Mathematical Modeling, Moisture Diffusion and Color Quality in Intermittent Microwave Drying of Organic and Conventional Sweet Red Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pepper Samples
2.2. Intermittent Microwave Drying (IMD)
2.3. Mathematical Modeling of Drying Curves
2.4. Calculation of the Effective Moisture Diffusivity (Deff) and Activation Energy (Ea)
2.5. Color Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics
3.2. Modeling of Drying Curves
3.3. Effective Moisture Diffusivity (Deff) and Activation Energy (Ea)
3.4. Influence of Applied Microwave Power on the Color of Powdered Red Pepper Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- TurkStat. Organic Crop Production Statistics; Turkish Statistical Institute (TurkStat): Ankara, Turkey, 2018. [Google Scholar]
- Lernoud, J.; Willer, H. Organic Agriculture Worldwide: Key Results from the FiBL Survey on Organic Agriculture Worldwide, Part 3: Organic Agriculture in the Regions; Research Institute of Organic Agric (FIBL): Frick, Switzerland, 2019. [Google Scholar]
- Bickel, R.; Rossier, R. Sustainability and Quality of Organic Food; Research Institute of Organic Agriculture (FiBL) and the Organic Research Centre, Elm Farm (ORC): Frick, Switzerland, 2015. [Google Scholar]
- Winter, C.K.; Davis, S.F. Organic foods. J. Food Sci. 2006, 71, R117–R124. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Crit. Rev. Plant. Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. App. Soil Ecol. 2018, 123, 714–728. [Google Scholar] [CrossRef]
- Moraes, I.C.F.; Sobral, P.J.D.A.; Branco, I.G.; Ré, T.B.; Gomide, C.A. Dehydration of “dedo de moça” pepper: Kinetics and phytochemical concentration. Food Sci. Technol. 2013, 33, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Soysal, Y.; Ayhan, Z.; Eştürk, O.; Arikan, M.F. Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosyst. Eng. 2009, 103, 455–463. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Crop Production Statistics Database; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2009. [Google Scholar]
- TMAF. Organic Agricultural Production Data; Turkish Ministry of Agriculture and Forestry (TMAF): Ankara, Turkey, 2019. [Google Scholar]
- Chou, S.K.; Chua, K.J. New hybrid drying technologies for heat sensitive foodstuffs. Trends Food Sci. Technol. 2001, 12, 359–369. [Google Scholar] [CrossRef]
- Soysal, Y.; Oztekin, S.; Eren, O. Microwave drying of parsley: Modelling, kinetics, and energy aspects. Biosystems Eng. 2006, 93, 403–413. [Google Scholar] [CrossRef]
- Arslan, D.; Ozcan, M.M. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food Bioprod. Proc. 2011, 89, 504–513. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Mujumdar, A.S.; Wang, S. Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol. 2006, 17, 524–534. [Google Scholar] [CrossRef]
- Dev, S.R.S.; Geetha, P.; Orsat, V.; Gariépy, Y.; Raghavan, G.S.V. Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Dry. Technol. 2011, 29, 1452–1458. [Google Scholar] [CrossRef]
