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Highlights:

What are the main findings?

• There is a strong correlation between the resultant force on the shield machine and the
center of motion and ground settlement during the propulsion process.

• The mechanism-driven intelligent settlement prediction method (MISPM) can accurately
predict settlement ahead of tunnel excavation even without ground monitoring.

What is the implication of the main findings?

• When the shield machine traverses areas where it is difficult to set settlement measure-
ment points, MISPM provides a reliable decision-making basis for optimizing balanced
pressure and ensuring environmental safety.

• MISPM can detect changes in ground settlement more quickly than traditional settlement
monitoring feedback, improving the efficiency and safety of urban infrastructure construction.

Abstract: Ground settlement is a crucial indicator for assessing the safety of shield tunnel-
ing and its impact on the surrounding environment. However, most existing settlement
prediction methods are based on historical data, which can only be applied with effective
monitoring conditions. To overcome this limitation, this paper proposes the mechanism-
driven intelligent settlement prediction method (MISPM), which considers the mechanisms
of settlement and attitude movements during construction to design new features that can
indirectly reflect settlement. Simulation experiments were used to compare the impact
of different candidate features and algorithms on prediction performance, verifying the
validity and accuracy of the model. The efficacy of MISPM in predicting settlement changes
in advance was substantiated by practical engineering applications. Results showed that
MISPM could accurately predict settlement changes even without ground monitoring,
thereby corroborating its reliability and applicability in supporting safe tunneling in com-
plex geological environments. In the construction of urban infrastructure, this method has
the potential to enhance the efficiency of tunnel construction and ensure environmental
safety, which is of great significance for the development of smart cities.

Keywords: shield tunneling; settlement prediction; mechanism-driven; attitude features;
XGBoost
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1. Introduction
With the acceleration of global economic growth and urbanization, shield tunneling

has become a popular technology in urban infrastructure construction. The problem of
land subsidence caused by underground space construction is worthy of attention in urban
environmental safety. Settlement will affect not only the safety and efficiency of the tunnel
construction process but also the stability of nearby buildings and urban facilities [1].

Traditional settlement prediction methods are generally classified into analytical
and numerical simulations [2]. Analytical methods employ empirical formulas founded
upon foundational parameters and geological conditions to predict maximum ground
settlement. Peck put forth a Gaussian formula based on soil loss rate, thereby establishing a
ground settlement prediction formula [3]. Zhang et al. [4] created a prediction formula for
maximum settlement due to shield excavation using multiple linear regression, considering
factors such as shield radius, burial depth, and geological conditions. Jin et al. [5] proposed
an empirical formula for the maximum settlement of existing tunnels caused by new tunnel
construction based on a mechanical theory regarding the interaction between tunnels and
soil. Analytical methods primarily describe settlement distribution curves, offering insight
into the maximum ground settlement and its location. However, they are less suited to
predicting real-time settlement during shield tunneling.

Numerical simulation methods incorporate construction and geological conditions to
model the spatiotemporal characteristics of ground settlement, mainly using finite element
and boundary element methods to simulate the changes in settlement induced by shield
tunneling. Li et al. [6] used FLAC 3D to establish a three-dimensional model for simulating
and predicting ground settlement. Luo et al. [7] established a three-dimensional model
through numerical simulation to study the effects of four key factors—thrust, grouting
pressure, earth pressure, and formation elastic modulus—on ground settlement in different
scenarios. While numerical simulation methods can reflect the settlement process, they
often suffer from oversimplified models and difficulty in determining internal parameters,
which limits their accuracy and typically restricts their use to examining the relationship
between construction parameters and settlement effects.

Although models incorporating numerical parameter inversion [8] achieve signifi-
cantly higher prediction accuracy by adjusting model parameters with actual data, such
methods require extensive time for parameter optimization and offer limited generalizabil-
ity, making them challenging to apply in practical engineering contexts.

In recent years, machine learning has seen significant advances in applications for
tunnel settlement prediction [9,10]. Hu et al. [11] analyzed various stages of settlement
development and used a BP neural network to model and predict the final settlement.
Zhou et al. [12] employed the XGBoost algorithm to predict maximum settlement based
on tunnel depth, overburden thickness, and grouting volume. Zhang et al. [13] used
settlement monitoring data to develop a prediction model based on LSTM, utilizing the
previous ten time-sequential data points to predict the current ground settlement. Similarly,
Ning et al. [14] designed an LSTM-based settlement prediction model that uses the last
six data points from relevant monitoring locations to predict settlement at a target point
based on time-series ground settlement data. Machine learning techniques can achieve
relatively accurate real-time settlement predictions compared to traditional methods. How-
ever, these methods typically require continuous model updates and recalculations based
on the latest monitoring data, often leading to overfitting and weak generalization. If
geological conditions or other operational factors change, the model’s accuracy may decline
significantly [15], limiting its application in different projects.

However, the frequency of settlement monitoring is low, and the data are sometimes
difficult to obtain. In practical engineering contexts, data are only recorded once every 12 h
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due to monitoring cost constraints. Settlement monitoring is difficult when crossing rivers,
airports, or other special areas. In these areas, ground settlement monitoring intervals may
be longer, or data may not be available at all, making them weak monitoring scenarios.
Although settlement monitoring is difficult in weak monitoring scenarios, this does not
mean that settlement monitoring is unnecessary. For example, strict control of ground
deformation is essential in airport areas, as excessive settlement could result in runway
unevenness, leading to accidents. When tunneling under rivers, settlement control seems
less critical. However, if ground settlement occurs, it will lead to tunnel flooding and serious
accidents. It is crucial to identify a settlement prediction method that is not overly reliant
on real-time monitoring data to enhance the practical utility of such models. This method
can accurately predict settlement trends in real time under weak monitoring conditions,
assist in construction project decision-making, and better ensure the efficiency and safety
of sustainable urban infrastructure construction.

