Parameter Calibration of Pig Manure with Discrete Element Method Based on JKR Contact Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material of Pig Manure Accumulating Experiment
2.2. Experimental Equipment
2.3. Experimental Equipment Model and Particle Model
2.4. Method for Measuring AoR
2.5. Experimental Design of Discrete Element Parameter Optimization Calibration
3. Results and Analysis
3.1. Plackett-Burman Experiment Design
3.2. Box-Behnken Experiment Design
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, F. Design of Environmental and Healthy Fattening House for Pig and Analysis of Energy Efficiency. Master’s Thesis, Hunan Agriculture University, Changsha, China, 2017. [Google Scholar]
- Jia, W. Studies on the Evaluation of Nutrient Resources Derived from Manure and Optimized Utilization in Arable Land of China. Ph.D. Thesis, China Agriculture University, Beijing, China, 2014. [Google Scholar]
- Li, L.J. Effects of Bamboo Charcoal on Nitrogen Conservation and Greenhouse Gas Emissions Reduction during Swine Manure Composting. Master’s Thesis, Zhejiang University, Hangzhou, China, 2012. [Google Scholar]
- Liu, D. The Experimental Research on Anaerobic Fermentation Characteristics of Mixed Livestock Manure. Master’s Thesis, Northeast Agriculture University, Harbin, China, 2008. [Google Scholar]
- Yuan, X.; Fan, G.C.; Chen, L.; Gao, Q.H.; Zhang, X.P.; Zhang, Y.Z. Design and Experiment of High Temperature and Rapid Fermentation Equipment for Livestock and Poultry Excrement. Trans. Chin. Soc. Agric. Mach. 2018, 49, 413–418. [Google Scholar]
- Zhang, X.M. Study on the Drying Process and Equipment for Organic Fertilizer Pellets. Ph.D. Thesis, China Agriculture University, Beijing, China, 2017. [Google Scholar]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and the contact of elastic solids. Math. Phys. Sci. 1971, 324, 301–313. [Google Scholar]
- Wu, T.; Huang, W.F.; Chen, X.S.; Ma, X.; Han, Z.Q.; Pan, T. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles. J. South China Agric. Univ. 2017, 38, 93–98. [Google Scholar]
- Wu, L.; Qi, S.; Song, Y.Q.; Xin, M.J.; Liu, C.H.; Kong, A.J.; Jiao, Z.B.; Liu, F.; Ren, W.T. A DEM analysis on drag reduction characteristics of paddy field machinery surface with bionic microarchitectures. J. Shenyang Agric. Univ. 2017, 48, 55–62. [Google Scholar]
- Luo, S.; Yuan, Q.X.; Gouda, S.; Yang, L.Y. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model. Trans. Chin. Soc. Agric. Mach. 2018, 49, 343–350. [Google Scholar]
- Wu, H.; Xia, J.F.; Zhang, G.Z.; Wang, P.T.; Lao, S.F.; Zhang, X.M. Design and experiment of spin-jet flow type lotus root digging machine based on DEM-Fluent. Trans. Chin. Soc. Agric. Eng. 2018, 34, 9–14. [Google Scholar]
- Liao, Z.C.; Gao, W.; Liu, L.; Jiang, S.Q.; Tan, Y.Q. Mixing efficiency of a concrete ribbon mixer and DEM simulation. Chin. J. Process. Eng. 2019, 19, 668–675. [Google Scholar]
- Wen, X.Y.; Yuan, H.F.; Wang, G.; Jia, H.L. Calibration method of friction coefficient of granular fertilizer by discrete element simulation. Trans. Chin. Soc. Agric. Mach. 2019, 51, 115–122, 142. [Google Scholar]