- Kumar, C.; Karim, M.A. Microwave-convective drying of food materials: A critical review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Ekezie, F.G.C.; Sun, D.W.; Han, Z.; Cheng, J.H. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends Food Sci. Technol. 2017, 67, 58–69. [Google Scholar] [CrossRef]
- Pham, N.D.; Khan, M.I.H.; Joardder, M.U.H.; Rahman, M.M.; Mahiuddin, M.; Abesinghea, A.M.N.; Karim, M.A. Quality of plant-based food materials and its prediction during intermittent drying. Crit. Rev. Food Sci. Nutr. 2019, 59, 1197–1211. [Google Scholar] [CrossRef] [Green Version]
- Gunasekaran, S. Pulsed microwave-vacuum drying of food materials. Dry. Technol. 1999, 17, 395–412. [Google Scholar] [CrossRef]
- Esturk, O.; Arslan, M.; Soysal, Y.; Üremiş, İ.; Ayhan, Z. Drying of sage (Salvia officinalis L.) inflorescences by intermittent and continuous microwave-convective air combination. Res. Crops 2011, 12, 607–615. [Google Scholar]
- Botha, G.E.; Oliveira, J.C.; Ahrné, L. Microwave assisted air drying of osmotically treated pineapple with variable power programmes. J. Food Eng. 2012, 108, 304–311. [Google Scholar] [CrossRef]
- Esturk, O. Intermittent and continuous microwave-convective air-drying characteristics of sage (Salvia officinalis) leaves. Food Bioprocess Technol. 2012, 5, 1664–1673. [Google Scholar] [CrossRef]
- Changrue, V. Hybrid (Osmotic, Microwave-Vacuum) Drying of Strawberries and Carrots. Doctoral Dissertation, McGill University, McGill, QC, Canada, 2006. [Google Scholar]
- Baini, R.; Langrish, T.A.G. Choosing an appropriate drying model for intermittent and continuous drying of bananas. J. Food Eng. 2007, 79, 330–343. [Google Scholar] [CrossRef]
- Keskin, M.; Soysal, Y.; Arslan, A.; Sekerli, Y.E.; Celiktas, N. Predicting Drying Temperature of Infrared-Dried Pepper Powders Using FT-NIRS and Chromameter. In Proceedings of the International Conference on Energy Research (ENRES2018), Alanya, Turkey, 1–2 November 2018; pp. 305–319. [Google Scholar]
- Arikan, M.F.; Ayhan, Z.; Soysal, Y.; Esturk, O. Drying characteristics and quality parameters of microwave-dried grated carrots. Food Bioprocess Technol. 2012, 5, 3217–3229. [Google Scholar] [CrossRef]
- Soysal, Y.; Arslan, M.; Keskin, M. Intermittent microwave-convective air drying of oregano. Food Sci. Technol. Int. 2009, 15, 397–406. [Google Scholar] [CrossRef]
- Sharifian, F.; Motlagh, A.M.; Nikbakht, A.M. Pulsed microwave drying kinetics of fig fruit (‘Ficus carica’L.). Aust. J. Crop Sci. 2012, 6, 1441. [Google Scholar]
- Junqueira, J.R.D.J.; Corrêa, J.L.G.; Ernesto, D.B. Microwave, convective, and intermittent microwave–convective drying of pulsed vacuum osmodehydrated pumpkin slices. J. Food Proc. Pres. 2017, 41, e13250. [Google Scholar] [CrossRef]
