Developing Irrigation Management at District Scale Based on Water Monitoring: Study on Lis Valley, Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Supply Monitoring
2.3. Water Quality Monitoring
3. Results
3.1. Water Balance on Supply Sectors
3.2. Water Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Playán, E.; Sagardoy, J.A.; Castillo, R. Irrigation governance in developing countries: Current problems and solutions. Water 2018, 10, 1118. [Google Scholar] [CrossRef] [Green Version]
- Playán, E.; Cavero, J.; Mantero, I.; Salvador, R.; Lecina, S.; Faci, J.M.; Andrés, J.; Salvador, V.; Cardeña, G.; Ramón, S.; et al. A database program for enhancing irrigation district management in the Ebro valley (Spain). Agric. Water Manag. 2007, 87, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Dedrick, A.R.; Clyma, W.; Palmer, J.D. A management improvement process to effectively change irrigated agriculture. In Planning for Water Shortages. Water Reallocations and Transfers. Drought Management; Schaack, J., Wilson, D.S., Anderson, S.S., Eds.; U.S. Committee on Irrigation and Drainage: Denver, CO, USA, 1989; pp. 45–58. [Google Scholar]
- Sagardoy, J.A.; Pastore, G.; Yamashita, I.; Lopez-Cortijo, I. SIMIS: Scheme Irrigation Management Information System; FAO: Rome, Italy, 1999. [Google Scholar]
- Mateos, L.; López-Cortijo, I.; Sagardoy, J.A. SIMIS: The FAO decision support system for irrigation scheme management. Agric. Wat. Manag. 2002, 56, 193–206. [Google Scholar] [CrossRef]
- Backeberg, G.R. Innovation through research and development for irrigation water management. Irrig. Drain. 2014, 63, 176–185. [Google Scholar] [CrossRef]
- Lenton, R. Irrigation in the twenty-first century: Reflections on science, policy and society. Irrig. Drain. 2014, 63, 154–157. [Google Scholar] [CrossRef]
- Ostrom, E. Crafting Institutions for Self-Governing Irrigation Systems; Center for Self-Governance: San Francisco, CA, USA, 1992. [Google Scholar]
- Silva, F.G. The future of irrigation in an integrated logic of water resources management. AGROTEC 2018, 27, 46–49. (In Portuguese) [Google Scholar]
- INE. Farm Structure Survey; INE: Lisbon, Portugal, 2017. (In Portuguese) [Google Scholar]
- Sordo-Ward, A.; Granados, A.; Iglesias, A.; Garrote, L.; Bejarano, M.D. Adaptation effort and performance of water management strategies to face climate change. Impacts in six representative basins of Southern Europe. Water 2019, 11, 1078. [Google Scholar] [CrossRef] [Green Version]
- European Commission. EIP-AGRI. Available online: https://ec.europa.eu/eip/agriculture/en (accessed on 5 December 2019).
- COBA. Environmental Impact Study of the Lis Valley Reparcelling Project; IHERA: Lisbon, Portugal, 2001. (In Portuguese) [Google Scholar]
- MAM-GPP. Mainland Rural Development 2014–2020 Program; MAM-GPP: Lisbon, Portugal, 2014. (In Portuguese) [Google Scholar]
- Ferreira, S.; Oliveira, F.; Gonçalves, J.M.; Silva, F.G.; Teixeira, M.; Gonçalves, M.; Eugénio, R.; Damásio, H. Promote the sustainable development of the territory by agricultural innovation. Challenges of organic farming in the Lis Valley, Portugal. In Proceedings of the 10th Iberian Agroengineering Congress, Huesca, Spain, 3–6 September 2019; pp. 606–622. (In Portuguese). [Google Scholar] [CrossRef] [Green Version]
- Replogle, J.A.; Kruse, E.G. Delivery and distribution systems. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 347–391. [Google Scholar]
- Walker, W.R.; Skogerboe, G. Surface Irrigation: Theory and Practice; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1987. [Google Scholar]
- Pereira, L.S.; Gonçalves, J.M. Surface irrigation. In Oxford Encyclopedia of Agriculture and the Environment, Subject: Sustainability and Solutions, Agriculture and the Environment; Oxford University Press: Oxford, UK, 2018. [Google Scholar] [CrossRef]
- MEDWATERICE. Medwaterice Home Page. Available online: www.medwaterice.org (accessed on 15 December 2019).