- Li, Y.X.; Li, F.X.; Xu, X.M.; Shen, C.P.; Meng, K.P.; Chen, J.; Chang, D.T. Parameter calibration of wheat flour for discrete element method based on particle scaling. Trans. Chin. Soc. Agric. Eng. 2019, 35, 320–327. [Google Scholar]
- Xiang, W.; Wu, M.L.; Lv, J.N.; Quan, W.; Ma, L.; Liu, J.J. Calibration of simulation physical parameters of clay loam based on soil accumulation test. Trans. Chin. Soc. Agric. Eng. 2019, 35, 116–123. [Google Scholar]
- Hou, J.M.; Li, J.P.; Yao, E.C.; Bai, J.B.; Yang, Y.; Zhu, H.J. Calibration and analysis of discrete element parameters of typical castor. J. Shenyang Agric. Univ. 2019, 50, 565–575. [Google Scholar]
- Cao, B.; Li, W.H.; Wang, N.; Bai, X.Y.; Wang, C.W. Calibration of discrete element parameters of the wet barrel finishing abrasive based on JKR model. Surf. Technol. 2019, 48, 249–256. [Google Scholar]
- Dai, F.; Song, X.F.; Zhao, W.Y.; Zhang, F.W.; Ma, H.J.; Ma, M.Y. Simulative calibration on contact parameters of discrete elements of covering soil on whole plastic film mulching on double ridges. Trans. Chin. Soc. Agric. Mach. 2019, 50, 49–56. [Google Scholar]
- Shi, L.R.; Zhao, W.Y.; Sun, W. Parameter calibration of soil particles contact model of farmland soil in northwest arid region based on discrete element method. Trans. Chin. Soc. Agric. Eng. 2017, 33, 181–187. [Google Scholar]
- Wang, X.L.; Hu, H.; Wang, Q.J.; Li, H.W.; He, J.; Chen, W.Z. Calibration method of soil contact characteristic parameters based on DEM theory. Trans. Chin. Soc. Agric. Mach. 2017, 48, 78–85. [Google Scholar]
- He, Y.M.; Xiang, W.; Wu, M.L.; Quan, W.; Chen, C.P. Parameters calibration of loam soil for discrete element simulation based on the repose angle of particle heap. J. Hunan Agric. Univ. Nat. Sci. 2018, 44, 216–220. [Google Scholar]
- Zhao, J.Z. Simulation and Experimental Investigation of Potato Digging Shovel Working Resistance Based on Discrete Element Method. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2017. [Google Scholar]
- Zhang, R.; Han, D.L.; Ji, Q.L.; He, Y.; Li, J.Q. Calibration methods of sandy soil parameters in simulation of discrete element method. Trans. Chin. Soc. Agric. Mach. 2017, 48, 49–56. [Google Scholar]
- Zhou, H.; Li, D.; Liu, Z.Y.; Li, Z.Y.; Luo, S.C.; Xia, J.F. Simulation and experiment of spatial distribution effect after straw incorporation into soil by rotary burial. Trans. Chin. Soc. Agric. Mach. 2019, 50, 69–77. [Google Scholar]
- Chen, C.P.; Quan, W.; Wu, M.L.; Zhang, W.T. Parameter optimization of vertical soil filling hole-forming parts for rapeseed transplantation based on discrete element method. J. Hunan Agric. Univ. Nat. Sci. 2019, 45, 433–439. [Google Scholar]
- Li, J.W.; Tong, J.; Hu, B.; Wang, H.B.; Mao, C.Y.; Ma, Y.H. Calibration of parameters of interaction between clayey black soil with different moisture content soil-engaging component northeast China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 130–140. [Google Scholar]
- Ma, S.; Xu, L.M.; Xing, J.J.; Yuan, Q.C.; Yu, C.C.; Duan, Z.Z.; Chen, C.; Zeng, J. Development of unilateral cleaning machine for grapevine buried by soil with rotary impeller. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–10. [Google Scholar]
