
Academic Editors: Isam Shahrour and

Pierluigi Siano

Received: 23 October 2024

Revised: 15 December 2024

Accepted: 23 December 2024

Published: 25 December 2024

Citation: Liang, J.; Zhang, Z.; Zhi, Y.

Multi-Armed Bandit Approaches for

Location Planning with Dynamic

Relief Supplies Allocation Under

Disaster Uncertainty. Smart Cities

2025, 8, 5. https://doi.org/10.3390/

smartcities8010005

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Multi-Armed Bandit Approaches for Location Planning with
Dynamic Relief Supplies Allocation Under Disaster Uncertainty
Jun Liang 1, Zongjia Zhang 2,* and Yanpeng Zhi 3

1 Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055,
China; 12250118@mail.sustech.edu.cn

2 School of Public Administration and Emergency Management, Jinan University, Guangzhou 510632, China
3 Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK;

yanpeng.zhi@durham.ac.uk
* Correspondence: zhangzongjia@jnu.edu.cn

Highlights:

What are the main findings?
• We design a three-layer emergency logistics network to manage the flow of disaster

relief materials and develop a bi-objective, multi-period stochastic integer programming
model to support post-disaster decision-making under uncertainty. Multi-armed bandit
approaches are innovatively applied to solve the problem.

• A newly developed multi-armed bandit (reinforcement learning) algorithm called the
Geometric Greedy algorithm, achieves overall higher performance than the traditional
ϵ-Greedy algorithm and the Upper Confidence Bound (UCB) algorithm.

What is the implication of the main finding?
• The key advantage of using reinforcement learning to solve our problem is that agents

can dynamically adjust their strategies through interaction with the uncertain environ-
ment to minimize action costs.

Abstract: Natural disasters (e.g., floods, earthquakes) significantly impact citizens,
economies, and the environment worldwide. Due to their sudden onset, devastating
effects, and high uncertainty, it is crucial for emergency departments to take swift action to
minimize losses. Among these actions, planning the locations of relief supply distribution
centers and dynamically allocating supplies is paramount, as governments must prioritize
citizens’ safety and basic living needs following disasters. To address this challenge, this
paper develops a three-layer emergency logistics network to manage the flow of emergency
materials, from warehouses to transfer stations to disaster sites. A bi-objective, multi-period
stochastic integer programming model is proposed to solve the emergency location, distri-
bution, and allocation problem under uncertainty, focusing on three key decisions: transfer
station selection, upstream emergency material distribution, and downstream emergency
material allocation. We introduce a multi-armed bandit algorithm, named the Geometric
Greedy algorithm, to optimize transfer station planning while accounting for subsequent
dynamic relief supply distribution and allocation in a stochastic environment. The new
algorithm is compared with two widely used multi-armed bandit algorithms: the ϵ-Greedy
algorithm and the Upper Confidence Bound (UCB) algorithm. A case study in the Futian
District of Shenzhen, China, demonstrates the practicality of our model and algorithms.
The results show that the Geometric Greedy algorithm excels in both computational effi-
ciency and convergence stability. This research offers valuable guidelines for emergency
departments in optimizing the layout and flow of emergency logistics networks.
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1. Introduction
Due to accelerating climate change and significant human disturbance, the frequency

and impact of natural disasters such as earthquakes, floods, and storms are on the rise [1].
These events can cause devastating damage to human safety [2–4]. According to a statistical
report published by [5], approximately 94.94 million people were affected by various
natural disasters in China, resulting in a direct economic loss of 286.4 billion yuan in the
first three quarters of 2021. Thus, optimizing the planning and layout of emergency supply
sites in advance of disasters is of significance for improving the efficiency of emergency
responses [6]. Emergency logistics, also known as humanitarian logistics, aims to maximize
rescue efficiency and minimize potential losses from hazards [7]. It plays a vital role in the
success of emergency rescue operations [8].

Facility location selection and the distribution of emergency materials are critical
procedures in emergency logistics that directly impact the survival of victims and the overall
success of relief efforts [9]. In practice, the geographical locations of disaster-affected sites
are often dispersed, and certain types of emergency materials cannot be delivered directly
to these sites [10]. Instead, emergency materials are first dispatched from warehouses to
selected transfer stations, which then distribute the received materials to nearby disaster
sites [11]. Furthermore, emergency authorities must make dynamic decisions in response to
an uncertain disaster environment, presenting significant challenges for emergency logistics
management. Motivated by the above discussion, we propose two research questions in
this paper.

• In a complex emergency logistics network, how can we determine the locations of
transfer stations in an uncertain disaster environment ?

• How can we dynamically manage the sequential allocation of upstream and down-
stream relief supplies in response to the rapid changes in disaster information ?

To tackle the above two research questions, we develop a bi-objective, multi-period
stochastic integer programming model in a three-layer emergency logistics network. This
network manages the flow of emergency materials under uncertainty, moving supplies
from warehouses to transfer stations and then to local disaster areas. Given that demand at
disaster sites fluctuates throughout the disaster, we consider the emergence of new demands
in multiple periods. In a three-layer network, the dynamic distribution of emergency
materials depends not only on the interaction between disaster sites and transfer stations
but also on the coordination between transfer stations and warehouses.

The complete operational procedures during a disaster are outlined as follows. Af-
ter a disaster occurs, to efficiently distribute emergency materials to affected areas, the
emergency department first needs to select several transfer stations from a set of candidate
locations (e.g., schools, parks) to serve as distribution centers. Once selected, these stations
remain operational throughout the subsequent periods. In each period, the process begins
by determining the quantity of emergency supplies to be transported from warehouses to
the selected transfer stations and then from the stations to the affected sites. At the end of
each period, the affected sites report updated demand levels. As shown in Figure 1, large
trucks are used to transport supplies from warehouses to transfer stations, while smaller
trucks deliver materials from the stations to individual sites. Previous studies on stochastic
facility location and emergency material distribution have primarily focused on sampling
approaches and heuristic algorithms to solve stochastic programming models [12]. How-
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ever, these methods are not well-suited to real disaster scenarios, as they cannot incorporate
updated information into the decision-making process.

Figure 1. Diagram for emergency materials distribution.

Reinforcement learning, especially multi-armed bandit algorithms (in this paper, we
call multi-armed bandit algorithms and reinforcement learning algorithms interchangeably),
acts as a powerful approach to tackling large-scale and complex stochastic decision-making
problems by simulating the interaction between agent and environment [13,14]. By interact-
ing with the external environment and receiving timely feedback, the algorithm learns to
take appropriate actions in different scenarios, making it well-suited for solving stochastic
problems. In a real disaster scenario, the transportation times and demands for emergency
supplies are random. When the emergency authority makes location planning decision, the
subsequent emergency supplies transportation times and the demands for supplies at dis-
aster sites in each period are unobservable. Only when supplies arrive at their destinations
are the vehicle transportation times known, and only at the end of each period are new
demands realized at affected sites. To better characterize the decision making of emergency
authority (agent) in a dynamic and uncertain (random parameters generated from prob-
ability distribution) environment, we apply multi-armed bandit algorithms to tackle the
transfer stations location planning, with the emergency supplies distribution and allocation
in an uncertain environment. Three multi-armed bandit algorithms, including our new
developed Geometric Greedy algorithm, are implemented to solve the stochastic model.

To demonstrate the practicality of our model and algorithms, we conduct a case
study in the Futian District of Shenzhen, simulating transfer station location selection and
emergency material scheduling in response to an urban flood disaster. Analysis shows that
the developed Geometric Greedy algorithm is proficient in decision-making in a simulated
disaster scenario and achieves better overall performances on computational efficiency and
convergence stability compared with the ϵ-Greedy algorithm and Upper-Confidence-Bound
(UCB) algorithm. We summarize the contributions of this paper as follows:

(1) We design a three-layer emergency logistics network to manage the flow of disaster
relief materials and develop a bi-objective, multi-period stochastic integer programming
model to support post-disaster decision-making under uncertainty. The model addresses
key questions, including which transfer stations should be selected and how many emer-
gency supplies should be transported from warehouses to transfer stations and then to
affected sites.

(2) We apply multi-armed bandit approaches in an innovative way to solve the transfer
station location planning problem, taking into account the subsequent distribution and
allocation of emergency materials under uncertainty. The advantage of using multi-armed
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bandit algorithms over traditional optimization methods is that they enable the decision-
maker to interact with the uncertain environment, allowing for the adjustment of location
strategies based on the evolving distribution and allocation of relief supplies in each
training episode.

(3) We propose a novel multi-armed bandit (reinforcement learning) algorithm called
the Geometric Greedy algorithm, which outperforms the traditional ϵ-Greedy algorithm
and the Upper Confidence Bound (UCB) algorithm in both computational efficiency and
convergence stability.

The paper is organized as follows: Section 2 provides a brief review of related research.
Section 3 presents our methodology, which includes a distribution–location–allocation
model and three multi-armed bandit algorithms for solving the model. A case study and
numerical results are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Literature Review
Given that our research problem focuses on applying multi-armed bandit algorithms

for location planning, along with subsequent dynamic distribution and the allocation of
emergency supplies in an uncertain environment, the literature review in this paper is
organized into two main streams. The first part addresses literature that jointly tackles
facility location and emergency resource distribution problems, as presented in Section 2.1.
The second stream discusses the applications of multi-armed bandit approaches—more
broadly, reinforcement learning algorithms—in solving emergency management problems,
as shown in Section 2.2.