- De Maria, S.C.; Rienzner, M.; Facchi, A.; Chiaradia, E.A.; Romani, M.; Gandolfi, C. Water balance implications of switching from continuous submergence to flush irrigation in a rice-growing district. Agric. Water Manag. 2016, 171, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.; Kincaid, C.K.; Lyle, W.M. Design and operation of sprinkler systems. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 557–631. [Google Scholar]
- Evans, R.G.; Wu, I.; Smajstrala, A.G. Microirrigation systems. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 632–683. [Google Scholar]
- King, L.G.; Willardson, L.S. Drainage systems. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 289–319. [Google Scholar]
- RRN. Grupo Operacional para a Gestão da Água no Vale do Lis. Available online: https://inovacao.rederural.gov.pt/2/81-grupo-operacional-para-a-gestao-da-agua-no-vale-do-lis (accessed on 5 December 2019).
- Oliveira, M.F.; Silva, F.G.; Ferreira, S.; Teixeira, M.; Damásio, H.; Ferreira, A.D.; Gonçalves, J.M. Innovations in sustainable agriculture: Case study of Lis Valley irrigation district, Portugal. Sustainability 2019, 11, 331. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.M.; Nunes, M.; Eugénio, R.; Ferreira, S.; Amador, P.; Filipe, O.; Duarte, I.M.; Margarida Teixeira, M.; Marques, H.; Oliveira, F.; et al. Case study of water monitoring in the Lis Valley irrigation district, Portugal. In Proceedings of the 10th Iberian Agroengineering Congress, Huesca, Spain, 3–6 September 2019; pp. 649–660. (In Portuguese). [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Clemmens, A.J. Accuracy of project-wide water uses from a water balance: A case study from Southern California. Irrig. Drain. Syst. 2008, 22, 287–309. [Google Scholar] [CrossRef]
- Lencastre, A. General Hydraulics; Hidroprojecto: Lisbon, Portugal, 1983. (In Portuguese) [Google Scholar]
- Replogle, J.A.; Howell, T.A.; Solomon, K.H. Measuring Irrigation Water. In Management of Farm Irrigation Systems; Hoffman, J., Howell, T.A., Solomon, K.H., Eds.; ASABE: St. Joseph, MI, USA, 1990; pp. 315–370. [Google Scholar]
- IPMA. IPMA Home Page. Available online: www.ipma.pt (accessed on 10 November 2018).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Renault, D.; Vehmeyer, P.W. On reliability in irrigation service preliminary concepts and application. Irrig. Drain. Syst. 1999, 13, 75–103. [Google Scholar] [CrossRef]
- Mateos, L. Identifying a new paradigm for assessing irrigation system performance. Irrig. Sci. 2008, 27, 25–34. [Google Scholar] [CrossRef]
- Burt, C.M.; Clemmens, A.J.; Strelkoff, T.S.; Solomon, K.H.; Bliesner, R.D.; Hardy, L.A.; Howell, T.A.; Eisenhauer, D.E. Irrigation performance measures: Efficiency and uniformity. J. Irrig. Drain. Eng. 1997, 123, 423–442. [Google Scholar] [CrossRef] [Green Version]
- Molden, D.J.; Gates, T.K. Performance measures for evaluation of irrigation-water-delivery systems. J. Irrig. Drain. Eng. 1990, 116, 804–823. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hong, E.-M.; Choi, J.-Y. Assessment of water delivery efficiency in irrigation canals using performance indicators. Irrig. Sci. 2016, 34, 129–143. [Google Scholar] [CrossRef]
