different months. For example, in June, the correlation has a value of 0.89, while in
October, it is 0.93. This will be considered as an additional input in the model.

3.3. Input Data

Some labels are the same for both buildings, but are defined differently due to the
characteristics of each one. The features under consideration are described next and are
summarized in Table 4.

• Pprev 24h. The power consumption at this point in time 24 h before, normalized
between 0 and 1.

• Pprev 48h. The power consumption at this point in time 48 h before, normalized
between 0 and 1.

• Holiday. Boolean value indicating whether the time to be predicted belongs to a
holiday ‘1’ or not ‘0’.

• Base power. Boolean value indicating whether at the time to be predicted there is a
base load ‘1’ or not ‘0’.

– Academic. Days in which the consumed power is always greater than 15 kW (see
Figure 3a).

– Industrial. Days in which the consumed power exceeds 78 kW (see Figure 3b).

• Working hours. Boolean value indicating whether the time to be predicted belongs to
working time ‘1’ or not ‘0’.

– Academic. Looking at Figure 3a, the working time is identified as 7 a.m. to 6:30 p.m.
– Industrial. Looking at Figure 3b, the working time is identified as 7 a.m. to 7 p.m.

in orange and 7 a.m. to 11 p.m. in green.

• Air temperature. The air temperature at that time, normalized between 0 and 1.
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Table 4. Input features combinations of Academic and Industrial buildings.

Label Type

Label Combination

Academic Industrial

Basics Basics
+48h Basics Basics

+48h
Basics

+AirTemp Compl.

Pprev 24 h Fractional • • • • • •
Holiday Boolean • • • • • •
Base Power Boolean • • • • • •
Work hours Boolean • • • • • •
Air temp. Boolean • •
Pprev 48 h Fractional • • •

3.4. Analysis of Results

Table 5 compiles all the numerical results of the metrics used across all combinations
of cases, features, models, and buildings. Figure 4 presents these results in a more visual
format, facilitating easier interpretation and analysis.

Table 5. Performance comparison of ML models for power prediction in Academic and Industrial
buildings.

Academic Industrial

Case 1 Case 2 Case 1 Case 2

Basics Basics+
48h Basics Basics+

48h Basics Basics+
48h

Basics+
AirTemp Compl. Basics Basics+

48h
Basics+

AirTemp Compl.

M
SE

Persistent 0.0091 0.0091 0.0091 0.0091 0.0058 0.0058 0.0058 0.0058 0.0063 0.0063 0.0063 0.0063
DNN 0.0050 0.0050 0.0052 0.0049 0.0055 0.0053 0.0061 0.0056 0.0060 0.0054 0.0062 0.0054
SVM-Sig. 0.0059 0.0056 0.0069 0.0064 0.0057 0.0054 0.0064 0.0053 0.0061 0.0057 0.0064 0.0059
SV-Rad. 0.0045 0.0045 0.0050 0.0045 0.0051 0.0050 0.0055 0.0053 0.0063 0.0055 0.0060 0.0062
RF 0.0050 0.0050 0.0050 0.0050 0.0052 0.0049 0.0053 0.0051 0.0057 0.0054 0.0058 0.0056

R
M

SE

Persistent 0.0954 0.0954 0.0954 0.0954 0.0763 0.0763 0.0763 0.0763 0.0795 0.0795 0.0795 0.0795
DNN 0.0704 0.0704 0.0721 0.0701 0.0739 0.0726 0.0784 0.0745 0.0774 0.0733 0.0785 0.0738
SVM-Sig. 0.0768 0.0748 0.0831 0.0802 0.0754 0.0732 0.0801 0.0728 0.0780 0.0755 0.0801 0.0769
SVM-Rad. 0.0670 0.0670 0.0708 0.0669 0.0714 0.0705 0.0741 0.0727 0.0796 0.0739 0.0776 0.0786
RF 0.0707 0.0706 0.0709 0.0708 0.0719 0.0702 0.0726 0.0716 0.0756 0.0737 0.0764 0.0748

M
A

E

Persistent 0.0480 0.0480 0.0480 0.0480 0.0531 0.0531 0.0531 0.0531 0.0551 0.0551 0.0551 0.0551
DNN 0.0424 0.0402 0.0427 0.0404 0.0551 0.0549 0.0584 0.0557 0.0580 0.0536 0.0581 0.0547
SVM-Sig. 0.0468 0.0497 0.0443 0.0429 0.0557 0.0550 0.0601 0.0531 0.0575 0.0543 0.0601 0.0561
SVM-Rad. 0.0398 0.0398 0.0410 0.0397 0.0536 0.0526 0.0553 0.0542 0.0640 0.0543 0.0577 0.0573
RF 0.0405 0.0405 0.0406 0.0406 0.0531 0.0515 0.0543 0.0528 0.0556 0.0539 0.0568 0.0548