- Dehghannya, J.; Farshad, P.; Heshmati, M.K. Three-stage hybrid osmotic–intermittent microwave–convective drying of apple at low temperature and short time. Dry. Technol. 2018, 36, 1982–2005. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Sablani, S.S.; Andrews, P.K.; Davies, N.M.; Walters, T.; Saez, H.; Bastarrachea, L. Effects of air and freeze drying on phytochemical content of conventional and organic berries. Dry. Technol. 2011, 29, 205–216. [Google Scholar] [CrossRef]
- Buffler, C.R. Microwave Cooking and Processing: Engineering Fundamentals for the Food Scientist; Avi Book: New York, NY, USA, 1993; pp. 39–54. [Google Scholar]
- Maskan, M. Microwave/air and microwave finish drying of banana. J. Food Eng. 2000, 44, 71–78. [Google Scholar] [CrossRef]
- Ertekin, C.; Yaldiz, O. Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 2004, 63, 349–359. [Google Scholar] [CrossRef]
- Diamente, L.M.; Munro, P.A. Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy 1993, 51, 271–276. [Google Scholar] [CrossRef]
- Yagcioglu, A.; Degirmencioglu, A.; Cagatay, F. Drying characteristics of laurel leaves under different drying conditions. In Proceedings of the 7th International Congress on Agricultural Mechanization and Energy in Agricultural, Adana, Turkey, 26–27 May 1999; pp. 565–569. [Google Scholar]
- Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Wang, C.Y.; Singh, R.P. A Single Layer Drying Equation for Rough Rice; American Society of Agricultural Engineers (ASAE): St. Joseph, MI, USA, 1978; p. 3001. [Google Scholar]
- Jain, D.; Pathare, P.B. Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosyst. Eng. 2004, 89, 289–296. [Google Scholar] [CrossRef]
- Verma, L.R.; Bucklin, R.A.; Endan, J.B.; Wratten, F.T. Effects of drying air parameters on rice drying models. Trans. ASAE 1985, 28, 296–301. [Google Scholar] [CrossRef]
- Crank, J. Mathematics of Diffusion, 2nd ed.; Oxford University Press: London, UK, 1975; p. 414. [Google Scholar]
- Wang, Z.; Sun, J.; Chen, F.; Liao, X.; Hu, X. Mathematical modelling on thin layer microwave drying of apple pomace with and without hot air pre-drying. J. Food Eng. 2007, 80, 536–544. [Google Scholar] [CrossRef]
- Dadali, G.; Demirhan, E.; Ozbek, B. Microwave heat treatment of spinach: Drying kinetics and effective moisture diffusivity. Dry. Technol. 2007, 25, 1703–1712. [Google Scholar] [CrossRef]
- Beaudry, C.; Raghavan, G.S.V.; Rennie, T.J. Microwave finish drying of osmotically dehydrated cranberries. Dry. Technol. 2003, 21, 1797–1810. [Google Scholar] [CrossRef]
- Cui, Z.W.; Xu, S.Y.; Sun, D.W. Microwave–vacuum drying kinetics of carrot slices. J. Food Eng. 2004, 65, 157–164. [Google Scholar] [CrossRef]
- Thuwapanichayanan, R.; Prachayawarakorn, S.; Kunwisawa, J.; Soponronnarit, S. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT 2011, 44, 1502–1510. [Google Scholar] [CrossRef]
- Darvishi, H.; Khoshtaghaza, M.H.; Najafi, G.; Nargesi, F. Mathematical modeling of green pepper drying in microwave-convective dryer. J. Agric. Sci. Technol. 2013, 15, 457–465. [Google Scholar]
- Soysal, Y.; Keskin, M.; Arslan, A.; Sekerli, Y.E. Infrared drying characteristics of pepper at different maturity stages. In Proceedings of the Int. Conf. on Energy Research (ENRES 2018), Alanya, Turkey, 1–2 November 2018. [Google Scholar]