In the absence of settlement monitoring data, accurate prediction of settlement requires
identification of features that can capture ground settlement (or soil deformation). As
the shield machine advances, it alters the pressure distribution in the soil ahead of the
excavation face, leading to soil subsidence or heave. Simultaneously, the machine leaves
voids behind it, and if these voids are not promptly, adequately, or properly grouted,
additional ground loss can occur. According to Newton’s Third Law of Motion, for every
action force, there is an equal and opposite reaction force. Thus, the deformation force in the
soil surrounding the shield also acts on the shield machine, causing its movement behavior
to differ from normal conditions. Based on this premise, this study seeks to explore the
relationship between the shield machine’s mechanical load and attitude motion trends
and ground settlement. It aims to construct features that can reflect settlement without
relying on monitoring data, thereby developing a real-time settlement prediction method
suitable for weak monitoring scenarios and improving the efficiency and safety of urban
infrastructure construction.

This paper focuses on the ground settlement ahead of the shield tunnel excavation face,
discussing how efficient and accurate prediction can be achieved under weak monitoring
conditions. This paper is organized into six sections. The remainder of the structure is as
follows: Section 2 introduces the settlement ahead of the excavation face and the forces
acting on the shield machine, analyzing force variations and movement dynamics. Section 3
provides a detailed analysis of the factors influencing settlement, describing the design
process of the prediction framework and model. Section 4 presents experimental case
studies, analyzing prediction results and the importance of features to validate the proposed
method’s rationality, accuracy, and applicability. Section 5 applies this method to practical
engineering, assisting on-site decision-making and providing timely recommendations for
construction parameter adjustments. Section 6 concludes this paper and offers perspectives
for future work.

2. Ground Settlement and Shield Force State
During shield tunneling construction, the soil ahead of the shield machine is subjected

to surrounding stress and surface loading, leading to ground deformation and potentially
causing ground settlement or heave. Depending on the geological loss, the soil’s bearing ca-
pacity and deformation characteristics will vary, affecting the degree of soil disturbance [16].
The force situation of shield tunneling is shown in Figure 1.

The force F exerted by the shield machine on the surrounding soil ahead of the
excavation face is met with a reactive soil pressure acting on the shield machine itself.
As settlement occurs, the soil structure changes, resulting in a redistribution of the earth
pressure ahead of the excavation face, which in turn affects the stability of the excavation
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face [17,18]. Concurrently, these changes in loading also alter the shield machine’s original
attitude and motion.
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Figure 1. Shield machine force state during tunneling.

When excessive settlement occurs in front of the shield machine, the earth pressure
ahead of the excavation face shifts, causing unsupported soil to move toward the tunnel,
further increasing the earth pressure on the front of the shield. In weak strata or areas
with high groundwater levels, soil cohesion is relatively low. Once the soil structure is
compromised, it may become loose, potentially changing the soil pressure ahead of the
excavation face [19].

Ground settlement destabilizes the forward pressure, leading to fluctuating, difficult-
to-control earth pressure levels. These pressure variations alter the shield machine’s loading
conditions, impacting its attitude and motion patterns [20]. Therefore, by analyzing the
relationship between the shield machine’s loading, changes in its attitude and motion, and
the earth pressure at the excavation face, it may be possible to detect changes in the soil
distribution ahead of the excavation face, infer its stability, and thereby accurately predict
variations in ground settlement.

2.1. Force Analysis of the Shield Machine

During the tunneling process, the shield machine can be simplified as a rigid cylindri-
cal body with a slope angle β. Figure 2 details the forces acting on the shield machine.
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During the tunneling process, the shield machine can be simplified as a rigid cylin-
drical body with a slope angle 𝛽. Figure 2 details the forces acting on the shield machine.

Figure 2. Mechanical analysis of the shield machine.

In the figure, the shield propulsion direction is along the X-axis, the horizontal direction
is Y, and the vertical direction is Z. The weight of the shield m is such that it is always
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subjected to a vertically downward gravitational force G. The vertical support force F1

balances both the machine’s weight and the soil load above it. The thrust F2 represents the
reaction force exerted by the hydraulic jacks on the segmental lining, pushing the shield
forward. Friction f occurs between the surrounding soil and the machine, acting opposite
to the direction of movement. Additionally, the forward soil exerts a reaction force F3 on
the cutting face, which is calculated from the sensor values.

These forces collectively act on the shield machine, forming a resultant force at a
center point OF. If this center does not coincide with the center of mass O, the machine
will experience both translational motion [20] and rotational motion. In this situation, an
“eccentricity distance” arises between the two points, generating a resultant moment M
that induces rotation in the shield machine. The equations governing the force and moment
analysis of the shield machine are shown in Equation (1):

F = ma
M = d × F = I ∗ α

OF
x = L/2 − d

(1)

Here, the linear acceleration a, moment of inertia I, and angular acceleration α are
solved based on the shield machine’s cutting face and real-time position changes. F
represents the force on one side of the moment, and d is the eccentricity between the
resultant force point and the center of mass. The length of the shield machine is L, and
the distance from the resultant force point to the cutting face is denoted as OF

x . Changes in
the forces and moments at the resultant force point will affect the machine’s mechanical
properties and its attitude motion. By analyzing the position of the resultant force point,
the mechanical state of the shield machine can be reflected, which in turn provides an
indication of ground settlement variations to some extent.

2.2. Motion Analysis of the Shield Machine

When the forces exerted by the surrounding soil on the shield machine change, the
resultant force and moment will also change, affecting the shield’s motion pattern. The mag-
nitude of the resultant force is primarily determined by the shield machine’s advancement
speed, which is mainly influenced by the machine’s attitude before and after propulsion.
The attitude variation during propulsion is shown in Figure 3.
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Based on the force analysis in Section 2.1, the motion center point of a ring can be
calculated as shown in Equation (2):

OAM
x =

(∣∣∣∆Q(F,M)

∣∣∣+2
∣∣∣∆D(F,M)

∣∣∣)L

3
(∣∣∣∆Q(F,M)

∣∣∣+∣∣∣∆D(F,M)

∣∣∣) (2)
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In the equation, OAM
x represents the distance from the motion center point OAM to the

cutting face. ∆Q(F,M) is the elevation change at the cutting face before and after propulsion,
calculated using the change in attitude, ∆Q(F,M) = Qzend − Qzstart. Similarly, ∆D(F,M)

represents the elevation change at the tail of the shield machine before and after propulsion,
with the calculation method being similar to the former. According to the actual attitude
and position of the shield machine, the resultant force point and motion center point of the
shield machine can be calculated [21].

