Remotely Sensed Boro Rice Production Forecasting Using MODIS-NDVI: A Bangladesh Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rice Information
2.3. Geospatial Data Requirements
2.4. Normalized Difference Vegetation Index (NDVI)
2.5. Maximum Value Composite (MVC) at MODIS VI Products (MOD13A1)
2.6. Digital Overlay and Masking Operation
2.7. Spatial Resolution and Information Precision
2.8. Methodological Framework
3. Results
3.1. Development of Remotely-Sensed Boro Rice Production Model
3.2. Simulation of Remotely Sensed Rice Production Model
3.3. Accuracy Assessment of Boro Rice Production Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Input Variables | Month | Day | Year | Satellite-Based Boro Crop Production Model | R2: Determination Coefficient | |||
---|---|---|---|---|---|---|---|---|
MODIS NDVI (MOD13A1) Versus Ground-based estimated production 2011 | January | 01 | 2011 | y = | 0.7233 | x = | (−85,912) | 0.61 |
February | 18 | 2011 | y = | 0.4884 | x = | (−40,708) | 0.74 | |
March | 22 | 2011 | y = | 0.3859 | x = | (−37,122) | 0.84 | |
April | 23 | 2011 | y = | 0.4703 | x = | (−67,661) | 0.76 | |
MODIS NDVI (MOD13A1) Versus Ground-based estimated production 2012 | January | 01 | 2012 | y = | 0.7048 | x = | (−107,167) | 0.63 |
February | 18 | 2012 | y = | 0.5363 | x = | (−32,878) | 0.65 | |
March | 22 | 2012 | y = | 0.4357 | x = | (−31,912) | 0.83 | |
April | 23 | 2012 | y = | 0.4736 | x = | (−51,550) | 0.73 | |
MODIS NDVI (MOD13A1) Versus Ground-based estimated production 2013 | January | 01 | 2013 | y = | 0.7278 | x = | (−120,115) | 0.63 |
February | 18 | 2013 | y = | 0.5102 | x = | (−37,486) | 0.65 | |
March | 22 | 2013 | y = | 0.4286 | x = | (−47,138) | 0.84 | |
April | 23 | 2013 | y = | 0.437 | x = | (−57,214) | 0.79 | |
MODIS NDVI (MOD13A1) Versus Ground-based estimated production 2014 | January | 01 | 2014 | y = | 0.7315 | x = | (−141,077) | 0.70 |
February | 18 | 2014 | y = | 0.5251 | x = | (−74,614) | 0.64 | |
March | 22 | 2014 | y = | 0.4368 | x = | (−62,650) | 0.85 | |
April | 23 | 2014 | y = | 0.5039 | x = | (−70,319) | 0.77 | |
MODIS NDVI (MOD13A1) Versus Ground-based estimated production 2015 | January | 01 | 2015 | y = | 0.5238 | x = | (−82,419) | 0.76 |
February | 18 | 2015 | y = | 0.5101 | x = | (−78,691) | 0.75 | |
March | 22 | 2015 | y = | 0.442 | x = | (−61,537) | 0.84 | |
April | 23 | 2015 | y = | 0.5171 | x = | (−95,475) | 0.72 | |
MODIS NDVI (MOD13A1) Versus Ground-based estimated production 2016 | January | 01 | 2016 | y = | 0.7232 | x = | (−133,568) | 0.57 |
February | 18 | 2016 | y = | 0.4871 | x = | (−85,741) | 0.75 | |
March | 22 | 2016 | y = | 0.4872 | x = | (−89,482) | 0.75 | |
April | 23 | 2016 | y = | 0.5456 | x = | (−73,336) | 0.67 | |
MODIS NDVI (MOD13A1) Versus Ground-based estimated production 2017 | January | 01 | 2017 | y = | 0.6103 | x = | (−111,701) | 0.60 |
February | 18 | 2017 | y = | 0.4187 | x = | (−21,932) | 0.57 | |
March | 22 | 2017 | y = | 0.4158 | x = | (−47,908) | 0.65 | |
April | 23 | 2017 | y = | 0.4076 | x = | (−44,345) | 0.65 |
Year | Boro Rice Production (M.Ton) | R2 | MBE (M.Ton) | RMSE (M.Ton) | ME | |
---|---|---|---|---|---|---|
RS Model Estimated | BBS Estimated | |||||