2.1. The Combination Problem of Facility Location and Emergency Resources Distribution

After the sudden outbreak of natural disasters, the appropriate location selection of
emergency facilities and efficient delivery of emergency resources to affected areas play a
significant role in reducing disaster damages and the survival of disaster victims [15].

In terms of making location and emergency materials distribution decisions under
uncertainty, there are a variety of papers addressing this issue by constructing stochastic
models. Chang et al. designed a decision-making tool for the government to plan for
flood emergency logistics [16]. Two stochastic optimization models were constructed to
satisfy the rescue demands at flooding points by properly determining the setup of rescue
bases and distributing the engine pumps according to the urgency at each flooding site.
Mete and Zabinsky proposed a two-stage stochastic programming model to determine
the opening up of medical supply warehouses and the transportation amount of medical
supplies from each warehouse to each hospital under different disaster scenarios [17].
Following that was a vehicle routing model, which optimized a series of predetermined
routes to make transportation plans. It made a forward step in the emergency response in
an uncertain environment by developing a system combining facility location, emergency
materials distribution, and emergency vehicle routing in the aftermath of disasters. Ahmadi
et al. built a two-stage relief chain to help emergency authorities make decisions under
uncertainty [18]. The first stage decision involved the location selection of the distribution
centers and the routing strategies from distribution centers to aggregate, and the second
stage decision considered the location determination of local depots and the delivery plan
from selected depots to traffic analysis zones. Since the damage of the disaster to the
road network made the travel time unpredictable, they developed a stochastic multi-depot
logistics model under the influence of network failure, involving the minimization of
unsatisfied demand, which ensured that adequate emergency materials were transported
to the disaster sites. Paul and Zhang developed a two-stage stochastic programming
model to make location and transportation planning in the disaster preparedness phase in



Smart Cities 2025, 8, 5 5 of 29

case of potential hurricane weather [19]. Decision-makers’ risk attitudes were introduced
to adjust the number of Points of Distribution selected, and uncertain parameters are
characterized by probability distributions rather than a robust adaptive optimization
approach to reduce computational complexity. Mohammadi et al. built a humanitarian
relief chain by designing a multi-objective fuzzy-based optimization model to make a series
of emergency response decisions, including the location selection of the distribution center,
and the number of emergency materials distributed [20]. Due to the uncertain nature of
the disaster environment, the estimation of model parameters had a large impact on the
schedule plan of emergency materials. In this paper, a neutrosophic fuzzy-based approach
was employed to handle the uncertainty in the objective functions, which then was further
combined with constraints processed by robust optimization to obtain the final model.

Since the emergency materials demand at disaster sites are time-varying, the dynamic
distribution of emergency materials is essential to the success of emergency response. Tzeng
et al. established an emergency materials distribution system, including the selection of
transfer depots, the dynamic emergency materials distribution from upstream (emergency
materials collection sites) to midstream (selected transfer depots), and from midstream to
downstream (demand points), which set a good example for the construction of a three-
layer emergency logistics network [11]. Three objectives considering delivery efficiency
and distribution fairness were designed to ensure that every demand point is well satisfied
in each time period. Cao et al. regarded sustainability, measured by injury satisfaction, as
a significant issue when determining the strategies for distributing emergency materials
dynamically [21]. Two objectives were developed to guide the resource allocation process:
one was maximizing the lowest injuries’ satisfaction, and another was related to satisfaction
variance. This paper highlighted the importance of considering the victims’ feelings in the
design of distributing emergency materials. In reaction to the demand-supply incongruence
in post-disaster logistics operations, Zhan et al. developed a sequential decision-making
framework to tackle the location and emergency materials assignment problem [22]. The
established framework answered two important questions: how to ensure the estimation
accuracy of demand prediction and how to deliver emergency materials to affected sites in
an effective manner. Another research highlight that made this paper distinctive was that
the dynamics of the delivery decision were concerned with “deliver now or later” rather
than “deliver now or not”.

Besides, there are some papers that considered location selection and dynamic emer-
gency materials distribution in an uncertain environment, which increases the difficulty
of the problem. Moreno et al. made contributions to distribution logistics in uncertain
disaster situations, characterized by a discrete probability distribution, by considering the
location of emergency materials stations and transportation of emergency supplies in each
time period [23]. Every time period is further divided into several micro time periods to
characterize the flow of commodities more precisely. Compared with existing literature, the
deprivation costs [24] were incorporated into the design of objective functions. Numerical
results showed that the proposed method could result in the fast delivery of emergency
materials and contribute to a fairer distribution. A multi-stage stochastic programming
model was proposed by [25] to provide guidance for emergency authorities to deliver
emergency materials to disaster points. The state of the road network was taken into
consideration, with its capacity both uncertain and dynamic. In addition, an emergency
materials transshipment network was constructed involving location, vehicle delivery, and
supply distribution decisions.

To date, no literature has applied reinforcement learning algorithms—specifically,
multi-armed bandit algorithms—to location planning with dynamic allocation of emer-
gency materials under uncertainty. Our research aims to fill this gap by developing multi-
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armed bandit algorithms for the location planning of transfer stations, taking into account
multi-stage upstream distribution of emergency materials and downstream allocation in a
stochastic environment.

2.2. Reinforcement Learning for Emergency Management Problem

As a branch of machine learning, reinforcement learning is concerned with how the
agent learns from the interaction with the environment. More specifically, the agents need
to adjust their strategies dynamically according to the environment’s feedback to maximize
their action rewards or minimize their action costs. Hence, reinforcement learning has
flexibility when dealing with randomness from the environment [13,14,26].

There are also several papers concentrating on applying reinforcement learning to emer-
gency path selection, evacuation, rescue operations, and resource allocation. Su et al. applied
Q-learning to rescue path selection in times of disasters [27]. In this paper, the rescue team
was regarded as the agent, and the path planning model can be taken as a Markov decision
process. In response to a dynamic and dangerous environment, numerical experiments showed
that the solutions proposed by Q-learning are more reliable, which demonstrated the excellent
performance and practical use of reinforcement learning in disaster management. Sarabakha
and Kayacan focused on the generation of evacuation plans in buildings when disasters
suddenly broke out [28]. A stochastic Q-learning algorithm was proposed in this paper to
help create the shortest paths that can lead to the exits of buildings in a three-dimensional
space, relieving the pressure of evacuation in an emergency. Nadi and Edrisi built a multi-
agent system as a Markov decision process to assist the emergency materials aid and rescue
operations [29]. They designed a reinforcement learning approach as the solution proce-
dure for the coordinated system. Results in this paper show that the employment of the
model can significantly improve the efficiency of rescue operations. Yan et al. developed a
novel rescue dispatch system called MobiRescue to satisfy the number of rescue requests
as much as possible, which can overcome the shortcoming that traditional rescue team
dispatching approaches are inefficient in the estimation of rescue request positions [30].
The support vector machine method was employed to estimate the distribution of potential
rescue calls, and a reinforcement learning approach was devised to improve the rescue
efficiency based on the predicted distribution, which had superior performance compared
with other methods in the numerical experiments.

Yu et al. did pioneer work on attempting to investigate the applicability of rein-
forcement learning on a multi-period humanitarian resource allocation problem with
deterministic demand [31]. With efficiency, effectiveness, and fairness taken into account
in the design of reward functions, the developed ϵ-greedy algorithm obtained a tradeoff
between exploration and exploitation, which achieved more satisfactory performances
compared with existing approaches. Hachiya et al. proposed a model for transporting
emergency materials by multiple UAVs (agents) using a Q-learning reinforcement learning
algorithm [32]. They showed that it had better performance than meta-heuristics methods
in the previous studies and a more stable supply of emergency relief supplies.

Although some studies have attempted to apply reinforcement learning to disaster
management problems, the use of these approaches to support disaster response remains
limited. Moreover, no existing literature applies reinforcement learning to facility location
selection while accounting for the subsequent dynamic distribution and allocation of
emergency materials in an uncertain environment. Our research aims to address this gap.

Unlike previous studies, where algorithmic exploration focused primarily on supply
allocation, our algorithms emphasize exploration and exploitation in the selection of trans-
fer station locations, while also accounting for upstream emergency materials distribution
and downstream allocation in an uncertain environment. When the decision-maker ini-
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tially plans the locations, the exact transportation times for relief supplies and the precise
demands at affected sites for each period are unknown. As a result, the cost (or reward)
associated with selecting a particular location plan is inherently random. By applying
multi-armed bandit algorithms to the selection of transfer stations, a potential location plan
is chosen in each training episode based on specified rules. The decision-maker then dis-
tributes and allocates supplies according to estimated transportation times and demands,
which are continuously updated with new data gathered during each episode. These
updates improve the accuracy of estimations for the next training episode. Ultimately,
the multi-armed bandit algorithms guide the selection of the optimal location plan for
transfer stations and the corresponding transportation amounts. Our research expands
the application of reinforcement learning in the emergency response phase, demonstrating
high adaptability to real disaster scenarios.