3. Settlement Prediction Model
3.1. Selection of Influencing Factors

Figure 4 counts the influence factors mentioned in the papers related to subsidence predic-
tion in the Web of Science database in the last five years. These can be classified into geometric
parameters, geological conditions, tunneling factors, and tail grouting [12,15,22–29].
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Figure 4. Impact factors considered in relevant studies.

The geometric parameters include tunnel radius, segment thickness, and segment
width, but these factors are used less frequently. The relevant parameters of the segments
are excluded, as they mainly affect the final settlement, and their impact on the settlement
ahead of the tunnel face can be neglected. Geological conditions are mentioned more often.
The depth of burial is mentioned six times. Factors such as the angle of internal friction and
the coefficient of static lateral pressure are also frequently mentioned. This indicates that
geological conditions have a major influence on ground settlement, particularly the depth
of burial, which directly affects the distribution of stresses in the strata and the stability of
the soil layer.

Most studies suggest that tunneling factors such as propulsion speed and cutter head
torque significantly influence ground settlement in the tunneling process, indicating a
strong relationship between tunneling factors and ground settlement. The tunneling param-
eters affect the ground settlement, especially in the process of controlling ground settlement,
and the adjustment of tunnel parameters is crucial. Tail grouting has received significant
attention in predicting final settlement, as grouting pressure directly affects the filling of
voids and the reinforcement of the strata, influencing soil deformation and final settlement.
However, this study focuses on predicting the settlement ahead of the tunnel face, where
the impact of tail grouting on settlement at monitoring points ahead of the tunnel face
is negligible. Based on the analysis of the above factors, the relevant parameters of seg-
ments and tail grouting are excluded, and geometric parameters, geological conditions,
and tunneling factors are considered.

According to geological conditions and Coulomb’s earth pressure theory [18], the
upper soil layer’s load is considered as an overload on the lower soil layer, which leads to
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dividing the load into upper and lower parts of the shield machine to account for different
geological situations. Additionally, combining the analysis in Section 2, the length and
weight of the shield machine are considered, introducing attitude factors and the positions
of the resultant force point and motion center as input variables for the prediction model.
The candidate features are shown in Table 1.

Table 1. The candidate feature set of the model.

Feature Group Feature Parameters Symbol Unit Data Sources

Geometric
parameters (GP)

Radius r mm TBM report
Shield length L mm

Geological
conditions (GC)

Burial depth Depth m

Geological
exploration

Internal friction angle φ deg
Static side pressure coefficient K0 -

Soil density γ kN/m3

Soil cohesion c Pa

Upper load σ
up
v bar Theoretical

analysisLower load σdown
v bar

Excavation
factors (EF)

Propulsion speed Ps mm/min

Sensor
measurement

Cutterhead speed Cs rpm
Cutterhead torque Ct kN×m

Positive earth pressure F3 kN
Hydraulic cylinder thrust F2 kN

Shield gravity G kN TBM report

Attitude
features (AF)

Slope angle β deg
Sensor

measurement
Elevation deviation of incision Qz mm

Elevation deviation of tail Dz mm

Motion
features (MF)

Location of the joint force point OF
x mm Theoretical

analysisLocation of the motion center point OAM
x mm

The variation in ground settlement affects the forces acting on the shield machine,
causing the position of the resultant force point to change. Mechanical relationship analysis
takes into account the geometric parameters, weight, and slope angle of the shield machine,
establishing force and moment equations to determine the position of the resultant force
point. Changes in these mechanical relationships also influence the overall equilibrium of
the shield machine, altering its attitude motion trend. By analyzing the elevation deviations
at the cutting face and the tail of the shield before and after advancement, the machine’s
attitude motion can be assessed, leading to the identification of the motion center. Through
the analysis of settlement mechanisms, mechanical relationships, and attitude motion, the
attitude and motion characteristics can indirectly reflect changes in ground settlement.

3.2. Settlement Prediction Model Construction

Based on the settlement mechanism and the analysis of force and attitude motion, this
paper proposes the mechanism-driven intelligent settlement prediction method (MISPM).
The overall framework for ground settlement prediction includes five modules—data
preprocessing, feature reconstruction, data enhancement, model training, and prediction
output—as shown in Figure 5.



Smart Cities 2025, 8, 6 8 of 21
Smart Cities 2025, 8, x FOR PEER REVIEW 8 of 22

Figure 5. Mechanism-driven intelligent settlement prediction method.

The data preprocessing module processes the geometric parameters, geological con-
ditions, tunneling factors, attitude characteristics, and settlement monitoring data. As 
missing and anomalous data may occur, interpolation is applied to fill in small amounts 
of missing data. At the same time, outliers are removed using the Z-score method with a 
specified threshold.

The feature reconstruction module calculates the shield machine’s resultant force 
point and motion center, combined with other factors affecting settlement, to form a can-
didate feature set.

In the data augmentation module, ground settlement data undergoes roughening to 
derive corresponding settlement classifications. Additionally, data from different sources 
are aligned across time and space dimensions using spatiotemporal alignment and over-
sampling methods for data enhancement.

In the model training module, the processed data is split into training and test sets at 
a four-to-one ratio. During training with various machine learning algorithms (e.g., LSTM, 
XGBoost, and RF), five-fold cross-validation and grid search techniques are employed to 
identify the optimal model parameters. The prediction output module applies the trained 
model to the test set to predict ground settlement and trend changes, outputting the pre-
dicted results and settlement trends.

These five modules form the ground settlement prediction framework, where feature 
reconstruction and data augmentation enhance model prediction performance and pro-
vide reliable predictions and settlement trends to ensure construction safety and quality 
control.

3.3. Data Preparation

3.3.1. Discretization of Settlement Data

The goal of ground settlement prediction is to identify potentially significant surface 
uplift and settlement trends early, enabling timely response measures to ensure project 
safety. For settlement prediction, the focus lies on accurately predicting settlement quan-
tities and grasping settlement trend changes. Therefore, this study discretizes settlement 
values based on safety characteristics.