2011 | 18,540,281 | 19,725,604 | 0.84 | 19,431 | 10,624 | 0.94 |
2012 | 18,685,684 | 16,862,935 | 0.83 | −29,881 | 5238 | 0.92 |
2013 | 18,718,556 | 18,186,067 | 0.84 | −8729 | 9833 | 0.94 |
2014 | 18,931,747 | 18,932,353 | 0.85 | 9 | 9097 | 0.94 |
2015 | 19,112,340 | 18,775,269 | 0.84 | −5525 | 7798 | 0.94 |
2016 | 18,860,386 | 17,981,769 | 0.75 | −14,403 | 11,852 | 0.88 |
2017 | 17,935,857 | 18,090,556 | 0.65 | 2536 | 6830 | 0.86 |
References
- Khush, G.S. What it will take to feed 5 billion rice consumers in 2030. Int. J. Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Purevdorj, M.; Kubo, M. The future of rice production, consumption and seaborne trade: Synthetic prediction method. J. Food Distrib. Res. 2005, 36, 250–259. [Google Scholar]
- GeoHive Historic. Current and Future Population: Asia. Available online: http://www.geohive.com/earth/his_proj_asia.aspx (accessed on 4 April 2017).
- IPCC. Fifth Assessment Synthesis Report; IPPC: Geneva, Switzerland, 2014; p. 116. Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_LONGERREPORT.pdf (accessed on 4 April 2017).
- World Bank. The Cost of Adapting to Extreme Weather Events in a Changing Climate; Bangladesh Development Series Paper No. 28; World Bank: Washington, DC, USA, 2011; Available online: http://www.worldbank.org.bd/bds (accessed on 12 March 2018).
- Whitcraft, A.K.; Becker-Reshef, I.; Justice, C.O. A framework for defining spatially explicit earth observation requirements for a global agricultural monitoring initiative (GEOGLAM). Remote Sens. 2015, 7, 1461–1481. [Google Scholar] [CrossRef]
- Sharman, M.J. The agriculture project of the Joint Research Centre: Operational use of remote sensing for agricultural statistics. In Proceedings of the International Symposium Operationalization of Remote Sensing, 19–23 April 1993; ITC: Enschede, The Netherlands, 1993. [Google Scholar]
- De Roover, B.; De Mudker, S.C.; Goossens, R. The regional inventory (MARS) in Belgium. In Proceedings of the International Symposium Operationalization of Remote Sensing, 19–23 April 1993; ITC: Enschede, The Netherlands, 1993. [Google Scholar]
- Bastiaanseen, W.G.M.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Nuarsa, I.W.; Nishio, F.; Hongo, C. Rice yield estimation using Landsat ETM+ data and field observation. J. Agric. Sci. 2012, 4, 45–56. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Li, X.; Tian, H.; Pan, Z. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS ONE 2013, 8, e70816. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Duc, H.N.; Nguyen, L.D. Prediction of rice crop yield using MODIS EVI-LAI -data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2013, 34, 7275–7292. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Development of a remote sensing-based rice yield forecasting model. Span. J. Agric. Res. 2016, 14, 0907. [Google Scholar] [CrossRef]
- Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Chang. Biol. 2015, 21, 1328–1341. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Agricultural Census of Bangladesh-2011; Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh. Available online: http://www.bbs.gov.bd (accessed on 30 January 2017).