3. Methodology
In the methodology section, we first present our operational model, followed by our

multi-armed bandit (reinforcement learning) algorithms.

3.1. Distribution–Location–Allocation Model

In this section, a bi-objective multi-period stochastic integer programming model is
formulated to solve an emergency location, allocation, and distribution problem in an
uncertain environment. To reflect real-world constraints, the model excludes scenarios
where warehouses send excessive supplies to transfer stations at the outset to meet all
future demands in advance since the capacities of transfer stations are limited in reality.

3.1.1. Notations and Definitions

Notations used in the model and algorithms are described below.

Sets and indices
I set of warehouses.
L set of candidate transfer stations.
J set of disaster sites for disaster response.
K set of emergency materials.
ξ the severity of the disaster.
Parameters
t0 initial time of emergency operations.
T termination time of emergency operations.
fl opening cost of transfer station l.
γ number of transfer stations selected.
η minimum satisfaction rate of emergency materials at disaster sites.
v average travel speed on the road network.
dil , dl j shortest distance from warehouse i to transfer station l, from transfer station l

to disaster point j on the road network.
eil , el j unit transportation cost from warehouse i to station l and from station l to

disaster point j per hour per unit.
cil , cl j transportation time from warehouse i to station l and from station l to disaster

site j under the normal traffic condition.
ω1, ω2 weights of the first and the second objective functions.
Qk

i the initial inventory level of supplies k in warehouse i.
Variables
qk

i (t) the amount of supplies k available in warehouse i at the beginning of period t.
qk

l (t) the amount of supplies k available in station l at the beginning of period t.



Smart Cities 2025, 8, 5 8 of 29

Dk
j (t) newly generated demand of supplies k at disaster point j at the beginning of

period t.
Sk

j (t) the unsatisfied demand of disaster point j with regard to supplies k at the end
of period t.

β j(t) penalty parameter for unfulfilled demand at disaster site j in period t.
Decision variables:
zl whether the candidate station l is chosen to open or not, with 1 indicating it was

selected, and 0 otherwise.
mk

il(t) amount of supplies k transported from warehouse i to station l in period t.
mk

lj(t) amount of supplies k transported from station l to disaster point j in period t.

3.1.2. Model Formulation

In real disasters, transportation times from supply sites to affected areas may be signif-
icantly impacted by damaged road networks, which depend on the disaster’s severity [18].
The devastating effects on the road network can even double transportation times from
warehouses to disaster sites [31]. To represent the severity of natural disasters, we assume
that the disaster random variable ξ follows a uniform distribution on [1, 2], capturing the
extent of the damage. We make this assumption for simplicity in characterizing disaster
severity, a practice also adopted in the literature [31].

Under disaster uncertainty, transportation times cil are scaled by the disaster extent ξ.
As a result, the travel times become ξcil from warehouse i to transfer station l and ξcl j from
station l to affected site j. The penalty for unmet demand reflects the potential economic
loss when emergency supply demands are not fully satisfied. Similarly, we model the effect
of disaster severity on unmet demand penalties using ξβ j(t). As the severity of the disaster
increases, each additional unit of unmet demand results in greater potential losses.

In terms of the objectives the decision-maker wants to achieve, we set the following:
Objective 1: Minimize the opening costs of transfer stations and the transporta-

tion costs:

F1 = ∑
l∈L

flzl +E
[

T

∑
t=t0

∑
k∈K

(
∑
i∈I

∑
l∈L

ξcileilmk
il(t) + ∑

l∈L
∑
j∈J

ξcl jel jmk
lj(t)

)]

Objective 2: Minimize the penalized unsatisfied demand:

F2 = E
[

T

∑
t=t0+1

∑
j∈J

∑
k∈K

ξβ j(t)Sk
j (t)

]

The above objectives are commonly seen in literature that concerns facility location
and emergency resource allocation [11]. The decision-maker’s optimization problem is
formulated as below.

H∗(t0) = min
z,m

H(z, t0, m) = min
z,m

(ω1F1 + ω2F2) (Prob1)

s.t.

Sk
j (t) = Sk

j (t− 1)−∑
l∈L

mk
lj(t) + Dk

j (t) ∀j ∈ J, k ∈ K, t = t0 + 1, ..., T (1)

∑
l∈L

mk
lj(t) ≤ Sk

j (t− 1) + Dk
j (t) ∀j ∈ J, k ∈ K, t = t0 + 1, ..., T (2)

P
(

η
(
Sk

j (t− 1) + Dk
j (t)

)
≤ ∑

l∈L
mk

lj(t)
)
≥ α ∀j ∈ J, k ∈ K, t = t0 + 1, ..., T (3)

∑
l∈L

mk
il(t) ≤ qk

i (t) ∀i ∈ I, k ∈ K, t = t0, t0 + 1, ..., T (4)
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∑
j∈J

mk
lj(t) ≤ qk

l (t)zl ∀l ∈ L, k ∈ K, t = t0, t0 + 1, ..., T (5)

qk
l (t0) = 0 ∀l ∈ L, k ∈ K (6)

qk
l (t) = qk

l (t− 1) + ∑
i∈I

mk
il(t− 1)−∑

j∈J
mk

lj(t− 1) ∀l ∈ L, k ∈ K, t = t0 + 1, ..., T (7)

qk
i (t0) = Qk

i ∀i ∈ I, k ∈ K (8)

qk
i (t) = qk

i (t− 1)−∑
l∈L

mk
il(t− 1) ∀i ∈ I, k ∈ K, t = t0 + 1, ..., T (9)

∑
l∈L

zl = γ (10)

Sk
j (t0) = 0, ∀j ∈ J, k ∈ K (11)

Sk
j (t) ∈ Z, ∀j ∈ J, k ∈ K, t = t0 + 1, ..., T (12)

mk
lj(t), mk

il(t) ∈ N ∀i ∈ I, j ∈ J, k ∈ K, t = t0, t0 + 1, ..., T (13)

zl ∈ {0, 1}, ∀l ∈ L (14)

The objective function aims to minimize the weighted sum of two objectives: open-
ing costs, expected transportation costs and expected penalized unsatisfied demand.
Constraint (1) models how the unsatisfied demand at each disaster site evolves over time.
Specifically, the unsatisfied demand at site j at the end of period t equals the unsatisfied
demand at the end of period t− 1 plus newly generated demand, minus the emergency
materials received in period t. Constraint (2) ensures that the emergency materials delivered
from transfer stations to affected sites do not exceed the unsatisfied demand, avoiding the
waste of supplies. Constraint (3) is a chance constraint, ensuring that the probability of
satisfying at least η of the demand at each site in each period is maintained at a confidence
level α. This can also be viewed as a fairness constraint, as it ensures that the needs of every
disaster site are addressed equitably. Constraint (4) ensures that the total emergency mate-
rials transported to transfer stations do not exceed the available stock at each warehouse
during each period. Constraint (5) guarantees that the materials dispatched from a transfer
station remain within its inventory capacity if the station is operational; otherwise, no stock
will be allocated to that station.

Constraint (6) sets the initial inventory level at each transfer station to 0. Constraint (7)
defines the flow of inventory at each transfer station: the current stock equals the pre-
vious period’s inventory plus replenishments from warehouses, minus materials sent to
local disaster sites. Similarly, constraint (8) establishes the initial inventory level at each
warehouse, while constraint (9) models the stock flow at each warehouse. Specifically, the
inventory at warehouse i in the current period equals the previous inventory minus the
materials transferred to the selected transfer stations. Constraint (10) limits the total number
of transfer stations to γ, controlling costs and minimizing the waste of emergency resources.
Constraints (11) and (12) initialize the unsatisfied demand at affected sites at t0 to 0. Ad-
ditionally, all variables related to quantities must be integers, as required. Constraint (13)
ensures that the quantities of emergency materials transferred between the three layers
are natural numbers. Finally, constraint (14) governs the selection of transfer stations. If a
candidate station is selected, the corresponding variable is set to 1; otherwise, it remains 0.

In the developed bi-objective multi-period stochastic integer programming model,
there are three emergency decisions that must be made sequentially: the selection of transfer
station locations, the distribution of upstream emergency materials, and the allocation of
downstream emergency materials. A timeline is provided below (see Figure 2) to illustrate
the series of actions in each time period.
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Figure 2. Timeline for the emergency logistics operations.

3.1.3. Timeline for the Emergency Operations

The locations of transfer stations must be determined at the beginning of the first pe-
riod t0; following this, the decision on upstream emergency materials distribution is made,
which involves distributing emergency materials from warehouses to transfer stations.
The first-stage decision does not include the allocation of supplies from selected transfer
stations to disaster sites, as the delivery from warehouses to transfer stations occupies the
first period, and there is no inventory in the temporarily opened transfer stations during
this stage (in this paper, we call stage and period interchangeably).

After the locations of transfer stations are established and emergency materials are
transported from warehouses to these stations, the downstream supplies allocation and up-
stream emergency materials distribution decisions are made sequentially in the subsequent
stages. It is important to note that the downstream allocation decision always precedes
the upstream distribution decision at each stage, as the delivery of emergency materials is
demand-oriented. The amount transported from warehouses to transfer stations depends
on the inventory levels at each transfer station, which are closely linked to the allocation
amounts from transfer stations to disaster sites. Additionally, emergency material demands
are generated starting from the beginning of period t0 + 1 and continue until the beginning
of period T − 1. As a result, unsatisfied demands may persist from period t0 + 1 onward.