Drawing on the Chinese national standards (GB 50911-2013) [30], the daily change 
amount of deformation should be limited to less than 3 mm. In practical engineering ap-
plications, stricter thresholds are executed. Generally, the alert threshold for deformation 

Figure 5. Mechanism-driven intelligent settlement prediction method.

The data preprocessing module processes the geometric parameters, geological con-
ditions, tunneling factors, attitude characteristics, and settlement monitoring data. As
missing and anomalous data may occur, interpolation is applied to fill in small amounts
of missing data. At the same time, outliers are removed using the Z-score method with a
specified threshold.

The feature reconstruction module calculates the shield machine’s resultant force point
and motion center, combined with other factors affecting settlement, to form a candidate
feature set.

In the data augmentation module, ground settlement data undergoes roughening to
derive corresponding settlement classifications. Additionally, data from different sources
are aligned across time and space dimensions using spatiotemporal alignment and over-
sampling methods for data enhancement.

In the model training module, the processed data is split into training and test sets at
a four-to-one ratio. During training with various machine learning algorithms (e.g., LSTM,
XGBoost, and RF), five-fold cross-validation and grid search techniques are employed
to identify the optimal model parameters. The prediction output module applies the
trained model to the test set to predict ground settlement and trend changes, outputting
the predicted results and settlement trends.

These five modules form the ground settlement prediction framework, where feature
reconstruction and data augmentation enhance model prediction performance and provide
reliable predictions and settlement trends to ensure construction safety and quality control.

3.3. Data Preparation
3.3.1. Discretization of Settlement Data

The goal of ground settlement prediction is to identify potentially significant surface
uplift and settlement trends early, enabling timely response measures to ensure project
safety. For settlement prediction, the focus lies on accurately predicting settlement quan-
tities and grasping settlement trend changes. Therefore, this study discretizes settlement
values based on safety characteristics.

Drawing on the Chinese national standards (GB 50911-2013) [30], the daily change
amount of deformation should be limited to less than 3 mm. In practical engineering



Smart Cities 2025, 8, 6 9 of 21

applications, stricter thresholds are executed. Generally, the alert threshold for deformation
changes between adjacent measurements (12 h interval) is set at ±0.5 mm. Therefore, in
this paper, settlement grades are based on the amount of change in 12 h soil settlement, and
the specific rules are shown in Table 2.

Table 2. Ground deformation grade.

Grade High Subsidence Subsidence Stable Heave High Heave

Label 0 1 2 3 4
Ground deformation

change (mm) (−∞, −1.5] (−1.5, −0.5] (−0.5, 0.5) [0.5, 1.5) [1.5, ∞)

By categorizing ground deformation data based on the change in 12 h intervals,
five grades are defined—high subsidence, subsidence, stable, heave, and high heave—with
a classification label assigned to each. The goal is to convert continuous variables into
discrete categories, making it easier for the model to capture settlement trends and patterns.

3.3.2. Space–Time Alignment

To ensure the effective use of construction and settlement monitoring data, it is critical
to align them in both time and space. This alignment bridges the gap between different data
collection frequencies and spatial references, enabling accurate prediction of settlement
behavior. Temporal alignment ensures that settlement and tunneling parameters are
synchronized over time, while spatial alignment adjusts for the positional relationship
between the shield machine and its impact zone.

1. Temporal alignment

The construction and settlement data must be synchronized to ensure data consistency,
although the data have different sampling frequencies. The settlement frequency is typically
low, often once or twice daily, whereas shield tunneling data is very high, with one record
per second.

To address this discrepancy, tunneling parameters are aggregated by “ring”, calcu-
lating their average values per ring. Then, settlement monitoring times are used to track
corresponding advance rings. For two adjacent monitoring times, specifically the previous
monitoring time tp and the current time t, the corresponding ring numbers are N

(
tp
)

and
N(t).

If N
(
tp
)
̸= N(t), this indicates that the ring number changed within the monitoring

time gap, with the shield machine having advanced by N(t)− N
(
tp
)

rings. After that,
based on the time taken for each ring advance, the previous monitoring value is used as
a reference, interpolating to estimate the settlement change in front of the cutting face. If
N
(
tp
)
= N(t), it indicates that no advance occurred during this period. In this case, the

average of the two monitoring data points is taken as the settlement change in front of the
cutting face. This method effectively aligns construction and settlement monitoring data
over time, providing data support for subsequent settlement prediction.

2. Spatial alignment

The ring number remains the fundamental unit for spatial calibration. However, the
ring number represents the position of the tail of the shield, whereas the forward settlement
is influenced by the cutting of the head of the shield. Consequently, for the acquisition
of geological data and geometric parameters, a forward movement of one shield length
is necessary, and the settlement data must be shifted to align with the data within the
influence of the shield tail in front.

If the shield length is 10 m and the width of each ring is 2 m, the length of five
rings is obtained. The settlement influence area is 8 m, which is the length of four rings.
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Consequently, when the ring number for shield tunneling is N, the corresponding geological
data and geometric parameter data are derived from the data of the N + 5 ring, while the
data about the settlement are sourced from N + 5 to N + 9. The shield tunneling parameters
do not need to be spatially shifted, as shown in Figure 6.
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During tunnel construction, multiple monitoring points are deployed. To represent
settlement, the mean value of the settlement is calculated across several monitoring points
situated within the zone of influence in advance of the cutting face. This approach ensures
the monitoring of ground settlement is conducted with accuracy.

3.3.3. Oversampling

Ground settlement data often suffers from significant class imbalance, with fewer
samples in categories experiencing high subsidence or heave. Random oversampling [31,32]
is employed to balance the dataset by duplicating existing samples from minority classes.
This approach ensures a more equitable distribution across classes, enabling the model
to learn from minority class samples more effectively and reducing its bias towards the
majority class.

By conducting settlement data discretization, performing spatiotemporal alignment,
and implementing oversampling, the settlement categories are balanced, and discrepancies
across data sources are resolved. This process ensures the accuracy and consistency of the
dataset, providing the model with a robust and reliable foundation upon which to enhance
prediction performance and model robustness.