- Bright, R.M.; Zhao, K.; Jackson, R.B.; Cherubini, F. Quantifying surface surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Chang. Biol. 2015, 21, 3246–3266. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lakshmi, V.; Small, E.E. Relationship between vegetation biophysical properties and surface temperature using multisensor satellite data. J. Clim. 2007, 20, 5593–5606. [Google Scholar] [CrossRef]
- Rahman, S.; Rahman, H.; Keramat, M. Study on the seasonal changes of land cover and their impact on surface albedo in the northwestern part of Bangladesh using remote sensing. Int. J. Remote Sens. 2007, 28, 1001–1022. [Google Scholar] [CrossRef]
- Nelson, A.; Boschetti, M.; Manfron, G.; Holecz, F.; Collivignarelli, F.; Gatti, L.; Barbieri, M.L.; Villano, P.; Chandna Setiyono, T. Combining Moderate-Resolution Time-Series RS Data from SAR and Optical Sources for Rice Crop Characterization: Examples from Bangladesh. In Land Applications of Remote Sensing; INTECH-Janeza Trdine 9: 51000 Rijeka, Croatia, Chapter 4; 2014; Available online: http://www.intechopen.com/books/land-applications-of-radar-remote-sensing (accessed on 20 January 2019).
- Jing-Feng, H.; Shu-Chuan, T.; Abou-Ismail, O.; Ren-Chao, W. Rice yield estimation using remote sensing and simulation model. J. Zhejiang Univ. Sci. 2002, 3, 461–466. [Google Scholar] [CrossRef]
- Chen, C.F.; Son, N.T.; Chang, L.Y.; Chen, C.R. Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series MODIS 250m NDVI data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2011, 32, 5115–5134. [Google Scholar] [CrossRef]
- Rahman, A.; Roytman, L.; Krakauer, N.Y.; Nizamuddin, M.; Goldberg, M. Use of vegetation health data for estimation of Aus rice yield in Bangladesh. Sensors 2009, 9, 2968–2975. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Khan, K.; Krakauer, N.Y.; Roytman, L.; Kogan, F. Use of remote sensing data for estimation of Aman rice yield. Int. J. Agric. For. 2012, 2, 101–107. [Google Scholar] [CrossRef]
- Vien, D. Technology of Remote Sensing in Monitoring Rice Capacity; Publisher of agricultural technique: Beijing, China, 1983. (In Chinese) [Google Scholar]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Tao, F.; Yokozawa, M.; Zhang, Z.; Xu, Y.; Hayashi, Y. Remote sensing of crop production in china by production efficiency models: Models comparisons, estimates and uncertainties. Ecol. Model. 2005, 183, 385–396. [Google Scholar] [CrossRef]
- Okamoto, K. Estimation of rice-planted area in the tropical zone using a combination of optical and microwave satellite sensor data. Int. J. Remote Sens. 1999, 20, 1045–1048. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring global croplands with coarse resolution earth observations: The global agriculture monitoring (GLAM) project. Remote Sens. 2010, 2, 1589–1609. [Google Scholar] [CrossRef]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.S.; Babu, J.Y.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Biradar, C.M.; Dong, J.; Qin, Y.; Menarguez, M.A.; Zhou, Y.; Zhang, Y.; Jin, C.; Wang, J.; et al. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015. Sci. Total Environ. 2015, 579, 82. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.A.; Yitayew, M.; Slack, D.C.; Hutchison, C.F.; Huete, A.; Petersen, M.S. Estimating crop yields and production by integrating the FAO crop specific water balance model with real-time satellite data and ground based ancillary data. Int. J. Remote Sens. 2000, 21, 3487–3508. [Google Scholar] [CrossRef]
- Prasad, A.K.; Chai, L.; Singh, R.P. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Phung, H.P.; Huth, J.; Phung, C.V. Estimation of the rice yield in the Mekong Delat using dual polarisationTerraSAR-X data. VNU J. Sci. Earth Environ. Sci. 2012, 28, 20–28. [Google Scholar]
- Noureldin, N.A.; Aboelghar, M.A.; Saudy, H.S.; Ali, A.M. Rice yield forecasting models using satellite imagery in Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Bala, S.K.; Islam, A.S. Correlation between potato yield and MODIS-derived vegetation indices. Int. J. Remote Sens. 2009, 30, 2491–2507. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K. Development of a remote sensing-based “Boro” rice mapping system. Remote Sens. 2014, 6, 1938–1953. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Rechardson, A.J.; Escobar, D.E.; Gerbermann, A.H. Vegetation indices in crop assessment. Remote Sens. Environ. 1990, 35, 105–119. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photosynthetic infrared linear combination for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Holben, B.N.; Tucker, C.J.; Fan, C.J. Spectral assessment of soybean leaf area and leaf biomass. Photogramm. Eng. Remote Sens. 1980, 46, 651–656. [Google Scholar]