M
A

PE

Persistent 18.76 18.76 18.76 18.76 25.49 25.49 25.49 25.49 26.24 26.24 26.24 26.24
DNN 119.73 115.84 118.50 114.61 150.45 153.03 151.20 150.70 142.91 144.44 148.78 141.71
SVM-Sig. 20.16 23.73 16.92 16.09 30.51 32.64 33.64 28.76 31.18 28.21 33.64 29.38
SVM-Rad. 15.34 15.34 16.75 15.28 30.61 29.92 31.36 31.59 44.41 28.97 31.70 30.89
RF 15.34 15.28 15.39 15.36 29.18 28.06 31.16 29.97 29.89 28.31 31.66 29.47

R
²

Persistent 0.8202 0.8202 0.8202 0.8202 0.8774 0.8774 0.8774 0.8774 0.8588 0.8588 0.8588 0.8588
DNN 0.9021 0.9022 0.8975 0.9030 0.8850 0.8890 0.8706 0.8830 0.8662 0.8800 0.8624 0.8783
SVM-Sig. 0.8834 0.8895 0.8637 0.8730 0.8804 0.8871 0.8568 0.8883 0.8640 0.8726 0.8568 0.8681
SVM-Rad. 0.9113 0.9113 0.9011 0.9115 0.8925 0.8954 0.8842 0.8887 0.8584 0.8780 0.8655 0.8622
RF 0.9015 0.9016 0.9008 0.9009 0.8910 0.8962 0.8890 0.8921 0.8724 0.8788 0.8698 0.8749

C
V

Persistent 63.69 63.69 63.69 63.69 74.70 74.70 74.70 74.70 73.35 73.35 73.35 73.35
DNN 60.89 60.12 59.91 61.34 68.22 67.96 66.92 68.22 65.23 69.44 70.69 69.79
SVM-Sig. 59.06 55.93 62.70 62.44 69.47 68.05 66.86 69.19 68.39 68.41 66.86 67.80
SVM-Rad. 59.59 59.59 58.86 59.59 67.71 67.90 68.47 68.25 58.66 67.57 67.06 68.71
RF 60.24 60.29 60.25 60.26 68.72 68.87 68.43 68.85 67.26 67.35 67.30 67.98
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Figure 4a and Table 5 present the evaluation metrics results for the Academic building.
The Basics+48h configuration generally improves upon the Basics configuration in most
cases. However, the differences in the best RMSE and R² results are minimal, with little
variation between the different scenarios. Nevertheless, there is a noticeable difference in
the performance of the different ML models.

(a)Academic building.

(b)Industrial building.

Figure 4. Evaluation metrics results of both (a) Industrial and (b) Academic building.

For the Industrial building (see Figure 4b), the Basics+48h configuration achieves better
RMSE results across all models and scenarios, except for the SVM-Sigmoid in Case 1. A
similar tendency is observed for R² and MAE. Another trend to note is that Basics+AirTemp
consistently performs the worst, sometimes even underperforming the persistent model.
Meanwhile, the Complete and Basics configurations struggle for second place across the
various combinations. In MAPE, the DNN model diverges significantly from the other
models.

The relation between the true and predicted values was calculated as a linear regression
Equation (8), where the linear relationship between the true and predicted values is given
by the regression slope β and the offset is x0.

ŷ = β · y + x0 (8)

The estimated values are closer to true values when β = 1 and x0 = 0. The smaller the
deviation, the closer the R² value is to 1.

Figure 5 depicts the correlation between the forecasted and actual consumption values
of the Academic building. The consumption patterns used as features can be identified in
Figure 3a: the first, between 0 and 15 kW, corresponds to the power consumed outside of
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working time with the chiller off; the second, with power between 15 and 30 kW, occurs
outside working time with the chiller on; and the third zone, above 30 kW, occurs during
working time.

(a)Case 1.

(b)Case 2.

Figure 5. Correlation between Ptrue and Ppredicted consumption in Academic building of data division
proportions. (a) Case 1 and (b) Case 2.

In certain combinations of the highest-performing models (SVM-Radial, RF, and DNN),
minimal differences are observed between Case 1 and Case 2, or between Basics with and
without the 48 h features, indicating that these models are highly stable. However, the
model that delivers the best results is the SVM-Radial in Case 2 with the Basics+48h
features.