3.2. Multi-Armed Bandit (Reinforcement Learning) Algorithms
3.2.1. Geometric Greedy Algorithm

As noted by [16], evaluating the expectation in the objective function poses a significant
challenge when solving a stochastic programming model. Most traditional approaches to
addressing stochastic discrete optimization problems focus on internal or external sampling-
based approximation methods. For instance, sample average approximation (SAA) aims
to estimate the true objective of the stochastic problem by averaging over a large gener-
ated sample, effectively transforming the stochastic problem solution into the average of
solutions for a series of deterministic problems [12]. Sampling methods typically generate
numerous samples at the outset and then search for the optimal solution within a feasible
region. This approach results in a fixed emergency materials allocation amount, which
cannot adapt to evolving disaster scenarios with new data.

In contrast, reinforcement learning dynamically adjusts action strategies in each train-
ing episode within an uncertain environment. Consequently, the selected transfer station
locations and computed transportation amounts may vary from one training episode to the
next as new information becomes available.

In this paper, we develop a novel multi-armed bandit algorithm, termed the Geometric
Greedy algorithm, to address the bi-objective multi-period stochastic integer programming
model. In addition to the notations defined previously, we introduce several auxiliary
variables and estimators that will be utilized in the subsequent algorithm description.
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Auxiliary Variables
Lr transfer stations combination.
mk

il j(t) amount of supplies k transported from warehouse i to station l in period t and

planned to be transported to disaster point j in period t + 1.
qk

il(t) stocks of supplies k at station l in period t received from warehouse i.
∆k

il j(t) discriminants that determine transportation amount.

ηk
il j(t) percentage bounds for transportation amount.

nl selection times of station l in the algorithm.
Nr selection times of station combination Lr in the algorithm.

Estimators in the stochastic model
β̂ j(t) estimator of E(ξ)β j(t).
D̂j(t) estimator of E(Dj(t)).
ĉil estimator of E(ξ)cil .
ĉl j estimator of E(ξ)cl j.
Ĥ(r) estimator of the weighted cost H with station combination Lr.
∆̂k

il j(t) estimator of E(ξ)∆k
il j(t).

Agent and Action Set

In this paper, the decision-maker in the emergency department acts as the learn-
ing agent responsible for making three critical decisions: transfer station selection, up-
stream emergency materials distribution, and downstream emergency materials allocation.
The learning agent executes actions mk

lj(t), mk
il(t), and zl . Among these decisions, the

exploration–exploitation aspect of the algorithm focuses on the location planning of trans-
fer stations zl .

Environment

In this paper, the environment comprises warehouses, candidate transfer stations, and
affected sites. The learning agent interacts with this environment by taking actions based
on estimations of random transportation times and penalized unsatisfied demand. The
emergency materials stocks in the warehouses and transfer stations are also influenced by
the decisions made by the agent.

Cost/Reward Function

The objective function H∗(t0) proposed in this study aims to minimize the weighted
costs associated with opening transfer stations, transporting emergency materials, and
penalizing unsatisfied demand. And since the algorithm’s exploration–exploitation part
emphasizes the location planning of transfer stations zl (a one-step decision in each train-
ing episode), the agent’s cost function (Q-function) can be taken as the objective H∗(t0)

for simplicity.

Core Concept of Geometric Greedy Algorithm

Our Geometric Greedy algorithm explores combinations of stations using a geometric
distribution, where the parameter p controls the exploration level. Based on what the
algorithm has learned in previous episodes, it selects the station combination resulting in
the least total cost with probability p, the combination resulting in the second least total
cost with probability p(1− p), the combination resulting in the third least total cost with
probability p(1− p)2, and so forth. The optimal transportation amount is determined by
defined “discriminants”, which will be discussed later. The signs of these discriminants
indicate how much supply should be transferred from one station to another in each period.
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Materials distribution and allocation decisions can ultimately be made using updating
estimators in each episode, with the estimators of the defined discriminants playing a key
role in supply transportation. The schematic diagram for the proposed Geometric Greedy
algorithm is shown in Figure 3.

Initialize parameters
estimators

Begin training
m ← 1,...,M

Explore the locations of transfer
stations according to a geometry

distribution

Start from initial
time t0

Determine the transportation
amount from warehouses to
selected transfer stations

t ← t+1

Update
estimators

m ← m+1

Output the optimal transfer
station’s locations,

transportation amounts that
minimize the cost estimator

Determine the transportation
amount from transfer stations to

disaster sites
No

Yes

No

Yes

Figure 3. Schematic diagram of Geometric Greedy algorithm.

The original problem (Prob1) can be transformed into an equivalent form, as presented
in the theorem below, from which the new concept of “discriminants” naturally emerges.
By minimizing this equivalent cost function, the discriminants can effectively determine
the transportation amounts.

Theorem 1. Let mk
il j(t) be the amount of supplies k transported from warehouse i to station l in

period t and planned to be transported to disaster point j in period t + 1. Let

∆k
il j(t) := ω1cileil + ω1cl jel j −ω2

T

∑
s=t+1

β j(s), t = t0, t0 + 1, ..., T,

and these ∆’s are named “discriminants". Then the following optimization problem (Prob2) is
equivalent to (Prob1) subject to the common constraints (1)–(14).

H̃∗(t0) = min
z,m

E
(

ω1 ∑
l

flzl +
T

∑
t=t0

∑
i,l,j,k

ξ∆k
il j(t)m

k
il j(t)

)
. (Prob2)

The proof of the theorem can be found in the Appendix A. If the location decision zl is
fixed, then by Theorem 1 it suffices to minimize ∑ ∆k

il j(t)m
k
il j(t). Therefore, we need to set

mk
il j(t) to be as large as possible when ∆k

il j(t) ≤ 0 and to set mk
il j(t) to be as small as possible

when ∆k
il j(t) > 0.

In addition to the objective function, addressing the chance constraint (3) is essential
for solving the model. The theorem below is proposed to tackle this issue. Since each
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disaster point generates new demand randomly, we need to prepare additional supplies
at transfer stations in advance. However, we must also avoid over-preparing supplies, as
this would lead to increased transportation costs. The key idea is to closely examine the
Poisson distribution.

Theorem 2. For Dk
j (t) ∼ Poisson(λk

j (t)), if λk
j (t) ≥ 1 and if δ ≥ 2(−λk

j (t) ln(1− α))1/2, then

P(Dk
j (t) > λk

j (t) + δ) ≤ 1− α.

The proof of the theorem can be found in the Appendix A. Specifically, to satisfy the chance
constraint (3), we need to prepare additional supplies k of at least 2(−λk

j (t) ln(1− α))1/2 than
the mean value of newly generated demand for each disaster point j in period t at transfer
stations. In this case, new demands of disaster points may still not be satisfied, but this happens
only with a small probability 1− α.

Description of the Geometric Greedy Algorithm

The detailed procedures of the Geometric Greedy algorithm are as follows. Readers
can also follow the algorithm pseudo code provided in Appendix B.

Step 1: We set the number of training episodes to be M and put all possible transfer
station selection combinations into a set named {Lr}. The counting variables, nl and
Nr, are introduced to record the number of times that a single station l and a transfer
station combination Lr are selected, respectively, in the previous training episodes. More
specifically, if the selected location combination Lr contains transfer station l in one training
episode, both the counts of nl and Nr will be incremented by 1. Moreover, the estimators
for random parameters and cost function (objective function), β̂ j(t), D̂k

j (t), ĉil , ĉl j, and Ĥ(r),
are initialized to be 0 for each i ∈ I, l ∈ L, j ∈ J, k ∈ K, t = t0 + 1, . . . , T. Given a training
episode m, implement Step 2–Step 10.

Step 2: We initialize the amount qk
i (t0), supplies k available in warehouse i in the

beginning of period t0, to be Qk
i (Constraint (8)), and the amount qk

il(t0) of supplies k stocked
at station l received from warehouse i in the beginning of period t0 to be 0. The variable
unsatisfied demand Sk

j (t0) is also initialized to 0 in the beginning (Constraint (11)). After
that, we generate a severity variable ξ from Uniform [1, 2] and a positive integer o from
1 + G(p), where G(p) denotes the Geometry distribution with parameter p. Then we select
the station combination Lr such that Ĥ(r) is the o-th least. In other words, we choose
stations combination Lr such that Ĥ(r) is the o-th least with probability p(1− p)o−1. After
the combination Lr is chosen, the counts of Nr and the recording variable nl of each transfer
station contained in the combination will be incremented by 1. Correspondingly, the
weighted opening-up cost ω1 ∑l∈Lr fl is computed and assigned to the cost function H.

Step 3: By the definition of the discriminants in Theorem 1, we calculate the estimators
∆̂k

il j(t) of discriminants as functions of transportation time estimators ĉil , ĉl j and of penalty

estimators β̂ j(t):

∆̂k
il j(t) := ω1 ĉileil + ω1 ĉl jel j −ω2

T

∑
s=t+1

β̂ j(s), i ∈ I, l ∈ Lr, j ∈ J, k ∈ K, t = t0, ..., T.