- Ahlrichs, J.S.; Bauer, M.E. Relation of agronomic and multispectral reflectance characteristics of spring wheat canopies. Agron. J. 1983, 75, 987–993. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W. Testing a theoretical climate-soil leaf area hydrological equilibrium of forests using satellite data and ecosystem simulation. Agric. For. Meteorol. 1989, 44, 245–260. [Google Scholar] [CrossRef]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Colombo, R.; Busetto, L.; Fava, F.; Di Mauro, B.; Migliavacca, M.; Cremonese, E.; Galvagno, M.; Rossini, M.; Meroni, M.; Cogliati, S.; et al. Phenological monitoring of grassland and larch in the Alps from Terra and Aqua MODIS images. Ital. J. Remote Sens. 2011, 43, 83–96. [Google Scholar] [CrossRef]
- Hmimina, G.; Dufrene, E.; Pontailler, J.Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechar, C.; Granier, A.; et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Soudani, K.; Francois, C.; le Maire, G.; Le Dantec, V.; Dufrene, E. Comparative analysis of IKONOS, SPOT, and ETM+ data leaf area index estimation in temperature coniferous and deciduous forest stands. Remote Sens. Environ. 2006, 102, 161–175. [Google Scholar] [CrossRef]
- Sesnie, S.E.; Dickson, B.G.; Rosenstock, S.S.; Rundall, J.M. A comparison of Landsat TM and MODIS vegetation indices for estimating forage phenology in desert bighorn sheep (Oviscanadensisnelsoni) habitat in the Sonoran Desert, USA. Int. J. Remote Sens. 2012, 33, 276–286. [Google Scholar] [CrossRef]
- Salam, M.A.; Rahman, H. Application of remote sensing and geographic information system (GIS) techniques for monitoring boro rice expansion area in Bangladesh. Asian J. Geoinf. 2014, 14, 11–17. [Google Scholar]
- Shiu, Y.; Lin, M.; Huang, C.; Chu, T. Mapping paddy rice agriculture in a highly fragmented area using a geographic information system object-based post classification process. J. Appl. Remote Sens. 2012, 6, 063526. [Google Scholar]
- Amhed, A.U. Bangladesh: Climate Change Impacts and Vulnerability A Synthesis; Climate Change Cell, Department of Environment: Dhaka, Bangladesh, 2006; ISBN 984-32-3467-7. [Google Scholar]
- Master Planning Organization (MPO). National Water Management Plan: Phase II; Final Report-1991; Ministry of Irrigation, Water Development and Flood Control, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 1991. [Google Scholar]
- FAO. Rice: Post-harvest Operations; Food and Agriculture Organization (FAO) of United Nations, International Rice Research Institute: Los Baños, Philippines, 1999. [Google Scholar]
- IRRI. The international Rice Research Institute (IRRI) Rice Facts; IRRI: Los Banos, Philippines, 1997. [Google Scholar]
- Shahid, S.; Wang, X.; Rahman, M.M.; Hasan, R.; Harun, S.B.; Shamsudin, S. Spatial Assessment of Groundwater Over-exploitation in Northwestern Districts of Bangladesh. J. Geol. Soc. India 2015, 85, 463–470. [Google Scholar] [CrossRef]
- Didan, K. MOD13A1: MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006; NASA EOSDIS LP DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Version 3.00; Vegetation Index and Phenology Lab, The University of Arizona: Tucson, Arizona, 2015; Available online: http://vip.arizona.edu (accessed on 25 July 2019).
- Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 2000, 74, 609–620. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Bangladesh Bureau of Statistics (BBS). Statistical Pocketbook of Bangladesh-2016; Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2017. Available online: http://www.bbs.gov.bd (accessed on 21 January 2019).
- Bangladesh Bureau of Statistics (BBS). Yearbook of Agricultural Statistics-2016; 28th Series; May 2017; Statistics and Informatics Division (SID), Ministry of Planning, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2017. Available online: http://www.bbs.gov.bd (accessed on 21 January 2019).