3.4. Prediction Algorithm Selection

The relationship between ground settlement and influencing factors is complex and
nonlinear, making linear models insufficient for accurate prediction. Machine learning algo-
rithms excel at handling nonlinearity, enhancing prediction accuracy and reliability. Table 3
presents a partial overview of the application of common machine learning algorithms in
ground settlement research over recent years.

Table 3. Application of different algorithms.

Algorithm Related Research

RF Hu et al. [24], Yang et al. [26], Ling et al. [27], Zhou et al. [28], Cheng et al. [29],
and Wu et al. [33]

XGBoost Zhou et al. [12], Su et al. [15], Zhang et al. [25], Gu et al. [34], and Bo et al. [35]
LSTM Zhang et al. [13], Ning et al. [14], Zhang et al. [36], Ye et al. [37], and He et al. [38]
SVR Bai et al. [10] and Pan et al. [31]
SVM Cheng et al. [32]
BP Hu et al. [11]

ANN Chen et al. [9]
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According to Table 3, random forest (RF) has the highest frequency of occurrence,
followed by extreme gradient boosting (XGBoost) and long short-term memory (LSTM).
Therefore, this study chose LSTM, XGBoost, and RF as candidate prediction algorithms.

4. Simulation Experiment
4.1. Experimental Design

The experiment data were sourced from rings 500 to 1200 of the Right Line in Shang-
hai’s section 12 project to verify the reasonableness and accuracy of the settlement prediction
method. The experiment had three objectives: comparing the predictive performance of
the base algorithms LSTM, XGBoost, and RF; analyzing the impact of features on the
performance of the settlement prediction model; and determining the optimal structure of
the settlement model.

The Shanghai Airport Line’s section 12 Lingfeng interval Right Line tunnel project
encompasses a total length of 5695 m and comprises 3164 rings. The construction of this
tunnel was completed using an earth pressure balance (EPB) shield machine. The shield
machine has a length of 11.44 m, a radius of 4.65 m, and a mass of approximately 800 tons.
The tunnel segments were 450 mm in thickness, with a ring width of 1.8 m. As illustrated
in Figure 7, the shield machine advanced through a clay layer comprising gray muddy clay
and gray clay.

Smart Cities 2025, 8, x FOR PEER REVIEW 11 of 22

ANN Chen et al. [9]

According to Table 3, random forest (RF) has the highest frequency of occurrence, 
followed by extreme gradient boosting (XGBoost) and long short-term memory (LSTM). 
Therefore, this study chose LSTM, XGBoost, and RF as candidate prediction algorithms.

4. Simulation Experiment
4.1. Experimental Design

The experiment data were sourced from rings 500 to 1200 of the Right Line in Shang-
hai’s section 12 project to verify the reasonableness and accuracy of the settlement predic-
tion method. The experiment had three objectives: comparing the predictive performance 
of the base algorithms LSTM, XGBoost, and RF; analyzing the impact of features on the 
performance of the settlement prediction model; and determining the optimal structure 
of the settlement model.

The Shanghai Airport Line’s section 12 Lingfeng interval Right Line tunnel project 
encompasses a total length of 5695 m and comprises 3164 rings. The construction of this 
tunnel was completed using an earth pressure balance (EPB) shield machine. The shield 
machine has a length of 11.44 m, a radius of 4.65 m, and a mass of approximately 800 tons. 
The tunnel segments were 450 mm in thickness, with a ring width of 1.8 m. As illustrated 
in Figure 7, the shield machine advanced through a clay layer comprising gray muddy 
clay and gray clay.

Figure 7. Geological profile of Shanghai section 12 Right Line.

Following the application of the methodology delineated in Section 3.3, a total of 290 
records were yielded. Subsequently, the processed dataset was divided into a training set 
and a test set in a 4:1 ratio, thereby facilitating the construction of the settlement prediction 
model. Once the model had been trained, it was employed to predict ground settlement 
on the test set, thus facilitating model evaluation and optimization.

4.1.1. Model Design

Settlement prediction models were constructed using various machine learning 
methods. To address class imbalance, the LSTM model employed a categorical cross-en-
tropy loss function, while the XGBoost and RF models used oversampling to balance set-
tlement classes.

Model training incorporated 5-fold cross-validation to maximize data utilization and 
reduce overfitting risk. Grid search was applied for hyperparameter optimization to de-
termine optimal parameter configurations, as shown in Table 4.

Figure 7. Geological profile of Shanghai section 12 Right Line.

Following the application of the methodology delineated in Section 3.3, a total of
290 records were yielded. Subsequently, the processed dataset was divided into a training
set and a test set in a 4:1 ratio, thereby facilitating the construction of the settlement
prediction model. Once the model had been trained, it was employed to predict ground
settlement on the test set, thus facilitating model evaluation and optimization.

4.1.1. Model Design

Settlement prediction models were constructed using various machine learning meth-
ods. To address class imbalance, the LSTM model employed a categorical cross-entropy
loss function, while the XGBoost and RF models used oversampling to balance settlement
classes.

Model training incorporated 5-fold cross-validation to maximize data utilization and
reduce overfitting risk. Grid search was applied for hyperparameter optimization to
determine optimal parameter configurations, as shown in Table 4.
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Table 4. Model parameters for different algorithms.

Algorithm Parameters

LSTM ’epochs’: 10, ’batch_size’: 10, ’dropout_rate’: 0.5, ’neurons’: 32, ’optimizer’: ’adam’,
’activation’: ’softmax’, ’loss ‘: ’categorical_crossentropy ‘,

XGBoost ’colsample_bytree’: 0.8, ’learning_rate’: 0.3, ’max_depth’: 3, ’n_estimators’: 50,
’subsample’: 0.6, ’gamma’: 0.2

RF ’max_depth’: 10, ’min_samples_leaf’: 2, ’min_samples_split’: 5, ’n_estimators’: 50

The experiment employed Python libraries, including XGBoost (1.7.6), scikit-learn
(1.2.2), and TensorFlow (2.12.0), to implement the settlement prediction models. It compared
the performance of three algorithms, namely LSTM, XGBoost, and RF, and also analyzed
the impact of different selected features on model performance. The comparative analysis
was conducted from two perspectives: the choice of algorithm and the selection of input
features. Detailed descriptions of each experimental condition are provided in Table 5.