- Lothrop, N.; Bright, K.R.; Sexton, J.; Pearce-Walker, J.; Reynolds, K.A.; Verhougstraete, M.P. Optimal strategies for monitoring irrigation water quality. Agric. Water Manag. 2018, 199, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Portuguese Irrigation Water Quality Legislation. In Law Decree 236/98, Water Quality Standards; FAO: Rome, Italy, 1998. (In Portuguese)
- Shukla, A.; Shukla, S.; Hodges, A.W. Recovering nitrogen from farm-scale drainage: Mechanism and economics. Trans. ASABE 2018, 61, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Wolters, W. Influences on the Efficiency of Irrigation Water Use; ILRI publication: Wageningen, The Netherlands, 1992. [Google Scholar]
- Vieira, J.; Fonseca, A.; Vilar, V.J.P.; Boaventura, R.A.R.; Botelho, C.M.S. Water quality in Lis River, Portugal. Environ. Monit. Assess. 2012, 184, 7125. [Google Scholar] [CrossRef]
- IPQ. Portuguese Standard on Urban Wastewater Reuse Treated in Irrigation; NP 4434; IPQ: Lisbon, Portugal, 2006. (In Portuguese) [Google Scholar]
- Monte, H.; Albuquerque, A. Wastewater Reuse; Guias Técnicos Series; ISEL-ERSAR: Lisbon, Portugal, 2010. (In Portuguese) [Google Scholar]
- Gorantiwar, S.D.; Smout, I.K. Model for performance based land area and water allocation within irrigation schemes. Irrig. Drain. Syst. 2006, 20, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Kaune, A.; Werner, M.; Rodríguez, E.; Karimi, P.; de Fraiture, C. A novel tool to assess available hydrological information and the occurrence of sub-optimal water allocation decisions in large irrigation districts. Agric. Water Manag. 2017, 191, 229–238. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D. An interval multi-objective programming model for irrigation water allocation under uncertainty. Agric. Water Manag. 2018, 196, 24–36. [Google Scholar] [CrossRef]
- Li, X.; Huo, Z.; Xu, B. Optimal allocation method of irrigation water from river and lake by considering the field water cycle process. Water 2017, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- Skogerboe, G.V.; Merkley, G.P. Irrigation Maintenance and Operations Learning Process; Water Resources Publications, LLC: Highland Ranch, CO, USA, 1996. [Google Scholar]
- Mateos, L.; Lozano, D.; Baghil, A.B.O.; Diallo, O.A.; Gómez-Macpherson, H.; Comas, J.; Connor, D. Irrigation performance before and after rehabilitation of a representative, small irrigation scheme besides the Senegal River, Mauritania. Agric. Water Manag. 2010, 97, 901–909. [Google Scholar] [CrossRef]
- Vandersypen, K.; Keita, A.C.T.; Lidon, B.; Raes, D.; Jamin, J.-Y. Didactic tools for supporting participatory water management in collective irrigation schemes. Irrig. Drain. Syst. 2008, 22, 103–113. [Google Scholar] [CrossRef]
- Ricart, S.; Rico, A.; Kirk, N.; Bülow, F.; Ribas-Palom, A.; Pavón, D. How to improve water governance in multifunctional irrigation systems? Balancing stakeholder engagement in hydro-social territories. Int. J. Water Res. Dev. 2018, 35, 491–524. [Google Scholar] [CrossRef]