- Eidenshink, J.C.; Faundeen, J.L. The 1-km AVHRR global land data set: First stages in implementation. Int. J. Remote Sens. 1994, 15, 3443–3462. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Wim, J.D.; Leeuwen, V.; Huete, A.R.; Laing, T.W. MODIS Vegetation Index Compositing Approach: A Prototype with AVHRR Data. Remote Sens. Environ. 1999, 69, 264–280. [Google Scholar]
- Chuvieco, E.; Ventura, G.; Martin, M.P.; Gomez, I. Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sens. Environ. 2005, 94, 450–462. [Google Scholar] [CrossRef]
- Chen, D.; Stow, D.A.; Gong, P. Examining the effect of spatial resolution and texture window size on classification accuracy: An urban environment case. Int. J. Remote Sens. 2004, 25, 1–16. [Google Scholar] [CrossRef]
- Markham, B.L.; Townshend, J.R.G. Land cover classification accuracy as a function of sensor spatial resolution. In Proceedings of the 15th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 11–15 May 1981; pp. 1075–1090. [Google Scholar]
- Marceau, D.J.; Howarth, P.J.; Gratton, D.J. Remote Sensing and the measurement of Geographical Entities in a forest environment 1: The scale and spatial aggregation problem. Remote Sens. Environ. 1994, 49, 93–104. [Google Scholar] [CrossRef]
- Marceau, D.J.; Howarth, P.J.; Gratton, D.J. Remote Sensing and the measurement of Geographical Entities in a forest environment 2, the optimal spatial resolution. Remote Sens. Environ. 1994, 49, 105–117. [Google Scholar] [CrossRef]
- Earth Resources Data Analysis System (ERDAS) IMAGINE Essentials™ Tour Guides 2017; Technical Documentation ERDAS, Inc.: Norcross, GA, USA, 2017.
- Gat, N.; Erives, H.; Fitzegerald, G.J.; Kaffka, S.R.; Mass, S.J. Estimate Sugar Beet Yield Using AVIRIS-Derived Indices. 2000. Available online: http://makalu.jpl.nasa. gov/docs/workshops/00_docs/Gat_web.pdf (accessed on 18 September 2007).
- Liu, W.T.; Kogan, F. Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. Int. J. Remote Sens. 2002, 23, 1161–1179. [Google Scholar] [CrossRef]
- Nessa, M. Monitoring of Rice Growth and Production in Bangladesh Using NOAA Satellite Data; Bangladesh University of Engineering and Technology: Dhaka, Bangladesh, 2004. [Google Scholar]
- Haig, L.A.S. Crop Yield Estimation: Integrating RS, GIS and Management Factors; International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2003. [Google Scholar]
- Murthy, C.S.; Jonna, S.; Raju, P.V.; Thurivengadachari, S.; Hakeem, K.A. Crop Yield Prediction in Command Area Using Satellite Data. 1994. Available online: http://www.gisdevelopment.net/aars/acrs/1994/ps1/ps1014pf.htm (accessed on 24 August 2007).