Table 5. Experiment list.

No Name Predict Algorithm Select Features

1 LSTM_BF LSTM GP, GC, and EF
2 LSTM_AF LSTM GP, GC, EF, and AF
3 LSTM_MF LSTM GP, GC, EF, and MF
4 LSTM_PMD LSTM GP, GC, EF, and MF + PMD
5 XGboost_BF XGboost GP, GC, and EF
6 XGboost_AF XGboost GP, GC, EF, and AF
7 XGboost_MF XGboost GP, GC, EF, and MF
8 XGboost_FR XGboost GP, GC, EF, and MF + FR
9 RF_BF RF GP, GC, and EF

10 RF_AF RF GP, GC, EF, and AF
11 RF_MF RF GP, GC, EF, and MF
12 RF_FR RF GP, GC, EF, and MF + FR

The candidate feature set included GP, GC, EF, AF, and MF. Relevant features were
selected from these. The first three types of features were basic. Attitude and motion
features were introduced later. The radius, length, and gravity of the shield machine were
constant, so they were not included in the model.

Due to the consideration of previous monitoring data (PMD) in most settlement studies
of LSTM, LSTM_PMD used the data to predict ground settlement. Feature reduction (FR)
was employed to identify the six most salient features, as determined by their ranking of
importance in the XGBoost and RF algorithms.

4.1.2. Model Evaluation

As settlement prediction is a multi-class problem, this study employed the micro-
average method [39] to evaluate the model’s prediction results and performance. The
model treated its class as the positive class and the others as the negative class. The
metrics for each class were calculated based on the corresponding true positives (TPi), false
positives (FPi), false negatives (FNi), and true negatives (TNi), from which the precision,
recall, F1 score, and accuracy of the classification model were computed, as shown in
Equation (3), where n represents the total number of classes, which is equal to five, and
Numtotal is the total number of samples.
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Precision = ∑n
i=1 TPi

∑n
j=1 TPj+FPj

Recall = ∑n
i=1 TPi

∑n
j=1 TPj+FN j

F1 = 2 × Precision×Recall
Precision+Recall

Accuracy = ∑n
i=1 TPi

Numtotal

(3)

4.2. Results and Analysis
4.2.1. LSTM Algorithm

The prediction performance of the LSTM algorithm-based prediction model using
different input features is shown in Table 6.

Table 6. Prediction performance of LSTM under different features.

Train Test

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

LSTM_BF 0.21 0.45 0.28 0.45 0.10 0.32 0.16 0.32
LSTM_AF 0.21 0.45 0.28 0.45 0.10 0.32 0.16 0.32
LSTM_MF 0.10 0.31 0.15 0.31 0.15 0.39 0.22 0.39
LSTM_PMD 0.65 0.68 0.63 0.68 0.66 0.70 0.65 0.70

LSTM_BF exhibited poor performance in both the training and testing sets, with an
accuracy of 0.32 and an F1 score of 0.16. Similarly, LSTM_AF, which incorporated attitude
features, showed no significant improvement, indicating that the addition of attitude
features alone did not substantially enhance predictive capability. However, integrating
motion features (LSTM_MF) resulted in a modest improvement, with test set accuracy
increasing to 0.39, though the overall performance was still poor.

A comparison between LSTM_MF and LSTM_PMD demonstrated a notable improve-
ment in prediction accuracy, rising from 0.39 to 0.70. The confusion matrices for the model
under these conditions are presented in Figure 8.
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The confusion matrix displays the differences between the predicted results of different
categories and the actual classification, with rows representing the predicted settlement
categories and columns denoting the actual categories. As can be seen, LSTM_MF tended
to classify most cases as having no significant subsidence changes, failing to accurately
identify surface subsidence and heave. In contrast, LSTM_PMD partially overcame these
limitations, demonstrating improved predictive performance.
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Accordingly, the LSTM algorithm was contingent upon the availability of previous
monitoring data. In the absence of such data, the predictive outcomes tended to be over-
simplified, thereby impeding the capacity to accurately predict ground settlement.

4.2.2. XGBoost and RF Algorithm

According to the experimental design, a settlement prediction model was established
using XGBoost and RF algorithms, and the predictive performance of the model under
different features was compared and evaluated, as shown in Table 7.

Table 7. Prediction performance of XGBoost and RF under different features.

Train Test

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

XGboost_BF 1.00 1.00 1.00 1.00 0.72 0.76 0.74 0.76
XGboost_AF 1.00 1.00 1.00 1.00 0.77 0.79 0.78 0.79
XGboost_MF 1.00 1.00 1.00 1.00 0.80 0.81 0.80 0.81

RF_BF 0.99 0.99 0.99 0.99 0.75 0.74 0.74 0.74
RF_AF 1.00 1.00 1.00 1.00 0.82 0.83 0.82 0.83
RF_MF 1.00 1.00 1.00 1.00 0.84 0.84 0.83 0.84

XGboost_BF performed well on the training set and decreased somewhat on the
test set, with an accuracy of 0.76 and an F1 score of 0.74. The prediction performance of
XGBoost_AF improved, and the attitude features contributed to the settling prediction.
With the introduction of motion features (XGBoost_MF), the metrics of the test set eventually
improved by about 0.08, and these features significantly improved the generalization ability
and prediction accuracy of the model.

The prediction performance of RF_BF was similar to that of XGboost_BF, with an
accuracy of 0.74 and an F1 score of 0.74. After the addition of the attitude features, the
prediction performance of RF_AF was significantly improved in the test set, indicating
that the attitude features had a greater enhancement on the prediction performance. The
accuracy and recall of RF_MF in the test set reached 0.84, and the motion feature’s prediction
performance of the settlement enhancement was a little better.

According to the confusion matrix between the prediction results and the actual
categories, the performance of XGBoost and RF on different settlement categories was
evaluated by comparing the settlement prediction performance under the three feature
combinations, as shown in Figure 9.