- Merriam, J.L.; Keller, J. Farm Irrigation System Evaluation: A Guide for Management; Utah State University: Logan, UT, USA, 1978. [Google Scholar]
- Stine, S.W.; Song, I.; Choi, C.Y.; Gerba, C.P. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce. J. Food Prot. 2005, 68, 913–918. [Google Scholar] [CrossRef]
- Winfield, M.D.; Groisman, E.A. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 3687–3694. [Google Scholar] [CrossRef] [Green Version]
- Amador, P.; Fernandes, P.; Prudêncio, C.; Duarte, I. Prevalence of antibiotic resistance genes in multidrug-resistant enterobacteriaceae on Portuguese livestock manure. Antibiotics 2019, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.; Shalevet, J. Controlling salinity. In Design and Operation of Farm Irrigation Systems, 2nd ed.; Hoffman, G.J., Evans, R.G., Jensen, M.E., Martin, D.L., Elliot, R.L., Eds.; ASABE: St. Joseph, MI, USA, 2007; pp. 160–207. [Google Scholar]
- Cameira, M.R.; Li, R.; Fangueiro, D. Integrated modelling to assess N pollution swapping in slurry amended soils. Sci. Total Environ. 2020, 713, 136596. [Google Scholar] [CrossRef]
- Ricart, S.; Rico, A.M.; Ribas, A. Risk-yuck factor nexus in reclaimed wastewater for irrigation: Comparing farmers’ attitudes and public perception. Water 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.M.; Pereira, L.S.; Fang, S.X.; Dong, B. Modelling and multicriteria analysis of water saving scenarios for an irrigation district in the upper Yellow River Basin. Agric. Water Manag. 2007, 94, 93–108. [Google Scholar] [CrossRef]
- Karleuša, B.; Hajdinger, A.; Tadić, L. The application of multi-criteria analysis methods for the determination of priorities in the implementation of irrigation plans. Water 2019, 11, 501. [Google Scholar] [CrossRef] [Green Version]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menent, M. Remote sensing for crop water management: From ET modelling to services for the end users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [Green Version]
- Salomón-Sirolesi, M.; Farinós-Dasí, J. A new water governance model aimed at supply–demand management for irrigation and land development in the Mendoza River Basin, Argentina. Water 2019, 11, 463. [Google Scholar] [CrossRef] [Green Version]
- Frisvold, G.; Sanchez, C.; Gollehon, N.; Megdal, S.B.; Brown, P. Evaluating gravity-flow irrigation with lessons from Yuma, Arizona, USA. Sustainability 2018, 10, 1548. [Google Scholar] [CrossRef] [Green Version]
- Awel, S.M.; Tena Alamirew, T.T.; Michael, A.W. Performance assessment of community managed irrigation practices in the Wesha small-scale irrigation project, Southern Ethiopia. Irrig. Drain. Syst. Eng. 2018, 7, 3. [Google Scholar] [CrossRef]
- Masseroni, D.; Ricart, S.; Cartagena, R.F.; Monserrat, J.; Gonçalves, J.M.; de Lima, I.; Facchi, A.; Sali, G.; Gandolfi, C. Prospects for improving gravity-fed surface irrigation systems in Mediterranean European Contexts. Water 2017, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Stringam, B.L.; Gill, T.; Sauer, B. Integration of irrigation district personnel with canal automation projects. Irrig. Sci. 2016, 34, 33–40. [Google Scholar] [CrossRef]