We also define mk
il j(t) as the amount of supplies k transported from warehouse i to

station l in period t and prepared to transport to disaster site j in period t + 1. In Theorem 1,
we prove the equivalence of optimization problem (Prob1) and problem (Prob2) which
regards zl , mk

il j(t), and we find that mk
il j(t) should be as large as possible if ∆̂k

il j(t) ≤ 0 and as

small as possible if ∆̂k
il j(t) > 0. In addition, considering the constraint (2) and constraint (3),
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the largest mk
il j(t) cannot surpass Sk

j (t) + Dk
j (t + 1), and the smallest mk

il j(t) must ensure
equity, i.e.,

∑
i,l

mk
il j(t) ≤ Sk

j (t) + Dk
j (t + 1) and P

(
η
(
Sk

j (t) + Dk
j (t + 1)

)
≤∑

i,l
mk

il j(t)
)
≥ α.

Thus, we can set percentage ηk
il j(t) to adjust the transportation amount mk

il j(t):

ηk
il j(t) =

1, if ∆̂k
il j(t) ≤ 0;

η, if ∆̂k
il j(t) > 0.

i ∈ I, l ∈ Lr, j ∈ J, k ∈ K, t = t0, ..., T − 1.

If ηk
ilj(t) = 1, we can set mk

ilj(t) to be larger to fulfill Sk
j (t) + Dk

j (t + 1) to the best; or if

ηk
ilj(t) = η, then we will not set mk

ilj(t) to be larger once η(Sk
j (t) + Dk

j (t+ 1)) can be fulfilled. In

other words, ηk
ilj(t) sets an upper bound and a low bound to control the transportation amount

of emergency materials. Then, given period t from t0 to T, implement Step 4–Step 9.
Step 4: Initialize mk

il(t), mk
lj(t), and mk

il j(t) to 0, where mk
il(t) and mk

lj(t) are the amount
of supplies k transported from warehouse i to station l and from station l to disaster point j
in period t, and mk

il j(t) is the amount of supplies k transported from warehouse i to station l
in period t and then prepared to transport to disaster point j in period t + 1. New demands
then arise at disaster points, namely Sk

j (t)← Sk
j (t− 1) + Dk

j (t).
Step 4 aims to send supplies from stations to disaster points to ensure at least η

percentage of the unsatisfied demand at each disaster site is satisfied, and update the
estimator D̂k

j (t). We sort ∆̂k
il j(t) in an increasing order with respect to i ∈ I, l ∈ Lr, j ∈ J to

prioritize allocation order and amount according to the demand urgency at disaster sites.
In this order of i, l, j, we increase mk

lj(t) by min(ηSk
j (t)−∑l∈Lr mk

lj(t), qk
il(t)) and decrease

qk
il(t) by the same amount. The amount ηSk

j (t) is the minimum that disaster point j must be

satisfied. The difference ηSk
j (t)−∑l∈Lr mk

lj(t) tells us how much remains to fulfill η of the

unsatisfied demand Sk
j (t) at the current period. The amount qk

il(t) is the amount of supplies
k stored at station l in period t that was received from warehouse i. Taking a minimum
ensures that the transportation amount is no larger than the inventory at station l received
from warehouse i. The update mechanism of estimator D̂k

j (t) is based on the average of the

values in the previous episodes. Namely, D̂k
j (t)←

(m−1)D̂k
j (t)+Dk

j (t)
m .

Step 5: Similarly, in the order of increasing ∆̂k
il j(t), we increase mk

lj(t) by

min

[
max

(
ηk

il j(t)S
k
j (t)− ∑

l∈Lr

mk
lj(t), 0

)
, qk

il(t)

]
, l ∈ Lr, j ∈ J, k ∈ K.

and decrease qk
il(t) by the same amount. Step 5 aims to send disaster points more supplies

to reduce the weighted cost after η percent of demands have been met. Theorem 1 justifies
this procedure. As ∆̂k

il j(t) increases, the percent ηk
il j(t) decreases, so taking a maximum with

0 can avoid a negative transportation amount from station l to disaster site j. Based on that,
we take a minimum between max(ηk

il j(t)S
k
j (t) − ∑l∈Lr mk

lj(t), 0) and qk
il(t) to guarantee

that the transportation amount is no larger than the inventory stored at station l from
warehouse i.

Step 6: After supplies arrive at disaster points, the transportation time cl j(ξ) from
station l to disaster site j is realized. We update the estimators ĉl j using transportation time
cl j(ξ), l ∈ Lr, j ∈ J, add the transportation cost ω1 ∑l,j,k ξcl jel jmk

lj(t) to H, and obtain the

updated unsatisfied demands of disaster points Sk
j (t)← Sk

j (t)−∑l∈Lr mk
lj(t). The update
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mechanisms of estimators, including ĉil and ĉl j, are based on the average over the values in

the previous episodes that select the location l. Namely, ĉl j ←
(nl−1)ĉl j+ξcl j

nl
for l ∈ Lr.

Step 7: This step aims to transfer supplies from warehouses to stations. We sort ∆̂k
il j(t)

in an increasing order with respect to i ∈ I, l ∈ Lr, j ∈ J to prioritize the distribution order
and amount according to the demand urgency at disaster points. In this order of i, l, j, we
increase mk

il j(t) by

min
{

max
[
ηk

il j(t + 1)(Sk
j (t) + D̂k

j (t + 1) + 2(−D̂k
j (t + 1) ln(1− α))1/2)

− ∑
i∈I,l∈Lr

mk
il j(t), 0

]
, qk

i (t)

}
, i ∈ I, l ∈ Lr, j ∈ J, k ∈ K.

and decrease qk
i (t) by the same amount. The amount Sk

j (t) + D̂k
j (t + 1) is a prediction

of the unsatisfied demand at disaster point j in the next stage, and the additional term
2(−D̂k

j (t + 1) ln(1− α))1/2 is necessary due to the chance constraint (3), see also Theorem 2.
Taking a maximum with 0 can avoid negative transportation amount from warehouse i
to station l. Taking a minimum with qk

i (t) guarantees that the transportation amount is
no larger than the inventory in warehouse i. Once mk

il j(t)’s are fixed, we sum them up to

obtain mk
il(t)← ∑j∈J mk

il j(t).
Step 8: After supplies arrive at transfer stations, the transportation time cil(ξ) from

warehouse i to station l is realized. we update the estimators ĉil for transportation time
cil(ξ), i ∈ I, l ∈ Lr, add the transportation cost ω1 ∑i,l,k ξcileilmk

il(t) to H, and update the
stocks of supplies at stations qk

il(t)← qk
il(t) + mk

il(t).
Step 9: At the end of a period, the true value of β j(ξ, t) is realized, which can be used

to update the estimators β̂ j(t). The weighted penalty for unmet demand ω2 ∑j,k ξβ j(t)Sk
j (t),

is then added to the cost function H. The update mechanisms of estimator β̂ j(t) is based

on the average over the values in the previous episodes. Namely, β̂ j(t)←
(m−1)β̂ j(t)+ξβ j(t)

m .
Step 10: Repeat Step 4–Step 9 until the final period T, we can obtain the total cost H

and update the cost estimator Ĥ(r). The update mechanism of Ĥ(r) is based on the average
over the values in the previous episodes that select the same transfer station combination

Lr. Namely, Ĥ(r)← (Nr−1)Ĥ(r)+H
Nr

. Go back to Step 2 to start a new training episode.

3.2.2. ϵ-Greedy Algorithm and Upper-Confidence-Bound (UCB) Algorithm

The ϵ-Greedy algorithm is one of the most popular multi-armed bandit algorithms and
has been widely applied in many areas [26]. The basic principle of the ϵ-Greedy algorithm
is to balance the tradeoff between exploration and exploitation to minimize the agent’s cost
by controlling an exploration parameter ϵ. In our problem, the ϵ-Greedy algorithm can be
implemented by, in each learning episode, choosing such a station combination Lr that Ĥ(r)
is the least in the previous learning episodes with probability 1− ϵ, and choosing any one
of other Lr’s uniformly with probability ϵ. To be more precise, we choose Lr according to

r ←

arg minr Ĥ(r) =: r∗, with probability 1− ϵ,

r ̸= r∗, with probability ϵ

The Upper-Confidence-Bound (UCB) algorithm is another commonly used multi-
armed bandit algorithm [33]. The particularity of the UCB algorithm lies in that the
algorithm tends to choose actions that have been tried the least in the previous training



Smart Cities 2025, 8, 5 16 of 29

episodes. For our problem, in the m-th learning episode, we choose the station combination
Lr with the least of the following quantities:

Ĥ(r)− λ

√
ln m
Nr

,

where λ is a suitable confidence parameter that controls the level of exploration. Recall
that in our paper, Nr represents the number of times the station combination Lr has been
selected up to the m-th training episode. Therefore, if Nr is large for a given location
combination Lr, the algorithm will select this combination with a lower probability, in
accordance with the UCB algorithm’s principle of favoring actions that have been explored
less in previous training episodes. Also, if λ is large, the exploration intensity would be
more significant.

Compared to the ϵ-Greedy algorithm, the Geometric Greedy algorithm reduces ex-
ploration for higher-cost location plans, enhancing the stability of learning outcomes.
Furthermore, by eliminating the confidence correction used in the Upper-Confidence-
Bound (UCB) algorithm, the Geometric Greedy algorithm achieves lower computational
demands and faster execution times.