- Wang, W.W.; Zhu, C.X.; Chen, L.Q.; Li, Z.D.; Huang, X.; Li, J.C. Design and experiment of active staw-removing anti-blocking device for maize no-tillage planter. Trans. Chin. Soc. Agric. Eng. 2017, 33, 10–17. [Google Scholar]
- Liu, X.M.; Du, S.; Yuan, J.; Li, Y.; Zou, L.L. Analysis and experiment on selective harvesting mechanical end –effector of white asparagus. Trans. Chin. Soc. Agric. Mach. 2018, 49, 110–120. [Google Scholar]
- Wang, X.Z.; Yue, B.; Gao, X.J.; Zheng, Z.Q.; Zhu, R.X.; Huang, Y.X. Discrete element simulations and experiments of disturbance behavior as affected by mounting height of subsoiler’s wing. Trans. Chin. Soc. Agric. Mach. 2018, 49, 124–136. [Google Scholar]
- Huang, Y.X.; Hang, C.G.; Yuan, M.C.; Wang, B.T.; Zhu, R.X. Discrete element simulation and experiment on disturbance behavior subsoiling. Trans. Chin. Soc. Agric. Mach. 2016, 47, 80–88. [Google Scholar]
- Liu, Q.; Xu, L.F.; Liu, X.X.; Lv, Z.Q.; Song, Y.P.; Li, C.P. Research on dynamic behavior during mechanic pulling of carrot based on discrete element method. J. Chin. Agric. Mech. 2018, 39, 61–65. [Google Scholar]
- Li, L.L.; Li, G.Y.; Zhang, Y.H.; Yuan, H.Y. Simulation analysis of the working process and soil loosening effect of the arc deep pine shovel by discrete element method. Jiangsu Agric. Sci. 2018, 46, 201–204. [Google Scholar]
- Diao, H.L.; Zhang, Y.P.; Diao, P.S.; Zhao, N. Design and experiment of a no-tillage and wide band wheat planter with subsoilsbased on EDEM. J. Agric. Mech. Res. 2017, 39, 58–62. [Google Scholar]
- Feng, M.Q. Fermentation, Structure Characterization and Functional Characteristics of Exopolysaccharides from Lactobacillus Plantarum. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2012. [Google Scholar]
Shape | Cuboid | RP | RRP | TP | |
---|---|---|---|---|---|
Size | |||||
LP | 6.99% | 18.16% | 17.24% | 11.55% | |
MP | 3.40% | 8.84% | 8.39% | 5.62% | |
SP | 2.57% | 6.67% | 6.33% | 4.24% |
Shape | Cuboid | RP | RRP | TP | |
---|---|---|---|---|---|
Size | (L, W, H) | (L, W, HoP, T) | (L, W, HoP, T) | (L, HoP, T) | |
LP | 36.63, 27.81, 16.16 | 36.00, 28.85, 24.89, 19.54 | 36.29, 27.80, 23.65, 17.37 | 36.88, 31.09, 23.67 | |
MP | 25.53, 21.94, 12.88 | 25.87, 20.64, 16.59, 12.54 | 25.63, 20.39, 16.39, 11.67 | 24.93, 21.60, 16.89 | |
SP | 14.32, 10.99, 6.69 | 14.71, 11.64, 10.19, 7.52 | 15.45, 12.02, 9.93, 6.66 | 13.59, 11.07, 8.42 |
Parameters | Code | Low Level | High Level |
---|---|---|---|
Particle poisson’s ratio | A | 0.2 | 0.5 |
Particle shear modulus/Mpa | B | 1 | 1.5 |
Particle collision recovery coefficient | C | 0.1 | 0.6 |
Particle—particle static friction coefficient | D | 0.2 | 1.16 |
Particle—particle rolling friction coefficient | E | 0.1 | 0.5 |
Particle—steel collision recovery coefficient | F | 0.1 | 0.6 |
Particle—steel static friction coefficient | G | 0.2 | 0.6 |
Particle—steel rolling friction coefficient | H | 0.04 | 0.4 |
JKR surface energy/(J/m3) | I | 3.5 | 10.5 |
Serial Number | A | B | C | D | E | F | G | H | I | J |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.5 | 1.0 | 0.6 | 0.2 | 0.1 | 0.1 | 0.6 | 0.4 | 10.5 | 89.30 |
2 | 0.5 | 1.5 | 0.1 | 1.16 | 0.1 | 0.1 | 0.2 | 0.4 | 10.5 | 88.45 |
3 | 0.2 | 1.5 | 0.6 | 0.2 | 0.5 | 0.1 | 0.2 | 0.04 | 10.5 | 89.50 |