- Luppi, M.; Malaterre, P.-O.; Battilani, A.; Federico, V.D.; Toscano, A. A multi-disciplinary modelling approach for discharge reconstruction in irrigation canals: The Canale Emiliano Romagnolo (Northern Italy) case study. Water 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Soto-Garcia, M.; Del-Amor-Saavedra, P.; Martin-Gorriz, B.; Martínez-Alvarez, V. The role of information and communication technologies in the modernisation of water user associations’ management. Comput. Electron. Agric. 2013, 98, 121–130. [Google Scholar] [CrossRef]
Sector | C1A | C1B | C2A | C2B | C4 | C5 | C7 | Total |
---|---|---|---|---|---|---|---|---|
Total area, ha | 175.6 | 104.4 | 189.7 | 286.2 | 418.4 | 207.6 | 257.1 | 1639 |
Irrigated area, ha | 114.2 | 82.8 | 159.5 | 214.7 | 292.8 | 166.1 | 205.7 | 1236 |
Irrigated area, % | 65 | 80 | 85 | 75 | 70 | 80 | 80 | 75.5 |
Maize, % | 20 | 18 | 43 | 33 | 61 | 60 | 9 | 38.4 |
Pastures, % | 48 | 30 | 7 | 24 | 29 | 10 | 77 | 32.5 |
Horticulture, % | 5.5 | 13 | 14.5 | 13 | 5 | 0 | 0 | 6.7 |
Rice, % | 0 | 5 | 0 | 15 | 5 | 30 | 1 | 8.3 |
Vineyard, % | 20 | 15 | 15 | 15 | 0 | 0 | 3 | 7.9 |
Fruits, % | 6.5 | 19 | 20.5 | 0 | 0 | 0 | 10 | 6.2 |
Month | May | June | July | August | September | October | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Decade | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
ET0, mm (1) | 35.4 | 41.6 | 31.6 | 25.5 | 44.7 | 37.9 | 37.0 | 38.6 | 43.9 | 37.0 | 76.3 | 82.0 | 35.8 | 35.4 | 33.9 | 34.8 | 21.3 | 19.8 |
P, mm (1) | 0.0 | 0.5 | 26.0 | 38.9 | 1.8 | 17.6 | 1.7 | 0.1 | 0.1 | 0.7 | 0.3 | 0.7 | 0.9 | 0.0 | 0.1 | 0.0 | 27.4 | 42.9 |
Kc (1) (C1A) | 0.62 | 0.65 | 0.74 | 0.81 | 0.83 | 0.85 | 0.89 | 0.91 | 0.91 | 0.91 | 0.91 | 0.91 | 0.87 | 0.83 | 0.77 | 0.72 | 0.71 | 0.71 |
Kc (C1B) | 0.61 | 0.64 | 0.72 | 0.79 | 0.83 | 0.85 | 0.89 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.87 | 0.84 | 0.77 | 0.72 | 0.70 | 0.70 |
Kc (C2A) | 0.43 | 0.47 | 0.58 | 0.69 | 0.75 | 0.79 | 0.88 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.86 | 0.81 | 0.68 | 0.61 | 0.58 | 0.58 |
Kc (C2B) | 0.61 | 0.63 | 0.71 | 0.78 | 0.81 | 0.85 | 0.92 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.90 | 0.85 | 0.77 | 0.72 | 0.72 | 0.72 |
Kc (C4) | 0.53 | 0.53 | 0.59 | 0.66 | 0.72 | 0.78 | 0.91 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.91 | 0.84 | 0.72 | 0.66 | 0.66 | 0.66 |
Kc (C5) | 0.57 | 0.57 | 0.63 | 0.69 | 0.75 | 0.81 | 0.93 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.93 | 0.87 | 0.75 | 0.69 | 0.69 | 0.69 |
Kc (C7) | 0.79 | 0.80 | 0.82 | 0.84 | 0.86 | 0.87 | 0.89 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.89 | 0.88 | 0.85 | 0.83 | 0.82 | 0.82 |
Sector | C1A | C1B | C2A | C2B | C4 | C5 | C7 |
---|---|---|---|---|---|---|---|
Maximum Discharge (l/s) | 231 | 152 | 401 | 244 | 369 | 168 | 240 |
Average Discharge (l/s) | 119 | 68 | 195 | 120 | 156 | 71 | 120 |
Nb. of Days with Supply | 125 | 110 | 159 | 159 | 146 | 151 | 140 |
Inflow (103 m3 year −1) | 1289 | 1958 | 2682 | 1776 | 1966 | 1012 | 1456 |
Outflow (103 m3 year −1) | 237 | ------- | 1650 | ----- | ----- | ----- | ---- |