4. Case Study
To verify the validity of the models and algorithms, this paper uses an extreme urban

flood disaster that occurred in Shenzhen, Guangdong Province, China, as a case study.
According to [34], the maximum half-hourly rainfall in Futian District on 11 April 2019,
reached 73.4 mm—equivalent to a 100-year rainstorm—and resulted in 11 deaths. The
disaster disrupted transportation in several areas, leaving many people trapped [35]. To
implement a rapid emergency response, minimize casualties and property losses, and
restore normal city operations as soon as possible, the government needed to deliver
emergency aid (e.g., medical equipment) promptly to the victims at designated disaster
stations. However, due to the dispersed locations of the affected areas, the direct delivery of
emergency materials was not feasible. In such situations, a three-layer emergency logistics
network can be employed. In this network, large trucks transport emergency supplies
from warehouses to transfer stations near disaster sites. From these stations, smaller trucks
distribute the materials to the affected locations.

4.1. Data Collection and Preprocessing

According to the data provided by the local emergency department, there are three
emergency materials aid warehouses in Futian District. With the data collected from the
Shenzhen municipal government data open platform, 11 flood sites required emergency
materials following the sudden urban flood outbreak. Additionally, 15 candidate transfer
stations, selected from Shenzhen’s natural disaster emergency shelters—including schools,
parks, and other facilities—were identified as potential distribution points. The locations
of the candidate transfer stations, warehouses, and affected sites on Futian District’s road
network are shown in Figure 4.



Smart Cities 2025, 8, 5 17 of 29

Figure 4. The distribution of candidate transfer stations, warehouses, and affect sites on the road
network in Futian District.

4.1.1. Model Parameter Setting

To better simulate the real disaster scenario in Futian District, we refer to relevant
historical reports and set t0 = 0, with the total duration of emergency operations spanning
four periods (T = 4), each lasting one hour. For computational simplicity, we focus on
a single type of emergency material (k = 1): medical boxes. When multiple types of
emergency materials need to be delivered and allocated, they can be handled similarly. We
set the minimum satisfaction rate η and the confidence level α in constraint (4) to 70% and
99%, respectively. Regarding the number of transfer stations to be selected, γ is set to 3,
considering that only 15 candidate transfer stations are available in Futian District. The
opening costs of these 15 candidate stations are provided in Table A1 in the Appendix C.
We initially assume that emergency materials are abundant, with the initial stock levels at
the three warehouses (Qk

i ) set to 500, 900, and 600 units, respectively. For the weights of the
two objectives, we assign ω1 = ω2 = 1

2 .
For simplicity, we do not account for differences in the trucks used to transport

emergency materials between warehouses, transfer stations, and affected sites. In other
words, the trucks used across different layers are treated as identical, with a transportation
cost of $5 per hour per unit. This cost is widely adopted by the local emergency department
for transporting medical equipment. We define the transportation times cil from warehouse
i to transfer station l and from transfer station l to disaster site j under normal traffic

conditions (i.e., without disasters) as dil
v and

dl j
v , respectively, (see Tables A2 and A3 in the

Appendix C). Here, dil and dl j represent the shortest distances from warehouse i to transfer
station l and from transfer station l to disaster site j, respectively, as determined using
ArcGIS 10.6. The road network data for Futian District, Shenzhen, was downloaded from
OpenStreetMap, and the shortest distances were computed using the Shortest Path Analysis
toolbox in ArcMap 10.6. The average travel speed on the road network is assumed to be
30 km/h, a realistic estimate for urban areas.
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To simulate the dispatch of emergency materials under urban flood conditions, we
assume that the disaster random variable ξ, representing the severity of the disaster, follows
a uniform distribution on [1, 2] to capture the varying degrees of disaster impact. Under
disaster uncertainty, the transportation times cil and cl j, as well as the penalty parameters
β j(t), are scaled by the factor ξ. The travel times become ξcil and ξcl j, reflecting the
significant disruption to the road network caused by the disaster, potentially doubling
travel times from warehouses to disaster sites [31]. Similarly, the penalty term becomes
ξβ j(t) to account for the increased economic loss as disaster severity rises. Details of
the penalty values β j(t) can be found in Table A4 in the Appendix C. The demand for
emergency materials k at affected site j during period t, denoted as Dk

j (t), is assumed to

follow a Poisson distribution [36] with rate parameter λk
j (t). These rate parameters λk

j (t)
are also provided in the demand columns of Table A4.

4.1.2. Algorithm Parameter Setting

For each of the proposed three Multi-armed bandit (reinforcement learning) algorithms:
ϵ-Greedy algorithm, Upper-Confidence-Bound(UCB) algorithm, and the new developed Geo-
metric Greedy algorithm, we conduct 10 numerical experiments, and each experiment contains
20,000 learning episodes. The selections of transfer stations’ locations, averages of objective
values in experiments, and algorithm execution times are recorded separately.

The exploration probability ϵ is set to be 0.3 in the ϵ-Greedy algorithm. And the
confidence parameter λ is set to be 6000 in the UCB algorithm. For the proposed Geometric
Greedy algorithm, the geometric factor p is taken as 0.7 to make sure that its exploitation
probability for Lr that minimizes Ĥ(r) is the same as the ϵ-Greedy algorithm.

4.2. Model Results

The numerical experiments are conducted on a computer system that consists of In-
tel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11GHz and a RAM of 16 GB. All the algorithms
are implemented in Wolfram Mathematica 12.0.

Three Multi-Armed Bandit Algorithms

Convergence stability and computational efficiency are two important indicators for
evaluating the performances of different algorithms. Here, convergence stability is defined
as the ability of the algorithm to learn the optimal location plan of transfer stations. As
indicated by Table 1, the Upper-Confidence-Bound (UCB) algorithm yields the location
plan {6, 9, 14} most frequently. By regret analysis, the Upper-Confidence-Bound (UCB)
algorithm always converges to the optimal action [37]. Thus, the optimal location plan of
transfer stations shall be {6, 9, 14}, as shown in Figure 5, since it appears with the highest
frequency among all experiments.

For computational efficiency, as can be seen from Table 1, the newly developed Ge-
ometric Greedy algorithm takes the least algorithm running time compared with the
ϵ-Greedy algorithm and Upper-Confidence-Bound (UCB) algorithm. Although the Upper-
Confidence-Bound (UCB) algorithm is more stable in convergence performance, the low
computational efficiency makes it less desirable. Overall, the proposed Geometric Greedy
algorithm balances computational efficiency and convergence stability: the shortest algo-
rithm execution time and a high frequency for selecting the optimal location plan.

Unlike the uniform exploration in the ϵ-Greedy algorithm, the Geometric Greedy
algorithm reduces exploration for location plans with higher costs, leading to more stable
learning outcomes. Additionally, the Geometric Greedy algorithm avoids the confidence
correction used in the Upper-Confidence-Bound (UCB) algorithm, resulting in reduced
computation and shorter execution times.
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Figure 5. Selected locations of transfer stations.

For space considerations, the emergency materials distribution and allocation amount
in each period are given in Tables A5 and A6 in the Appendix D.

Table 1. Comparisons among three algorithms on selected locations (mark ✓ if the optimal location
plan {6, 9, 14} is learned), objective values, and algorithm running times (s) (bold).

ϵ-Greedy Algorithm UCB Algorithm Geometric Greedy Algorithm

1 ✓ 16,924.7 520 ✓ 17,025.6 714 ✓ 17,004.6 453

2 17,107.3 441 17,051.6 755 17,189.9 500

3 17,121.9 560 ✓ 17,073.7 708 ✓ 16,985.1 461

4 17,101.7 491 ✓ 16,866.5 701 ✓ 16,965.9 489

5 17,053.9 452 16,950.1 716 17,138.8 448

6 17,127.6 456 ✓ 17,062.4 708 ✓ 17,052.0 447

7 ✓ 16,938.4 576 ✓ 16,906.9 733 ✓ 17,037.8 473

8 ✓ 17,030.4 445 ✓ 16,843.9 699 ✓ 17,005.4 451

9 17,179.6 711 ✓ 17,046.6 749 17,131.7 445

10 ✓ 16,992.1 559 16,885.5 731 17,196.2 453

average 17,057.7 521 16,971.3 721 17,070.7 462

Our method also offers the advantage of assisting emergency authorities in making
real-time decisions during new disasters. When a new disaster strikes, the decision-maker
can determine the locations of transfer stations first based on historical training results.
Subsequently, real-time upstream and downstream relief supply allocation decisions can
be made using the realized demand at affected sites and updated transportation time
estimates in each period of the new disaster (refer to constraint (1) in our model, the relief
supplies allocation process, and the transportation times updating process as described
in the algorithm in Section 3). This advantage lies in requiring only the information
available in the current period to make relief supply allocation decisions, without relying
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on uncertain information in subsequent periods. Furthermore, our methodology can
continuously integrate information from (potential) future disasters (i.e., incorporate more
disaster scenarios) into the training process, enabling the development of increasingly
robust solutions for managing disaster supply chains.