Using XGBoost_BF, it was difficult to accurately distinguish between stable and heave
cases, and the model was prone to misclassification problems. By introducing gesture
features, the performance of the model improved, and the error of the model prediction
was reduced. Although a small number of samples were still misclassified, the error
categories were closer to the actual categories, and the prediction ability of XGBoost_MF
on slight rumble improved.

With random forest (RF), the model also suffered from the problem of recognition
difficulties, misclassifying other categories as steady states. The performance of RF_AF
improved, and the cases of non-identification were reduced, but the model still suffered
from errors in distinguishing neighboring categories. The prediction performance of RF_MF
was enhanced, especially in identifying subsidence and uplift, which reduced the confusion
between neighboring categories and improved the accuracy and robustness of the model.
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With the introduction of attitude or motion features, the model could better distin-
guish different subsidence categories, narrowing the gap between model prediction and
actual classification. The combination of mechanical relations and attitude motion law not
only improved the prediction performance of the model, which could better predict the
settlement changes and trends, but also enhanced the differentiation and identification
ability of the model. The settlement prediction showed it was more accurate and detailed,
with good accuracy and reliability.

4.2.3. Features Importance Analysis

From the above experiments, it can be seen that the prediction performance of the
model of LSTM, either by introducing attitude or motion features or considering the
previous settlement monitoring data, was poor and unsuitable for solving the ground
settlement classification problem in this study. The models built by XGBoost and random
forest (RF) algorithms achieved good results.

In particular, the introduction of attitude and motion features significantly improved
the ability of the models to predict settlement. The order of importance of the input features
in the different models is shown in Figure 10.

As can be seen, depth, Ps, Cs, Ct, F3, and F2 have high importance in XGBoost_BF
and RF_BF. After adding pose features, β and Dz in XGBoost_AF rank among the top six
in feature importance, while Qz in RF_AF ranks among the top six in feature importance.
With the introduction of motion characteristics, σ

up
v , OF

x , and OAM
x become the top three

features of the two algorithms. σ
up
v can replace burial depth and geological parameters,

and the OF
x and OAM

x obtained by considering mechanical and attitude motion have an
important impact on the prediction of settlement.
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Figure 10. Analysis of the importance of XGBoost and RF features. (a) XGBoost; (b) RF.

According to the ranking of feature importance, the first six features of XGBoost_MF
and RF_MF are consistent. The six features, namely σ

up
v , OF

x , OAM
x , Ps, Cs, and Ct, were

therefore selected as model inputs for feature reduction. The performance of the model in
surface subsidence prediction before and after feature reduction is shown in Figure 11.
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features of the two algorithms. 𝜎௩௨ can replace burial depth and geological parameters, 
and the 𝑂௫ி and 𝑂௫ெ  obtained by considering mechanical and attitude motion have an 
important impact on the prediction of settlement.

According to the ranking of feature importance, the first six features of XGBoost_MF 
and RF_MF are consistent. The six features, namely 𝜎௩௨, 𝑂௫ி, 𝑂௫ெ, Ps, Cs, and Ct, were 
therefore selected as model inputs for feature reduction. The performance of the model in 
surface subsidence prediction before and after feature reduction is shown in Figure 11.
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Following the simplification of the features, it is evident that the predictive perfor-
mance of XGBoost significantly improved, with various indicators improving by about 
0.07 and accuracy increasing to 0.88. The predictive performance of RF was relatively sta-
ble, with an improvement of 0.01 in precision and F1, without significant change in the 
indicators before and after. A comparative analysis of algorithms revealed that XGBoost 
exhibited superior prediction performance in comparison to RF. Furthermore, the incor-
poration of FR to eliminate redundant features in the model, in contrast to MF, led to an 
enhancement in its capacity to predict settlements.

Without relying on previous monitoring data, the settlement prediction model based 
on XGBoost could better predict ground settlement through feature simplification. There-
fore, this study used the XGBoost algorithm to establish the model and provide an im-
portant reference for subsequent engineering applications.

5. Engineering Applications
5.1. Background

The total length of the tunnel project in Nanjing is approximately 1270 m, with a bur-
ial depth ranging from 16.4 to 25.5 m. The geological context along the tunnel route is 
characterized by a high degree of complexity, with the presence of diverse stratigraphic 
units, including clay, hard rock, and upper soft and lower hard composite strata. The con-
struction parameters are susceptible to significant fluctuations due to the complex geolog-
ical conditions along the tunnel route, which include a combination of soft and hard strata. 
These variations in soil composition and depth can impact the efficiency and stability of 
the construction process. The project profile is illustrated in Figure 12.

Figure 11. Prediction performance of XGBoost and RF models.

Following the simplification of the features, it is evident that the predictive perfor-
mance of XGBoost significantly improved, with various indicators improving by about 0.07
and accuracy increasing to 0.88. The predictive performance of RF was relatively stable,
with an improvement of 0.01 in precision and F1, without significant change in the indica-
tors before and after. A comparative analysis of algorithms revealed that XGBoost exhibited
superior prediction performance in comparison to RF. Furthermore, the incorporation of
FR to eliminate redundant features in the model, in contrast to MF, led to an enhancement
in its capacity to predict settlements.

Without relying on previous monitoring data, the settlement prediction model based
on XGBoost could better predict ground settlement through feature simplification. There-
fore, this study used the XGBoost algorithm to establish the model and provide an impor-
tant reference for subsequent engineering applications.
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5. Engineering Applications
5.1. Background

The total length of the tunnel project in Nanjing is approximately 1270 m, with a
burial depth ranging from 16.4 to 25.5 m. The geological context along the tunnel route is
characterized by a high degree of complexity, with the presence of diverse stratigraphic
units, including clay, hard rock, and upper soft and lower hard composite strata. The
construction parameters are susceptible to significant fluctuations due to the complex
geological conditions along the tunnel route, which include a combination of soft and hard
strata. These variations in soil composition and depth can impact the efficiency and stability
of the construction process. The project profile is illustrated in Figure 12.
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The project was advanced by a soil pressure balance shield machine, and during the
construction period, the plan line was variable, including straight lines, gentle curves, and
small turning radius sections with a radius of 500 m. Additionally, the elevation line passed
through −26.9‰ downhill and 14.2‰ uphill. The geological and construction environment
of the project was characterized by a high degree of complexity and variability.