Sector | Water Body | Water Quality Parameters | |||||
---|---|---|---|---|---|---|---|
pH (6.5–8.4) * | EC, µS/cm (1000) * | SDO, % | SDT, ppm (640) * | TC, 105 MPN/100mL | Nitrates, mg/L (50) * | ||
C1A | Irrigation | 7.30 | 556.0 | --- | 399.5 | 10.6 | --- |
Drainage | 7.32 ± 0.1 | 783.7 ± 245.8 | 59.8 ± 9.5 | 509.4 ± 159.5 | --- | --- | |
C1B | Irrigation | 7.63 ± 0.1 | 849.9 ± 100.5 | 96.4 ± 1.1 | 552.4 ± 65.2 | --- | 17 ± 2.8 |
Drainage | 7.32 ± 0.1 | 783.7 ± 245.8 | 59.8 ± 9.5 | 509.4 ± 159.5 | --- | <6.5 | |
C2A | Irrigation | 7.30 | 556.0 | --- | 399.5 | 10.6 | --- |
Drainage | 7.54 ± 0.27 | 620.67 ± 97.6 | 94.97 ± 7.3 | 403.9 ± 63.7 | 13.1 | --- | |
C2B | Irrigation | 7.54 ± 0.17 | 753.2 ± 237 | 96.2 ± 2.2 | 489.5 ± 154 | --- | 17 ± 2.8 |
Drainage | 7.52 ± 0.2 | 558.8 ± 66.8 | 90.9 ± 6.2 | 363.2 ± 43.4 | 1.91 | 10 | |
C4+C5 | Irrigation | 6.66 ± 0.98 | 494.5 ± 439 | 92.8 ± 9.1 | 321.6 ± 286.6 | 2.70 | 7.1 ± 1.3 |
Drainage | 6.84 ± 0.32 | 972.9 ± 245.4 | 81.2 ± 5.2 | 632.9 ± 165.6 | 7.20 | 8.6 ± 3.5 | |
Groundwater | 6.52 | 1472 | 28.9 | 959.5 | --- | 9 ± 8.5 | |
C7 | Irrigation | 7.26 ± 0.3 | 627.38 | 88.86 | 409.58 | 4.70 | --- |
Drainage | 7.45 ± 0.08 | 705.3 | 78.56 | 458.4 | 1.15 | <3 |
River Section | Water Quality Parameter | ||||
---|---|---|---|---|---|
pH | EC, µS/cm | SDO, % | SDT, ppm | TC, 105 MPN/100mL | |
Upstream, Arrabalde weir | 7.30 | 556.0 | --- | 399.5 | 10.6 |
Medium, Amor ditch mouth | 7.34 | 776.0 | 100 | 504.6 | --- |
Medium, Salgadas weir | 7.26 | 627.4 | 88.86 | 409.6 | 4.70 |
Medium, Junceira bridge | 7.29 | 1958.7 | 79.16 | 1273.1 | --- |
Downstream, Bajanca bridge | 7.08 | 2777.2 | 94.47 | 1807.2 | 46.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, J.M.; Ferreira, S.; Nunes, M.; Eugénio, R.; Amador, P.; Filipe, O.; Duarte, I.M.; Teixeira, M.; Vasconcelos, T.; Oliveira, F.; et al. Developing Irrigation Management at District Scale Based on Water Monitoring: Study on Lis Valley, Portugal. AgriEngineering 2020, 2, 78-95. https://doi.org/10.3390/agriengineering2010006
Gonçalves JM, Ferreira S, Nunes M, Eugénio R, Amador P, Filipe O, Duarte IM, Teixeira M, Vasconcelos T, Oliveira F, et al. Developing Irrigation Management at District Scale Based on Water Monitoring: Study on Lis Valley, Portugal. AgriEngineering. 2020; 2(1):78-95. https://doi.org/10.3390/agriengineering2010006
Chicago/Turabian StyleGonçalves, José M., Susana Ferreira, Manuel Nunes, Rui Eugénio, Paula Amador, Olga Filipe, Isabel Maria Duarte, Margarida Teixeira, Teresa Vasconcelos, Fátima Oliveira, and et al. 2020. "Developing Irrigation Management at District Scale Based on Water Monitoring: Study on Lis Valley, Portugal" AgriEngineering 2, no. 1: 78-95. https://doi.org/10.3390/agriengineering2010006
APA StyleGonçalves, J. M., Ferreira, S., Nunes, M., Eugénio, R., Amador, P., Filipe, O., Duarte, I. M., Teixeira, M., Vasconcelos, T., Oliveira, F., Gonçalves, M., & Damásio, H. (2020). Developing Irrigation Management at District Scale Based on Water Monitoring: Study on Lis Valley, Portugal. AgriEngineering, 2(1), 78-95. https://doi.org/10.3390/agriengineering2010006