4.3. Sensitive Analysis for the Impact of p

Since the performance of the Geometric Greedy algorithm relies on the choice of
“geometry factor” p, we will analyze the impact of p on the weighted cost (objective value),
the algorithm running time, and the selected optimal locations of transfer stations. We
test the performances of the Geometric Greedy algorithm for p = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
to find out which p can achieve the best learning effect. For each fixed p, we conduct
10 experiments and record the objective values, selected locations, and the algorithm
execution times, shown in Table 2. The number of times that {6, 9, 14} are selected under
different p is presented in Figure 6.

Table 2. Comparisons among different p on selected locations (mark ✓ if the optimal location plan
{6, 9, 14} is learned), objective values ($), and algorithm running times (s) (bold).

0.3 0.4 0.5

1 17,064.3 468 17,261.0 466 ✓ 17,013.4 471

2 17,386.8 467 17,040.7 468 ✓ 17,004.1 466

3 17,344.1 467 ✓ 17,032.2 469 17,121.3 468

4 17,133.2 468 17,152.0 468 17,114.8 467

5 17,268.3 470 17,156.0 466 17,335.1 465

6 ✓ 17,037.5 468 17,138.6 468 17,162.4 468

7 17,362.6 469 ✓ 17,020.2 468 ✓ 16,986.2 467

8 ✓ 17,035.9 467 17,145.5 468 17,336.8 469

9 ✓ 16,984.0 471 17,193.9 464 17,167.7 468

10 17,072.2 467 17,227.0 471 ✓ 16,977.2 464

average 17,168.9 468 17,136.7 468 17,121.9 467

0.6 0.7 0.8

1 ✓ 16,964.7 468 ✓ 17,006.8 479 17,146.9 468

2 17,139.8 470 ✓ 17,021.7 470 ✓ 17,025.2 467

3 ✓ 17,016.2 469 ✓ 17,011.6 468 ✓ 16,976.8 466

4 ✓ 17,014.7 469 ✓ 17,008.4 465 17,408.4 462

5 ✓ 17,018.9 471 ✓ 17,040.4 465 17,253.3 471

6 17,395.1 469 17,116.3 469 17,120.9 478

7 ✓ 17,045.9 470 17,248.1 465 17,119.0 476

8 ✓ 16,977.9 458 17,356.6 470 17,174.7 473

9 ✓ 16,991.9 452 17,129.5 467 ✓ 17,008.5 485

10 ✓ 17,006.5 509 17,189.9 471 17,147.4 539

average 17,057.1 471 17,112.9 469 17,138.1 478
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Figure 6. The number of times that {6, 9, 14} are selected under different p.

The experiments show that when the parameter p is chosen around 0.6, i.e., the
exploration is located in the middle level, the proposed Geometric Greedy algorithm can
achieve the best learning effect. In addition, the algorithm running times are almost the
same under different p, which implies that the change of the “geometry factor” does not
have a significant impact on the algorithm’s computational efficiency.

4.4. When Resources Are Under-Allocated

The above analysis assumes that disaster emergency materials are abundant, i.e., the
emergency resources are sufficient to satisfy the demand at each affected site. However,
in the real world, emergency materials are scarce in most cases, especially after a sudden
outbreak of natural disasters. A surge in demand puts much stress on the emergency materials
warehouses’ inventories.

To simulate the case that resources are under-allocated, We keep the initial inventories in
three warehouses invariant and make the demand at each flooding site in each time period rise
by 10%, 20%, 30%, 40%, and 50%, respectively, in which cases the disaster emergency materials
in the warehouses are not able to satisfy all the demands at each flooding site. The weighted
costs (objective values) under increasing demand are illustrated in Figure 7. A marked increase
in the objective value can be witnessed as demand inflates. When the demand at each flooding
site rises by 50%, the weighted cost doubles more than the cost with no demand inflation. Thus,
sufficient emergency materials are critically essential for the reduction in economic losses and
the success of emergency operations. Warehouses need to replenish in time to meet the supply
demand as much as possible.

Figure 7. The objective values as demand increases.



Smart Cities 2025, 8, 5 22 of 29

5. Conclusions
In this paper, we construct a three-layer emergency logistics network and develop

a bi-objective, multi-period stochastic integer programming model for location planning,
taking into account the subsequent distribution and allocation of relief supplies under
disaster uncertainty. A newly developed Geometric Greedy algorithm is designed to solve
this model.

To verify the applicability of our model and algorithms, we use an urban flood disaster
in Futian District, Shenzhen, as a case study. Numerical experiments demonstrate that the
proposed Geometric Greedy algorithm outperforms the ϵ-Greedy and Upper-Confidence-
Bound (UCB) algorithms in terms of computational efficiency and convergence stability.
Sensitivity analysis on the geometry factor p reveals that the computational efficiency of
the Geometric Greedy algorithm remains relatively consistent across different values of
p. However, selecting a moderate p can improve the learning outcome by increasing the
frequency of identifying the optimal transfer station location plan.

In summary, our research expands the application of reinforcement learning to dy-
namic disaster response within a three-layer emergency logistics network in uncertain
environments. It offers guidelines for emergency authorities regarding the selection of
emergency facility locations and the dynamic delivery of emergency materials to multiple
disaster sites following the sudden onset of natural disasters.
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Appendix A. Proof of Theorems
Appendix A.1. Proof of Theorem 1

Proof. We just simply compute the cost function H(z, t0, m) and want to use mk
il j(t) as the

minimizing variables.

H(z, t0, m)

= E
(

ω1 ∑
l

flzl + ω1

T

∑
t=t0

∑
i,l,k

ξcileilmk
il(t)

+ω1

T

∑
t=t0

∑
l,j,k

ξcl jel jmk
lj(t) + ω2

T

∑
t=t0

∑
j,k

ξβ j(t)Sk
j (t)

)

= E
[

ω1 ∑
l

flzl + ω1

T

∑
t=t0

∑
i,l,k

ξcileilmk
il(t) + ω1

T

∑
t=t0

∑
l,j,k

ξcl jel jmk
lj(t)
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+ω2

T

∑
t=t0

∑
j,k

ξβ j(t)

(
t−1

∑
s=t0

Dk
j (s)−

t−1

∑
s=t0

∑
l

ml jks

)]

= E
(

ω1 ∑
l

flzl + ω1

T

∑
t=t0

∑
i,l,j,k

ξcileilmk
il j(t)

+ω1

T

∑
t=t0

∑
i,l,j,k

ξcl jel jmk
il j(t)−

T

∑
t=t0

∑
i,l,j,k

T

∑
s=t+1

ω2ξβ j(s)mk
il j(s)

)

+E
(

ω2

T

∑
t=t0

∑
j,k

ξβ j(t)
t−1

∑
s=t0

Dk
j (s)

)

= E
(

ω1 ∑
l

flzl +
T

∑
t=t0

∑
i,l,j,k

ξ∆k
il j(t)m

k
il j(t)

)

+E
(

ω2

T

∑
t=t0

∑
j,k

t−1

∑
s=t0

ξβ j(t)Dk
j (s)

)
.

Since the last term does not involve minimizing variables, zl , mk
il j(t), we shall drop it

when considering minimizing H.

Appendix A.2. Proof of Theorem 2

Proof.

P(Dk
j (t) > λk

j (t) + δ)

= P[exp(tDk
j (t)) > exp(t(λk

j (t) + δ))] (t > 0)

≤ exp[−t(λk
j (t) + δ)]E[exp(tDk

j (t))] (Chebyshev’s Inequality)

= exp[−t(λk
j (t) + δ)] exp[λk

j (t)(e
t − 1)]

= exp[λk
j (t)e

t − t(λk
j (t) + δ)− λk

j (t)]

We observe the minimum of λk
j (t)e

t− t(λk
j (t)+ δ)−λk

j (t) is δ− (λk
j (t)+ δ) ln(1+ δ/λk

j (t))

and is attained when t = ln(1+ δ/λk
j (t)). Hence, it follows

P(Dk
j (t) > λk

j (t) + δ)

≤ exp
[
δ− (λk

j (t) + δ) ln(1 + δ/λk
j (t))

]
≤ exp

[
2(−λk

j (t) ln(1− α))1/2 − (λk
j (t) + 2(−λk

j (t) ln(1− α))1/2)

· ln(1 + 2(−λk
j (t) ln(1− α))1/2)

]
≤ exp

[
2(− ln(1− α))1/2 − (1 + 2(− ln(1− α))1/2)

· ln(1 + 2(− ln(1− α))1/2)
]

≤ 1− α.

Appendix B. Pseudo Codes

Algorithm A1 Geometric Greedy algorithm

1: Set the number of training episodes to be M
2: Find all possible station combinations {Lr}



Smart Cities 2025, 8, 5 24 of 29

3: Initialize recording variables nl ← 0, Nr ← 0
4: Initialize estimators β̂ j(t) ← 0, D̂k

j (t) ← 0, ĉil ← 0, ĉl j ← 0, Ĥ(r) ← 0 for each i ∈ I,
l ∈ L, j ∈ J, k ∈ K, t = t0 + 1, . . . , T

5: for m← 1 to M do
6: Initialize qk

i (t0)← Qk
i , qk

il(t0)← 0, Sk
j (t0)← 0, where qk

il(t) is the amount of supplies
k stored at station l in period t received from warehouse i.