- Madamba, P.S.; Driscoll, R.H.; Buckle, K.A. The thin-layer drying characteristics of garlic slices. J. Food Eng. 1996, 29, 75–97. [Google Scholar] [CrossRef]
- Kumar, N.; Sarkar, B.C.; Sharma, H.K. Effect of air velocity on kinetics of thin layer carrot pomace drying. Food Sci. Technol. Int. 2011, 17, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Shrivastava, S.L. Vacuum-assisted microwave drying characteristics of green bell pepper. Int. J. Food Stud. 2017, 6. [Google Scholar] [CrossRef]
- Celen, S.; Akyol, U.; Moralar, A. Determination of the effective moisture diffusivity of red pepper in a microwave conveyor dryer. Termotehnica Supl. 2016, 1, 27–31. [Google Scholar]
- Darvishi, H.; Asl, A.R.; Asghari, A.; Azadbakht, M.; Najafi, G.; Khodaei, J. Study of the drying kinetics of pepper. J. Saudi Soc. Agric. Sci. 2014, 13, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.Z.; Yang, X.H.; Mujumdar, A.S.; Zhao, J.H.; Qian, D.W.; Zhang, J.W.; Gao, Z.J.; Xiao, H.W. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Turhan, M.; Turhan, K.N.; Sahbaz, F. Drying kinetics of red pepper. J. Food Proc. Preserv. 1997, 21, 209–223. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.; Hwang, I.K. Composition of main carotenoids in Korean red pepper (capsicum annuum, L) and changes of pigment stability during the drying and storage process. J. Food Sci. 2004, 69, FCT39–FCT44. [Google Scholar] [CrossRef]
- Topuz, A.; Dincer, C.; Özdemir, K.S.; Feng, H.; Kushad, M. Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chem. 2011, 129, 860–865. [Google Scholar] [CrossRef]
- Ergunes, G.; Tarhan, S. Color retention of red peppers by chemical pretreatments during greenhouse and open sun drying. J. Food Eng. 2006, 76, 446–452. [Google Scholar] [CrossRef]
Products | AIMP (W) | IM (g) | SIMP (W g−1) | PP * | Ton (s) | Toff (s) | PR ** (-) | MCT (°C) |
---|---|---|---|---|---|---|---|---|
Organic red pepper | 150 | 150.09 | 1.0 | 0.20 | 15 | 59 | 4.93 | 45.0 |
300 | 150.08 | 2.0 | 0.41 | 15 | 22 | 2.47 | 58.7 | |
450 | 150.19 | 3.0 | 0.61 | 15 | 10 | 1.67 | 68.3 | |
Conventional red pepper | 150 | 150.12 | 1.0 | 0.20 | 15 | 59 | 4.93 | 46.9 |
300 | 150.10 | 2.0 | 0.41 | 15 | 22 | 2.47 | 63.9 | |
450 | 150.14 | 3.0 | 0.61 | 15 | 10 | 1.67 | 72.8 |
Model Name | Model Equation * | References |
---|---|---|
1. Newton | [35] | |
2. Page | [36] | |
3. Henderson and Pabis | [35] | |
4. Logarithmic | [37] | |
5. Midilli et al. | [38] | |
6. Wang and Singh | [39] | |
7. Logistic | [40] | |
8. Two term | [40] | |
9. Verma et al. | [41] | |
10. Two term exponential | [12] | |
11. Diffusion approximation | [12] |
Intermittent Microwave Power (W) | Drying Time * (min) | |
---|---|---|
Organic Red Pepper | Conventional Red Pepper | |
150 | 77.14 ± 3.02 c | 84.57 ± 3.36 d |
300 | 38.57 ± 2.76 b | 40.71 ± 1.80 b |
450 | 25.57 ± 0.79 a | 27.00 ± 1.63 a |