5.2. Experimental Results
5.2.1. Effectiveness

The shield machine proceeded into the airport area at ring 250 and continued until
the end of ring 520, for a total length of approximately 324 m. In this area, settlement
monitoring was restricted to weekly checks to ascertain the extent of subsidence and uplift.
However, the airport stipulated that the shield excavation must be conducted in a manner
that would not compromise the integrity of the airport grounds. This presented a significant
challenge to the construction process, necessitating a more precise settlement prediction
model.

MISPM was applied to this project to predict the change in the ground settlement.
This approach allowed us to address the issue of delayed knowledge of settlement, thereby
providing valuable support for on-site decision-making.

Before the utilization of the model for the real-time prediction of settlement and the
facilitation of decision-making, the data obtained from the initial 200 rings during the
construction of the shield machine was employed for training and testing. The training set
and test set were divided according to a ratio of 4:1. Following the advancement of each
ring, the model employed the construction data from the initial five rings to predict the
ground settlement of the current ring and its associated trend. Following the training of the
settlement prediction model, the test set was employed to assess its predictive performance.
The resulting precision was 0.88, with a recall and accuracy of 0.82.
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To ensure the reliability of the model predictions beyond ring 250, the model was used
for prediction from ring 200 onwards. The credibility of the predictions for rings 200–250
was then analyzed to confirm whether it could be continued after entering the airport area.

5.2.2. Validation

To verify the accuracy of the settlement prediction model, the engineering team
initiated the model validation process at ring 200. At 21:30 on 17 May, following the
advancement of ring 221, the model predicted the location of the potential subsidence at
the cutter head of the shield machine and issued a medium-grade settlement alarm.

Subsequently, the constructor conducted a comparative analysis of the ground settle-
ment at 16:00 on 17 May, when the shield was advanced to ring 220. The analysis revealed
that the settlement was minimal, indicating that no adjustments were necessary to the con-
struction parameters. However, subsequent ground monitoring conducted the following
day (at 08:00 on the 18th) revealed a notable increase in ground settlement, as shown in
Figure 13.
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It can be seen that the model was accurate in predicting the ground settlement. It not
only coincided with the actual monitoring data but also made the prediction 11 h earlier
than the on-site monitoring, verifying the accuracy and timeliness of MISPM in predicting
the trend of ground settlement. Following this alarm, the site personnel identified the
settlement prediction model presented in this paper. During the subsequent construction
phase, they implemented adjustments to the cutting pressure under the model’s warnings,
thereby ensuring the safety and quality of the shield construction.

5.2.3. Results

The shield machine made its way into the airport area from 23 May onwards, advanc-
ing for a total of 36 days. Table 8 illustrates the combined effects of the settlement prediction
model and the pressure adjustment in the field, along with the resulting warnings, during
this process.
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Table 8. Model prediction and pressure adjustment during the airport crossing process.

Time Ring Settlement Prediction Warning Level On-Site Action

5/26 19:49 276 Subsidence Medium Increased from 2.95 bar to 3.0 bar
5/31 21:46 319 Subsidence Medium Increased from 3.1 bar to 3.15 bar

6/3 1:33 335 High subsidence High Increased from 3.15 bar to 3.25 bar
6/8 17:24 383 Heave Medium Reduced from 3.25 bar to 3.20 bar
6/9 7:47 388 Heave Medium Reduced from 3.20 bar to 3.15 bar

6/13 15:27 425 High heave High Reduced from 3.1 bar to 3.0 bar

Table 8 summarizes the model’s predictions and corresponding pressure adjustments
during airport transit. For instance, when subsidence was predicted at rings 276 and
319, the warning level was medium, leading to a slight increase in frontal earth pressure
by 0.05 bar. Based on the predicted settlement trend and alarm level of the model, this
method dynamically adjusts the positive soil pressure to ensure timely and accurate control,
demonstrating effectiveness.

5.3. Application Summary

During the weekly on-site inspections at the airport, the concrete pavements were
observed to be level and free from deformation or additional cracks. This indicates that the
ground settlement remained within a stable range with no significant changes. The settle-
ment prediction model, which integrates mechanics and attitude motion laws, facilitated
the construction team’s navigation of the airport and was met with considerable acclaim
from the engineering community.

MISPM can predict settlement trends quickly and accurately. This can avoid risks from
ground movement. Without ground monitoring, the model is also capable of predicting the
trend of ground settlement on time, adjusting soil pressure, and ensuring that settlement
remains within an acceptable range. The method offers an effective auxiliary decision-
making tool for the construction site, facilitating the timely adjustment of construction
parameters and proving the method’s efficacy and applicability.

6. Conclusions
Based on related theories and research, this paper proposes the mechanism-driven

intelligent settlement prediction method (MISPM). According to the relationship between
the settlement and the factors of tunnel construction, the ground settlement in front of
the shield machine can be accurately predicted. Through simulation and engineering
application, results were obtained and verified.

1. This study highlights the supportive role of attitude motion characteristics in settle-
ment prediction and reveals the relationship between various systems during shield
construction.

2. By comparing different machine learning algorithms, the use of the XGBoost algorithm
combined with reconstruction features improved the prediction accuracy by about 0.1,
reaching 0.88. The accuracy and rationality of the model were significantly improved.

3. Compared with actual settlement monitoring, MISPM could also detect settlement
changes 11 h in advance, and the accuracy of prediction was 0.82. Without prior
monitoring, the method uses the resultant force point and motion center to predict the
settlement more quickly and reliably and provides reasonable adjustment suggestions
to improve the safety and efficiency of tunnel engineering projects.

Although MISPM has been verified in projects, its generality still needs further verifi-
cation. Future work can take more parameters into account in the model design to support
the adjustment of construction strategies. In addition, this study focuses on predicting
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settlement ahead of the tunnel excavation. Tail settlement and cumulative settlement
are crucial for environmental safety. It is worth discussing the relationship between the
characteristics of the shield tunnel and these two types of settlement trends.
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