4 | 0.5 | 1.0 | 0.6 | 1.16 | 0.1 | 0.6 | 0.2 | 0.04 | 3.5 | 90.00 |
5 | 0.5 | 1.5 | 0.1 | 1.16 | 0.5 | 0.1 | 0.6 | 0.04 | 3.5 | 32.84 |
6 | 0.5 | 1.5 | 0.6 | 0.2 | 0.5 | 0.6 | 0.2 | 0.4 | 3.5 | 88.50 |
7 | 0.2 | 1.5 | 0.6 | 1.16 | 0.1 | 0.6 | 0.6 | 0.04 | 10.5 | 87.90 |
8 | 0.2 | 1.0 | 0.6 | 1.16 | 0.5 | 0.1 | 0.6 | 0.4 | 3.5 | 52.69 |
9 | 0.2 | 1.0 | 0.1 | 1.16 | 0.5 | 0.6 | 0.2 | 0.4 | 10.5 | 64.40 |
10 | 0.5 | 1.0 | 0.1 | 0.2 | 0.5 | 0.6 | 0.6 | 0.04 | 10.5 | 54.25 |
11 | 0.2 | 1.5 | 0.1 | 0.2 | 0.1 | 0.6 | 0.6 | 0.4 | 3.5 | 88.15 |
12 | 0.2 | 1.0 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.04 | 3.5 | 89.80 |
Model Variable | Effect | Coefficient | p |
---|---|---|---|
Constant term | 76.315 | 0.000 | |
A | −4.850 | −2.425 | 0.083 |
B | 5.817 | 2.908 | 0.060 |
C | 13.333 | 6.667 | 0.012 |
D | −13.870 | −6.935 | 0.011 |
E | −25.237 | −12.618 | 0.003 |
F | 5.103 | 2.552 | 0.076 |
G | −17.587 | −8.793 | 0.007 |
H | 4.533 | 2.267 | 0.094 |
I | 5.303 | 2.652 | 0.071 |
Serial Number | a | b | c | AoR/(°) |
---|---|---|---|---|
1 | 0.1 | 0.2 | 0.68 | 87.90 |
2 | 0.5 | 0.2 | 0.68 | 28.63 |
3 | 0.1 | 0.6 | 0.68 | 89.10 |
4 | 0.5 | 0.6 | 0.68 | 23.64 |
5 | 0.1 | 0.4 | 0.2 | 88.10 |
6 | 0.5 | 0.4 | 0.2 | 46.77 |
7 | 0.1 | 0.4 | 1.16 | 89.80 |
8 | 0.5 | 0.4 | 1.16 | 36.36 |
9 | 0.3 | 0.2 | 0.2 | 85.30 |
10 | 0.3 | 0.6 | 0.2 | 47.47 |
11 | 0.3 | 0.2 | 1.16 | 31.34 |
12 | 0.3 | 0.6 | 1.16 | 36.34 |
13 | 0.3 | 0.4 | 0.68 | 33.70 |
14 | 0.3 | 0.4 | 0.68 | 35.49 |
15 | 0.3 | 0.4 | 0.68 | 34.09 |
Source | DOF | SSAdj | MSAdj | F | p |
---|---|---|---|---|---|
Model | 9 | 9119.55 | 1013.28 | 8.22 | 0.016 |
Linear | 3 | 6870.96 | 2290.32 | 18.57 | 0.004 |
a | 1 | 6022.53 | 6022.53 | 48.83 | 0.001 |
b | 1 | 167.63 | 167.63 | 1.36 | 0.296 |
c | 1 | 680.81 | 680.81 | 5.52 | 0.066 |
Square | 3 | 1743.74 | 581.25 | 4.71 | 0.064 |
a2 | 1 | 1335.44 | 1335.44 | 10.83 | 0.022 |
b2 | 1 | 55.38 | 55.38 | 0.45 | 0.533 |
c2 | 1 | 515.24 | 515.24 | 4.18 | 0.096 |
2-way interaction | 3 | 504.84 | 168.28 | 1.36 | 0.354 |
ab | 1 | 9.58 | 9.58 | 0.08 | 0.792 |
ac | 1 | 36.66 | 36.66 | 0.30 | 0.609 |
bc | 1 | 458.60 | 458.60 | 3.72 | 0.112 |
Error | 5 | 616.95 | 123.35 | ||
Lack-of-fit | 3 | 614.95 | 204.98 | 231.35 | 0.004 |
Pure error | 2 | 1.77 | 0.89 | ||
Total | 14 | 9736.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Liu, R.; Yang, W. Parameter Calibration of Pig Manure with Discrete Element Method Based on JKR Contact Model. AgriEngineering 2020, 2, 367-377. https://doi.org/10.3390/agriengineering2030025
Yu W, Liu R, Yang W. Parameter Calibration of Pig Manure with Discrete Element Method Based on JKR Contact Model. AgriEngineering. 2020; 2(3):367-377. https://doi.org/10.3390/agriengineering2030025
Chicago/Turabian StyleYu, Wenjie, Renxin Liu, and Weiping Yang. 2020. "Parameter Calibration of Pig Manure with Discrete Element Method Based on JKR Contact Model" AgriEngineering 2, no. 3: 367-377. https://doi.org/10.3390/agriengineering2030025
APA StyleYu, W., Liu, R., & Yang, W. (2020). Parameter Calibration of Pig Manure with Discrete Element Method Based on JKR Contact Model. AgriEngineering, 2(3), 367-377. https://doi.org/10.3390/agriengineering2030025