- Boken, V.K.; Shaykewich, C.F. Improving an operational wheat yield model using phenological phase-based Normalized Difference Vegetation Index. Int. J. Remote Sens. 2002, 23, 4155–4168. [Google Scholar] [CrossRef]
- Rojas, O. Operational maize yield model development and validation based on remote sensing and agro-meteorological data in Kenya. Int. J. Remote Sens. 2007, 28, 3775–3793. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Cook, P.W. Spring wheat yield assessment using NOAA AVHRR data. Can. J. Remote Sens. 1995, 21, 43–51. [Google Scholar] [CrossRef]
- Benedetti, R.; Rossini, P. On the use of NDVI profiles as a tool for agricultural statistics: The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sens. Environ. 1993, 45, 311–326. [Google Scholar] [CrossRef]
- Tucker, C.J.; Holben, B.N.; Elgin, J.H.; McMurtrey, J.E. Relationship of spectral data to grain yield variation. Photogrammetric Engineer. Remote Sens. 1980, 46, 657–666. [Google Scholar]
- Nuarsa, I.W.; Nishio, F.; Hongo, C. Relationship between rice spectral and rice yield using MODIS data. J. Agric. Sci. 2011, 3, 80–88. [Google Scholar] [CrossRef]
- Siyal, A.A.; Dempewolf, J.; Becker-Reshef, I. Rice yield estimation using Landsat ETM_Data. J. Appl. Remote Sens. 2015, 9, 095986. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Fuller, D.O. Trends in NDVI time series and their relation to rangeland and crop production in Senegal, 1987–1993. Int. J. Remote Sens. 1998, 19, 2013–2018. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Shew, A.M.; Ghosh, A. Using multi-temporal remote sensing data to analyze the spatio-temporal patterns of dry season rice production in Bangladesh. In Proceedings of the 2nd International Symposium on Spatiotemporal Computing, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Cambridge, MA, USA, 7–9 August 2017; Volume IV-4/W2. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of remote sensors in mapping rice area and forecasting its production: A review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Chang, K.W.; Chen, R.K.; LO, J.C.; Shen, Y. Large-area rice yield forecasting using satellite imageries. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 27–35. [Google Scholar] [CrossRef]
- Rapsomanikis, G. The Economic Lives of Smallholder Farmers: An Analysis Based on Household Data from Nine Countries; Food and Agricultural Organization (FAO) of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Boschetti, L.; Flasse, S.P.; Brivio, P.A. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sens. Environ. 2004, 91, 280–292. [Google Scholar] [CrossRef]
- Savin, I.Y.; Isaev, V.A. Rice yield forecast based on satellite and meteorological data. Russ. Agric. Sci. 2010, 36, 424–427. [Google Scholar] [CrossRef]
Stage s (Days) | ||||
---|---|---|---|---|
Initial | Vegetative | Flowering | Maturing | Total |
25 | 60 | 40 | 20 | 145 |
1st Jan–25th January | 26th Jan–25th March | 26th March–5th May | 6th May–25th May | January–May |
Feature Category | Preferred Periodic Updating | ||
---|---|---|---|
Time Interval | Spatial Resolution (m) | Satellite/Sensors | |
Forests | 3 years | 30/22 | Landsat TM/DMC |
Homestead vegetation | 3 years | 5 | RapidEye |
Seasonal crop field | Seasonal | 500 | TERRA/AQUA MODIS |
Seasonal Boro rice | Seasonal | 30/22 | Landsat TM/DMC |
Non-Vegetated areas | 3 years | 5 | RapidEye |
Surface Feature | Area in 2011 (Ha) | Area in 2017 (Ha) |
---|---|---|
Water body | 28,715 | 24,372.9 |
Vegetation | 20,079.8 | 21,480.9 |
Crop area | 12,913.6 | 16,370.8 |
Others | 61,563.4 | 61,050.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisal, B.M.R.; Rahman, H.; Sharifee, N.H.; Sultana, N.; Islam, M.I.; Ahammad, T. Remotely Sensed Boro Rice Production Forecasting Using MODIS-NDVI: A Bangladesh Perspective. AgriEngineering 2019, 1, 356-375. https://doi.org/10.3390/agriengineering1030027
Faisal BMR, Rahman H, Sharifee NH, Sultana N, Islam MI, Ahammad T. Remotely Sensed Boro Rice Production Forecasting Using MODIS-NDVI: A Bangladesh Perspective. AgriEngineering. 2019; 1(3):356-375. https://doi.org/10.3390/agriengineering1030027
Chicago/Turabian StyleFaisal, B.M. Refat, Hafizur Rahman, Nur Hossain Sharifee, Nasrin Sultana, Mohammad Imrul Islam, and Tofayel Ahammad. 2019. "Remotely Sensed Boro Rice Production Forecasting Using MODIS-NDVI: A Bangladesh Perspective" AgriEngineering 1, no. 3: 356-375. https://doi.org/10.3390/agriengineering1030027
APA StyleFaisal, B. M. R., Rahman, H., Sharifee, N. H., Sultana, N., Islam, M. I., & Ahammad, T. (2019). Remotely Sensed Boro Rice Production Forecasting Using MODIS-NDVI: A Bangladesh Perspective. AgriEngineering, 1(3), 356-375. https://doi.org/10.3390/agriengineering1030027