Product Type | Model No | 150 W | 300 W | 450 W | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R² | SEE | RSS | R² | SEE | RSS | R² | SEE | RSS | ||
Organic red pepper | 1 | 0.8967 | 0.1108 | 0.9446 | 0.8847 | 0.1221 | 0.5818 | 0.8795 | 0.1272 | 0.4208 |
2 | 0.9968 | 0.0198 | 0.0297 | 0.9984 | 0.0147 | 0.0082 | 0.9992 | 0.0105 | 0.0027 | |
3 | 0.9358 | 0.0879 | 0.5869 | 0.9274 | 0.0982 | 0.3661 | 0.9221 | 0.1043 | 0.2718 | |
4 | 0.9875 | 0.0390 | 0.1139 | 0.9816 | 0.0501 | 0.0929 | 0.9792 | 0.0550 | 0.0725 | |
5 | 0.9988 | 0.0120 | 0.0107 | 0.9991 | 0.0111 | 0.0044 | 0.9996 | 0.0076 | 0.0013 | |
6 | 0.9802 | 0.0488 | 0.1810 | 0.9710 | 0.0620 | 0.1462 | 0.9679 | 0.0669 | 0.1120 | |
7 | 0.9977 | 0.0168 | 0.0212 | 0.9985 | 0.0143 | 0.0075 | 0.9992 | 0.0107 | 0.0028 | |
8 | 0.9873 | 0.0396 | 0.1158 | 0.9868 | 0.0430 | 0.0666 | 0.9870 | 0.0445 | 0.0455 | |
9 | 0.9852 | 0.0425 | 0.1357 | 0.9849 | 0.0454 | 0.0761 | 0.9856 | 0.0458 | 0.0503 | |
10 | 0.8957 | 0.1120 | 0.9540 | 0.8837 | 0.1243 | 0.5867 | 0.8785 | 0.1303 | 0.4242 | |
11 | 0.9852 | 0.0425 | 0.1354 | 0.9853 | 0.0448 | 0.0742 | 0.9856 | 0.0457 | 0.0501 | |
Conventional red pepper | 1 | 0.9008 | 0.1100 | 1.0286 | 0.8866 | 0.1215 | 0.6051 | 0.8841 | 0.1254 | 0.4249 |
2 | 0.9972 | 0.0185 | 0.0288 | 0.9984 | 0.0147 | 0.0086 | 0.9993 | 0.0100 | 0.0026 | |
3 | 0.9387 | 0.0870 | 0.6359 | 0.9286 | 0.0976 | 0.3809 | 0.9255 | 0.1025 | 0.2732 | |
4 | 0.9826 | 0.0467 | 0.1808 | 0.9799 | 0.0524 | 0.1071 | 0.9768 | 0.0583 | 0.0850 | |
5 | 0.9986 | 0.0135 | 0.0148 | 0.9990 | 0.0117 | 0.0052 | 0.9996 | 0.0081 | 0.0016 | |
6 | 0.9750 | 0.0555 | 0.2589 | 0.9693 | 0.0640 | 0.1637 | 0.9653 | 0.0699 | 0.1270 | |
7 | 0.9981 | 0.0155 | 0.0200 | 0.9986 | 0.0139 | 0.0075 | 0.9992 | 0.0107 | 0.0028 | |
8 | 0.9832 | 0.0460 | 0.1738 | 0.9804 | 0.0525 | 0.1047 | 0.9772 | 0.0590 | 0.0836 | |
9 | 0.9862 | 0.0416 | 0.1434 | 0.9850 | 0.0453 | 0.0799 | 0.9867 | 0.0442 | 0.0488 | |
10 | 0.8998 | 0.1112 | 1.0386 | 0.8857 | 0.1235 | 0.6103 | 0.8824 | 0.1287 | 0.4309 | |
11 | 0.9861 | 0.0416 | 0.1436 | 0.9854 | 0.0447 | 0.0780 | 0.9867 | 0.0442 | 0.0488 |
Product Type | Applied Power (W) | Model Constants | |||
---|---|---|---|---|---|
k | n | a | b | ||
Organic red pepper | 150 | 0.00096 | 1.8842 | 0.9807 | −0.0006 |
300 | 0.00262 | 1.9988 | 0.9970 | −0.0008 | |
450 | 0.00416 | 2.1235 | 0.9903 | −0.0007 | |
Conventional red pepper | 150 | 0.0007 | 1.9620 | 0.9746 | −0.0003 |
300 | 0.0026 | 1.9880 | 0.9928 | −0.0007 | |
450 | 0.00415 | 2.1370 | 0.9875 | −0.0004 |
Product | Applied Microwave Power (W) | D0 (×10−8m2 s−1) | Deff (×10−9m2 s−1) | Linear Equation | R2 |
---|---|---|---|---|---|
Organic red pepper | 150 | 2.97 | 5.97 | y = −0.001020x + 0.829988 | 0.897 |
300 | 12.35 | y = −0.002111x + 0.880460 | 0.904 | ||
450 | 18.20 | y = −0.003110x + 0.895263 | 0.902 | ||
Conventional red pepper | 150 | 2.97 | 5.91 | y = −0.001010x + 0.822107 | 0.924 |
300 | 12.32 | y = −0.002105x + 0.912855 | 0.911 | ||