In the graphs for the Industrial building (see Figure 6), three zones are also evident,
although less distinct: the first, around 25 kW, represents the base consumption outside
working time; the second, between 50 and 75 kW, corresponds to working time with low
power consumption; and the third zone, above 75 kW, corresponds to periods of high
power consumption.
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(a)Case 1.

(b)Case 2.

Figure 6. Correlation between true and predicted power consumption in Industrial building of data
division proportions (a) Case 1 and (b) Case 2.

In general, Case 1 exhibits β values closer to 1 and lower offset x0 values, which is
consistent with the R² results. Therefore, it can be concluded that Case 1 performs better
than Case 2. Furthermore, Basics+48h demonstrates the best performance, except in the
SVM-Sigmoid scenario. Lastly, the model with the highest performance is RF, though it is
only marginally better than the SVM-Radial.

In Table 6, a summary of the Academic and Industrial absolute error is shown. In general,
it is desirable for the mean, median, and standard deviation (std) of the absolute error to be
as close to zero as possible. A small mean value would indicate that, on average, the error
is very small, while a small median value indicates that half of the errors are negative and
half are positive. A low standard deviation indicates that the errors are concentrated near the
mean, meaning that the errors do not vary much and are consistently small.

The more concentrated the curves around 0, the higher the prediction accuracy of
the model. In the case of the Academic building (see Figure 7a), the RF and DNN models
show the most concentrated curves, although the different combinations of cases and
features diverge less in the RF model. For the Industrial building (see Figure 7b), the RF,
SVM-Radial, and DNN models all show highly concentrated curves. However, in this, the
different combinations diverge more noticeably.
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Table 6. Absolute error summary for both Academic and Industrial buildings.

Academic Industrial

Case 1 Case 2 Case 1 Case 2

Basics Basics
+48h Basics Basics

+48h Basics Basics
+48h

Basics+
AirTemp Compl. Basics Basics

+48h
Basics+

AirTemp Compl.

M
ea

n

SVM-Rad. 0.07 0.07 −0.15 0.07 −0.43 −0.57 0.49 −0.64 −1.62 −0.09 −0.02 0.08
SVM-Sig. −0.57 −0.41 −1.09 0.08 0.60 −0.09 0.95 0.62 0.56 0.81 0.76 0.58

RF −0.26 −0.26 −0.27 -0,27 −0.15 −0.33 −0.27 −0.47 0.08 0.06 0.09 0.09
DNN 0.43 0.34 −0.06 −0.86 1.35 −0.94 −0.73 −0.77 −1.43 0.10 1.50 −1.64
PM −0.11 −0.11 −0.11 −0.11 0.21 0.21 0.21 0.21 0.46 0.46 0.46 0.46

M
ed

ia
n

SVM-Rad. −0.32 −0.32 −0.47 −0.32 −1.33 −1.33 −0.25 −1.38 −2.87 −0.66 −0.73 −0.35
SVM-Sig. −1.10 −0.58 −1.33 −0.10 −0.06 −0.32 0.19 0.14 0.09 0.46 0.24 0.27

RF −0.37 −0.37 −0.36 -0,36 −0.82 −1.06 −1.01 −1.05 −0.49 −0.84 −0.54 −0.44
DNN 0.17 0.12 −0.19 −0.73 0.36 −1.46 −1.28 −1.25 −2.21 −0.59 0.67 −1.88
PM 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

St
d

SVM-Rad. 4.33 4.33 4.56 4,32 7.78 7.66 8.22 7.90 8.53 8.06 8.47 8.57
SVM-Sig. 7.53 4.97 5.05 4.96 8.20 7.98 8.32 7.92 8.50 8.20 8.70 8.38

RF 4.55 4.55 4.57 4.56 7.84 7.65 7.91 7.79 8.24 8.03 8.33 8.16
DNN 4.62 4.53 4.53 4.52 7.87 7.63 8.39 7.97 8.39 7.99 8.42 8.45
PM 6.16 6.16 6.16 6.16 8.32 8.32 8.32 8.32 8.66 8.66 8.66 8.66

(a)Academic building.

(b)Industrial building.

Figure 7. Absolute error distribution of both (a) Academic and (b) Industrial buildings.

The graphs Figures 8 and 9 present energy consumption for a couple of days (with and
without base load) in the Academic and Industrial buildings, respectively. In all cases, Case
1 with Basics+48h has been used. While these visualizations do not yield significant insights
on their own, they serve to illustrate how each model adapts to the specific consumption
patterns of the buildings. By examining these predictions against actual consumption
data, we can observe how the models align with or deviate from the real trends, offering a
practical example of model performance under typical conditions for each building type.
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(a)With base load. (b)Without base load.