7: Generate a severity ξ from Uniform[1, 2]
8: Generate an ordering number o from 1 + Geometric(p)

P(o = 1) = p, P(o = 2) = p(1− p), P(o = 3) = p(1− p)2, . . .

9: Choose the station combination Lr such that Ĥ(r) is the o-th least
10: Update the recording variable:

nl ← nl + 1, l ∈ Lr

Nr ← Nr + 1

11: Opening cost incurred H ← ω1 ∑l∈Lr fl

12: Compute estimators of discriminants using estimators of transportation time and penalty:

∆̂k
il j(t)← ω1(ĉileil + ĉl jel j)−ω2

T

∑
s=t+1

β̂ j(s) (by Theorem 1)

i ∈ I, l ∈ Lr, j ∈ J, k ∈ K, t = t0, ..., T − 1

13: Set percents of “transported supplies” for disaster points:

ηk
il j(t)←

1 if ∆̂k
il j(t) ≤ 0

η if ∆̂k
il j(t) > 0

(by Theorem 1)

i ∈ I, l ∈ Lr, j ∈ J, k ∈ K, t = t0, ..., T − 1

14: Initialize mk
il(t0)← 0, mk

lj(t0)← 0, mk
il j(t0)← 0

15: for t← t0 to T do
16: If t > t0, then new demands arise at disaster points

D̂k
j (t)←

(m− 1)D̂k
j (t) + Dk

j (t)

m
Sk

j (t)← Sk
j (t− 1) + Dk

j (t)

17: Transfer supplies from stations to disaster points (send supplies to ensure η

percentage of the unsatisfied demand at each disaster site is satisfied):
18: for i ∈ I, l ∈ Lr, j ∈ J, in the order of increasing ∆̂k

il j(t) do

a← min

(
ηSk

j (t)− ∑
l∈Lr

mk
lj(t), qk

il(t)

)
mk

lj(t)← mk
lj(t) + a

qk
il(t)← qk

il(t)− a

19: end for
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20: Transfer supplies from stations to disaster points (send more supplies to reduce
total cost):

21: for i ∈ I, l ∈ Lr, j ∈ J, in the order of increasing ∆̂k
il j(t) do

a← min

[
max

(
ηk

il j(t)S
k
j (t)− ∑

l∈Lr

mk
lj(t), 0

)
, qk

il(t)

]
mk

lj(t)← mk
lj(t) + a

qk
il(t)← qk

il(t)− a

22: end for
23: After supplies arrive at disaster points:

ĉl j ←
(nl − 1)ĉl j + ξcl j

nl
, l ∈ Lr

H ← H + ω1 ∑
l,j,k

ξcl jel jmk
lj(t)

Sk
j (t)← Sk

j (t)−∑
l

mk
lj(t)

24: Transfer supplies from warehouses to stations:
25: for i ∈ I, l ∈ Lr, j ∈ J, in the order of increasing ∆̂k

il j(t) do

b← min
{

max
[
ηk

il j(t + 1)(Sk
j (t) + D̂k

j (t + 1)

+ 2(−D̂k
j (t + 1) ln(1− α))1/2)−∑

i,l
mk

il j(t), 0

]
, qk

i (t)

}
(by Theorem 2)

mk
il j(t)← b

qk
i (t)← qk

i (t)−mk
il j(t)

mk
il(t)←∑

j
mk

il j(t)

26: end for
27: After supplies arrive at stations:

ĉil ←
(nl − 1)ĉil + ξcil

nl
, l ∈ Lr

H ← H + ω1 ∑
i,l,k

ξcileilmk
il(t)

qk
il(t)← qk

il(t) + mk
il(t)

28: Disaster points send feedback:

β̂ j(t)←
(m− 1)β̂ j(t) + ξβ j(t)

m
H ← H + ω2 ∑

j,k
ξβ j(t)Sk

j (t)

29: end for



Smart Cities 2025, 8, 5 26 of 29

30: Update the cost estimator:

Ĥ(r)← (Nr − 1)Ĥ(r) + H
Nr

31: end for

Appendix C. Parameters

Table A1. Opening costs fl of 15 candidate transfer stations ($).

1 2 3 4 5 6 7 8 9 10

3000 2000 1500 2000 1750 1000 2000 3000 1350 2250
11 12 13 14 15

2000 3000 4000 1500 3500

Table A2. Transportation times cil (hours) from three warehouses to 15 candidate transfer stations.

Transfer Stations
Warehouses 1 2 3

1 0.198 0.038 0.164
2 0.306 0.174 0.069
3 0.342 0.241 0.046
4 0.256 0.203 0.135
5 0.169 0.246 0.190
6 0.156 0.064 0.200
7 0.189 0.024 0.175
8 0.216 0.026 0.172
9 0.230 0.236 0.169
10 0.250 0.152 0.046
11 0.221 0.099 0.104
12 0.214 0.113 0.086
13 0.187 0.064 0.143
14 0.093 0.178 0.203
15 0.117 0.199 0.179

Table A3. Transportation times cl j (hours) from 15 candidate transfer stations to 11 affected sites.

Transfer
Stations

Affected Sites
1 2 3 4 5 6

1 0.099 0.112 0.126 0.206 0.221 0.155
2 0.125 0.122 0.185 0.220 0.238 0.226
3 0.157 0.108 0.218 0.179 0.198 0.256
4 0.091 0.088 0.142 0.029 0.040 0.172
5 0.140 0.139 0.104 0.115 0.072 0.133
6 0.116 0.147 0.099 0.223 0.229 0.126
7 0.091 0.121 0.118 0.198 0.213 0.146
8 0.116 0.120 0.143 0.223 0.238 0.172
9 0.123 0.120 0.123 0.057 0.013 0.153

10 0.065 0.016 0.125 0.110 0.126 0.164
11 0.037 0.051 0.096 0.144 0.159 0.139
12 0.025 0.034 0.085 0.132 0.147 0.128
13 0.058 0.089 0.078 0.166 0.181 0.107
14 0.097 0.145 0.057 0.194 0.153 0.007
15 0.095 0.121 0.057 0.170 0.129 0.031

7 8 9 10 11

1 0.200 0.038 0.023 0.167 0.041
2 0.217 0.169 0.120 0.205 0.179
3 0.177 0.235 0.186 0.189 0.245
4 0.045 0.193 0.187 0.107 0.203
5 0.049 0.207 0.231 0.068 0.210
6 0.206 0.013 0.064 0.140 0.014
7 0.192 0.029 0.037 0.159 0.031
8 0.217 0.064 0.031 0.184 0.067
9 0.020 0.225 0.219 0.088 0.229

10 0.105 0.142 0.106 0.097 0.153
11 0.138 0.088 0.066 0.116 0.098
12 0.126 0.102 0.079 0.104 0.113
13 0.159 0.053 0.049 0.119 0.064
14 0.131 0.138 0.163 0.069 0.140
15 0.107 0.161 0.184 0.045 0.163
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Table A4. Penalty parameters β j(t) and demands λj(t) for relief goods (bold).

Flooding Sites
Time Periods 1 2 3 4 1 2 3 4

1 2 10 14 16 50 90 30 0
2 5 15 18 20 50 80 20 0
3 2 10 14 16 60 70 50 0
4 5 15 18 20 40 60 50 0
5 3 10 14 16 50 90 35 0
6 5 15 17 20 50 85 20 0
7 3 10 14 16 60 75 50 0
8 5 14 16 20 40 60 40 0
9 2 10 15 16 50 75 20 0

10 5 12 18 20 60 70 50 0
11 3 12 15 18 60 65 55 0

Appendix D. Algorithm Running Result
Since the relief supplies demands for the stochastic case are different for every training

episode, the computed relief goods distribution and allocation amount exhibit a slight vari-
ation every time the algorithm runs. Here we only display the distribution and allocation
amount computed by the Geometric Greedy algorithm in one run.

Table A5. Distribution amount mil(t) from warehouses to selected transfer stations.

Period Period 1 Period 2 Period 3 Period 4

Transfer
Stations

Ware-
Houses 1 2 3 1 2 3 1 2 3 1 2 3

6 0 253 0 0 376 0 0 216 0 0 0 0

9 0 0 153 0 0 228 0 0 136 0 0 0

14 172 0 0 225 0 0 103 0 0 0 0 0

Table A6. Allocation amount ml j(t) from selected transfer stations to disaster sites.

Period Period 1 Period 2 Period 3 Period 4

Transfer
Stations

Affected
Sites 6 9 14 6 9 14 6 9 14 6 9 14

1 0 0 0 36 9 4 62 12 0 54 0 0
2 0 0 0 48 0 0 104 0 0 14 0 0
3 0 0 0 0 0 66 0 0 69 12 0 49
4 0 0 0 0 37 0 0 48 0 0 49 0
5 0 0 0 0 48 0 0 94 0 0 42 0
6 0 0 0 0 0 48 0 0 87 0 0 14
7 0 0 0 0 59 0 0 74 0 0 45 0
8 0 0 0 42 0 0 68 0 0 46 0 0
9 0 0 0 55 0 0 67 0 0 27 0 0
10 0 0 0 0 0 54 0 0 69 16 0 40
11 0 0 0 72 0 0 75 0 0 47 0 0
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