450 | 18.10 | y = −0.003093x + 0.850155 | 0.919 |
Products | Applied Microwave Power (W) | Deff (×10−9 m2s−1) | Ea (Wg−1) | Reference |
---|---|---|---|---|
Organic red pepper-shreds | 150–450 | 5.97–18.20 | 1.62 | Present study |
Conventional red pepper-shreds | 150–450 | 5.91–18.10 | 1.63 | Present study |
Red pepper-slice | 210–700 | 55.97–87.39 | - | [13] |
Red pepper-slice | 1050–2100 | 776–4950 | 236.2–496.2 | [53] |
Green bell pepper-slice (200–600 mm Hg vacuum) | 100–300 | 342.1–6597.6 | 15.0 | [52] |
Green pepper-half | 180–720 | 6.25–34.45 | - | [48] |
Green pepper, half | 180–540 | 83.15–236.3 | 14.2 | [54] |
Product | Applied Microwave Power (W) | Color Parameters * | |||||||
---|---|---|---|---|---|---|---|---|---|
Type | L* | a* | b* | a*/b* | ΔL* | Δa* | Δb* | ΔE | |
Organic red pepper | Fresh | 30.93 ± 0.02 a | 24.1 ± 0.03 c,d | 22.34 ± 0.06 a | 1.08 ± 0.00 e | - | - | - | - |
150 | 55.66 ± 0.86 e | 27.54 ± 0.97 f | 37.58 ± 0.91 f | 0.73 ± 0.04 d | 24.73 ± 0.86 c | 3.43 ± 0.97 e | 15.23 ± 0.91 d | 29.27 ± 1.10 d | |
300 | 53.51 ± 0.91d | 24.86 ± 0.98 d,e | 35.22 ± 0.94 d | 0.71 ± 0.02 c | 22.58 ± 0.91 b | 0.75 ± 0.98 d | 12.87 ± 0.94 c | 26.03 ± 1.20 c | |
450 | 50.81 ± 1.16 b | 19.73 ± 1.48 b | 31.71 ± 1.34 c | 0.62 ± 0.02 a | 19.88 ± 1.16 a | −4.37 ± 1.48 b | 9.36 ± 1.34 b | 22.48 ± 1.24 a | |
Conventional red pepper | Fresh | 30.18 ± 0.02 a | 25.29 ± 0.04 e | 21.81 ± 0.06 a | 1.16 ± 0.00 f | - | - | - | - |
150 | 59.18 ± 0.97 f | 27.62 ± 0.94 f | 37.06 ± 0.85 e,f | 0.75 ± 0.04 d | 29.00 ± 0.97 d | 2.32 ± 0.94 e | 15.263 ± 0.85 d | 32.86 ± 1.19 e | |
300 | 58.53 ± 0.87 f | 23.73 ± 0.75 c | 36.25 ± 0.79 e | 0.66 ± 0.02 b | 28.35 ± 0.87 d | −1.56 ± 0.75 c | 14.44 ± 0.79 d | 31.86 ± 1.00 e | |
450 | 51.81 ± 1.1 7 c | 18.23 ± 1.38 a | 29.51 ± 1.47 b | 0.62 ± 0.03 a | 21.62 ± 1.17 b | −7.06 ± 1.38 a | 7.70 ± 1.47 a | 24.10 ± 1.17 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, A.; Soysal, Y.; Keskin, M. Mathematical Modeling, Moisture Diffusion and Color Quality in Intermittent Microwave Drying of Organic and Conventional Sweet Red Peppers. AgriEngineering 2020, 2, 393-407. https://doi.org/10.3390/agriengineering2030027
Arslan A, Soysal Y, Keskin M. Mathematical Modeling, Moisture Diffusion and Color Quality in Intermittent Microwave Drying of Organic and Conventional Sweet Red Peppers. AgriEngineering. 2020; 2(3):393-407. https://doi.org/10.3390/agriengineering2030027
Chicago/Turabian StyleArslan, Aysel, Yurtsever Soysal, and Muharrem Keskin. 2020. "Mathematical Modeling, Moisture Diffusion and Color Quality in Intermittent Microwave Drying of Organic and Conventional Sweet Red Peppers" AgriEngineering 2, no. 3: 393-407. https://doi.org/10.3390/agriengineering2030027
APA StyleArslan, A., Soysal, Y., & Keskin, M. (2020). Mathematical Modeling, Moisture Diffusion and Color Quality in Intermittent Microwave Drying of Organic and Conventional Sweet Red Peppers. AgriEngineering, 2(3), 393-407. https://doi.org/10.3390/agriengineering2030027