Figure 8. Prediction of a day for Academic building in both (a) with and (b) without base load.

(a)With base load. (b)Without base load.

Figure 9. Prediction of a day for Industrial building in both (a) with and (b) without base load.

3.5. Discussion

Building on the objective analysis of the results presented in the previous section, this
discussion will consider the interpretation and implications of the findings in relation to
the five research questions and hypotheses one-by-one (see Section 1). Each hypothesis will
be critically examined to assess its validity, drawing on the results to explore how well they
align with the initial expectations. This examination will provide a nuanced understanding
of the strengths and limitations of the predictive models used, as well as their relevance to
the broader goals of improving power consumption forecasting.

• During the analysis of consumption data and correlation with environmental factors, it
was observed that the features within the Basics package, directly related to occupancy
rate and equipment usage, carry the most significant weight for both the Academic
and Industrial buildings. In general, environmental factors showed a low correlation
with consumption. However, there is a high correlation between air temperature and
power consumption depending on the month during working time in the Industrial
building, justifying its use as a feature in this context.

• As previously noted, there is a high correlation between air temperature and power
consumption during specific months and working hours in the Industrial building,
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a pattern not observed in the Academic building. However, when examining the
metrics in its Basics+AirTemp settings, such as RMSE, MAE, and R², only in Case 2
with the SVM-Radial model does the performance surpass that of the Basics, with
many instances showing even poorer results than the Persistent model.

From these points, it can be concluded that both buildings are minimally influenced
by the climatic conditions of their locations. The high internal loads combined with the
presence of heat recovery systems within the Academic building results in a reduction in
the impact of meteorological conditions or building orientation on energy consumption.
Instead, the energy consumption of the building is more significantly influenced by patterns
of usage and the academic calendar. This reasoning is further supported by the fact
that Basics+48h combinations significantly improve prediction accuracy compared with
only Basics in most of the scenarios studied. So, predictive models could, under certain
conditions, disregard external environmental factors. In summary, the H1 hypothesis is
partially supported. And the H2 hypothesis is refuted by taking into account the specific
conditions of high internal loads relative to total consumption shown in both scenarios.

• Overall, better RMSE values were achieved in the Academic building compared
to the Industrial one. Additionally, lower MAPE and CV values were observed,
along with higher R² scores, indicating that the models performed more effectively
in the environment with 15-min data intervals than in the one with hourly intervals.
Furthermore, the absolute error distributions in the Academic context were much
more concentrated around zero.

Based on these findings, it can be concluded that a higher frequency of data collection
increases the prediction accuracy of power consumption models, ratifying the H3 hypothe-
sis. Moreover, regarding the two data division cases studied, it was observed that Case 1
provides better generalization due to a more balanced validation set than Case 2.

• In all cases studied across both buildings, except for Case 2 in the Industrial building,
the SVM-Radial model consistently outperformed the SVM-Sigmoid. The absolute
error distribution clearly indicates better performance of the SVM-Radial in the Aca-
demic building, and although the difference is less pronounced in the Industrial
building, a higher concentration of errors around zero is still observed.

These results ratify the H4 hypothesis that the Radial kernel of the SVM model would
demonstrate better predictive accuracy for power consumption in both buildings due to its
superior ability to model complex, non-linear relationships in the data.

• Firstly, in the case of the Academic building, the evaluation metrics show similar
behavior between the DNN and RF models. However, the RF model generally exhibits
better performance, with the lowest RMSE and a very narrow and high absolute error
distribution. Secondly, in the Industrial building, the DNN model does not perform as
well as the SVM-Radial or RF models, with RF being slightly superior.

In conclusion, it can be stated that the SVM-Radial model is better suited to the
characteristics of the Academic building, showing the best performance, while the RF
model performs better in the Industrial building. In summary, the H5 hypothesis is refuted.
The DNN model does not fit as well in either scenario; however, it is observed that this
model shows a much higher MAPE than the other models. Excluding issues with scaling or
preprocessing of input data, or model construction (as it demonstrates competent behavior
in other metrics), it is concluded that the issue may be overfitting. This suggests that while
the model may predict very well in many cases, it may fail significantly in others, leading
to a spike in MAPE due to high relative errors in those specific cases.
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3.6. Future Research Directions

As we advance our research on predictive modeling for energy consumption in build-
ings, several key areas warrant further exploration. This future work will not only enhance
the practical applicability of our models but also address the complexities inherent in
real-world energy systems. The following topics indicate our intended focus:

1. Practical Challenges in Deployment. We aim to investigate the practical challenges
associated with deploying predictive models in real-world energy systems. This
includes evaluating hardware costs for machine learning algorithms, assessing the
computational resources required for different models, and developing strategies
to integrate predictive models with existing energy management infrastructures.
Addressing these challenges is essential to bridge the gap between theoretical accuracy
and practical usability in energy forecasting systems.

2. Minimizing Input Data Errors. In this study, we removed any days from the dataset
that contained three or more consecutive readings marked as missing or flagged as
outliers. Future research will focus on methods to minimize the effects of input data
errors, ensuring that predictive algorithms yield more reliable results. Enhancing
data quality and integrity will be crucial for maintaining consistency across diverse
operating conditions.

3. Analyzing Consumption Patterns. While consumption patterns in the industrial
building are largely dictated by a predictable production schedule, the Academic
building’s energy use can vary significantly based on occupancy and internal activities.
Further studies are necessary to analyze how these fluctuating patterns impact energy
consumption in academic settings. Understanding these dynamics will be critical for
developing tailored predictive models that accurately reflect variability in usage.

4. Integration of Hybrid Models. We plan to explore the integration of hybrid models
that combine both simulation and real-time data to optimize predictive accuracy and
system control. These models are particularly relevant for the development of digital
twins, which replicate real-world systems in a virtual environment, facilitating effi-
cient energy management and responsive system adaptation. By leveraging real-time
feedback and simulation data, these digital twins can adjust to dynamic conditions,
leading to improved energy efficiency and smarter resource allocation. This approach
will enable us to address the complexities of real-world energy consumption systems
and investigate broader applications of predictive modeling in intricate scenarios,
enhancing the practical impact of our research.

4. Summary and Conclusions
Firstly, the findings indicate that both buildings are minimally affected by local climatic

conditions. However, incorporating historical consumption data from 48 h prior to the
Basics features significantly enhances prediction accuracy across most scenarios. The results
further confirm that a higher frequency of data collection improves the accuracy of power
consumption models. In addition, it is found that a better and more balanced division of
the data improves the performance of the models in a very relevant way.

Secondly, the SVM model with a Radial kernel demonstrated superior predictive
accuracy in both buildings compared with the Sigmoid kernel model due to its ability to
model complex, non-linear relationships in the data. Specifically, the SVM-Radial model
exhibited the best performance in the Academic building, while the RF model was more
effective in the Industrial building.

Thirdly, the DNN model displayed a notably higher MAPE compared to other models,
despite competent performance in other metrics. This suggests that the DNN model may
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be prone to overfitting, excelling in many cases but significantly underperforming in others,
which inflates the MAPE due to high relative errors in those specific instances.

These findings highlight the importance of selecting appropriate data collection fre-
quencies, features, and predictive models tailored to the operational characteristics of each
building to enhance the accuracy and reliability of power consumption predictions.

Finally, the persistent model’s results were outperformed in the majority of the settings
and models tested. This suggests that even with minimal optimization effort, these pre-
diction techniques already prove to be a highly useful tool that is worth considering. This
reinforces the potential of these models to significantly enhance power management prac-
tices in various building types, underscoring their practical applicability and effectiveness
in real-world scenarios.
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Appendix A. Hyperparameter Tuning

Table A1. Case 1 hyperparameter tuning.

Academic Industrial

Basics Basics
+48h Basics Basics

+48h
Basics

+AirTemp Compl.

RF

Number of trees 350 400 100 140 150 200
Max depth 10 10 6 8 8 10
Min samples split 17 5 2 10 7 2
Min samples leaf 1 1 4 1 1 1

SVM-Sig. Regularization 250 250 11 200 220 70
Gamma 1 1 5.5 3 0.00002 0.02

SVM-Rad. Regularization 100 150 160 110 150 150
Gamma 0.0005 5 0.00005 0.00075 0.000025 0.000025

DNN
Hidden layers 3 2 3 3 4 4
Units per layer 96 64 32 64 32 128
Batch size 32 32 16 32 32 16

Table A2. Case 2 hyperparameter tuning.

Academic Industrial

Basics Basics
+48h Basics Basics

+48h
Basics

+AirTemp Compl.

RF

Number of trees 300 400 275 140 240 220
Max depth 10 10 6 8 8 11
Min samples split 10 8 18 6 4 4
Min samples leaf 1 1 1 1 1 1

SVM-Sig. Regulatization 250 250 100 0.3 200 330
Gamma 5 1 1 15 0.01 0.045

SVM-Rad. Regulatization 100 150 90 100 220 220
Gamma 0.01 5 0.0005 0.0001 0.00002 0.00002

DNN
Hiddel layers 3 2 2 3 3 4
Units per layer 128 96 64 64 64 160
Batch size 40 40 16 8 8 16
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