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Abstract: Carqueja (Baccharis crispa Spreng.) has been primarily used as a medicinal plant around the
world. Commercially, the essential oil content of carqueja leaves is the most valuable crop productivity
variable. We evaluated the effect of irrigation management in different growing seasons on the
essential oil content of carqueja leaves using gas chromatography coupled with mass spectrometry.
The experiment was conducted in a greenhouse located in Southern Brazil, where the crop was
cultivated for two years in different growing seasons under six irrigation regimes: 25%, 50%, 75%,
100%, 125%, and 150% of the reference crop evapotranspiration (T25, T50, T75, T100, T125, and
T150, respectively). A seasonal pattern was observed in the number of metabolites of sesquiterpenes
and phenolics in the essential oil extracted from the biomass; this outcome was correlated with
irrigation regimes and air temperature. Principal component and hierarchical cluster analyses
were used to discriminate the influence of abiotic conditions on secondary metabolite profiles.
Spathulenol was the most abundant compound in the essential oils (95.43%) collected during the
summer (December–March) season during the third harvest (H3) at T150. The essential oil content
was 8.84% ± 0.05% and 10.52% ± 0.10% in summer and winter (June–September), respectively, with
T100 at 45 and 46 days after planting.
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1. Introduction

Baccharis species have been extensively used for industrial purposes as well as in food and
beverages, mainly in South America and Japan [1]. The literature shows that Baccharis species have
also been useful for human health and in preventing heart disease and cancer, treating rheumatism
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and rheumatoid arthritis, and to ameliorate gastrointestinal, hepatic, and renal diseases, in addition to
inflammatory disorders [2–9].

These properties have led to attention being focused on the oil components of Baccharis species.
Earlier investigations reported the presence of bitter sesquiterpenoids [8], and that soil and weather
conditions can influence the chemical composition of wild and cultivated Baccharis species [6].

The water status of plants affects their functions and metabolic processes, and their essential
oil yields are responsive to the severity and duration of water stress [10]. High water stress levels
affect oil yield in many aromatic plants [11,12]. Metabolites and essential oil yields in different
medicinal and aromatic plants decrease under water-stress conditions [10,13–16] and reduced irrigation
frequency [11,12,17]. B. crispa is popularly recognized as carqueja in Brazil, and grows spontaneously
in a wide range of soils and ecosystems in different Brazilian bioclimatic zones [18]. It is currently
used as a medicinal plant and requires strict irrigation management to ensure a high yield and optimal
quality in commercial farming systems [12].

Optimal irrigation management requires working knowledge. To provide such knowledge on
the quality of B. crispa (carqueja), grown in tropical environment for medicinal purposes to farmers
and companies, we aimed to identify all the essential oil components (EOC) in carqueja using gas
chromatography coupled with mass spectrometry (GC–MS), as well as to compare the essential oil
yields and dry matter production of B. crispa (carqueja) from a wide range of irrigation regimes with
different crop growing seasons.

2. Materials and Methods

2.1. Plant Material

Two experiments were conducted with B. crispa, cultivated from 28 September 2015 to 7 November
2016 in a greenhouse at the Department of Biosystems Engineering of ESALQ/USP in Piracicaba, SP
(22◦42′ S, 47◦38′ W, 546 m above sea level). We prepared the botanical material collection and exsiccate
production for further inclusion into the collection of the Herbarium at the Botany Department of the
Federal University of Paraná (registered as UPCB 86437). The material in the first experiment (summer:
December–March) was harvested at 45, 95, and 205 days after planting (DAP) by cutting from the plant
shoot (15 cm above the ground). The plant shoots were harvested at 46, 119, and 182 DAP, and the dry
biomass was determined in the second experiment (winter: June–September). The soil used in the
experiments was classified as typical eutrophic red latosol in Brazil [19] and as typic hapludox in the
United States [20].

2.2. Water Deficit Treatments

A completely randomized block design was used to simulate the different soil and climate
conditions. This design consisted of six treatments with six repetitions, totaling 36 plots. Each 11 L pot
with one carqueja plant corresponded to one plot. Treatments consisted of six irrigation regimes based
on the reference crop’s evapotranspiration (ETo) (the FAO Penman–Monteith approach [21]) values:
T100 optimal irrigation regime (applying 100% ETo); T75, T50, and T25 sustained deficit irrigation
regimes (applying 75%, 50%, and 25% ETo, respectively); and T125 and T150 excessive irrigation
regimes (applying 125% and 150% ETo, respectively). A Campbell Scientific CR23X data logger was
used for controlling the meteorological station installed in the center of the greenhouse.

2.3. Extraction of the Essential Oil (EO)

Leaves of B. crispa were oven dried at 40 ± 3 ◦C under air circulation for 48 h. The essential oil
was extracted from the dried shoot samples (100 ± 0.1 g). Extraction was carried out in 2 L of distilled
water through hydrodistillation in a Clevenger-type apparatus for 3 h (until all the essential oil was
extracted) [22,23]. The extracted essential oils were then collected, placed in clean and sealed brown
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glass vials, and stored in a cool (4 ◦C) and dry place for further tests [24,25]. The essential oil yield (%)
was calculated as the essential oil mass (g) divided by the dry shoot mass (g) [26,27].

2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis

GC–MS analyses of the EO were performed using a gas chromatograph GC 2010 (Shimadzu Corp.,
Kyoto, Japan) coupled to a mass spectrometer QP 2010 Plus (Shimadzu Corp., Kyoto, Japan). A 0.5 µL
aliquot of non-diluted EO was injected in splitless mode. Separation was achieved on a Rtx®-5MS
(5% diphenyl/95% dimethyl polysiloxane, 30 m × 0.25 mm with a 0.25 µm film thickness (Teknokroma
Analitica, SA, Barcelona, Spain) fused silica capillary column, using helium as a carrier gas at a constant
flow rate of 36.8 cm/s). The initial oven temperature of 40 ◦C (held for 5 min) was increased to 250 ◦C
at 5 ◦C/min and then up to 290 ◦C at 10 ◦C/min, and held at that temperature for 15 min for a total run
time of 47 min. The quadrupole mass spectrometer was operated in the electron ionization mode at
70 eV with a source temperature of 230 ◦C and in the quadrupole mode at 200 ◦C with a scan range m/z
20–550. Oil components were identified by the comparison of their mass spectra and retention times
with those of the C9–C20 n-alkanes and MS data deposited in the Wiley Spectroteca (Wiley 07) and the
Flavors and Fragrances of Natural and Synthetic Compounds (FFNSC 1.3) databases. The samples
were injected in triplicate [28].

2.5. Statistical Analysis

Principal component analysis (PCA) was performed using R software [29] to assess the
interrelations between the environmental conditions and the essential oil compounds of leaves
according to their harvest collection time and different irrigation regimes [30]. Hierarchical cluster
analysis (HCA) was applied to investigate sample similarity based on the distribution of essential oil
constituents. HCA was used to validate the PCA analysis. Pearson’s correlation analysis was used to
verify the possible linear association between the essential oil compounds and weather variables.

3. Results and Discussion

3.1. Environmental Data

According to de Bona et al., and Fachinello et al. [9,31], increasing temperature facilitates cell
division; however, it may also cause excessive sweating on herbaceous and semi-evergreen cuttings as
well as budding without rooting, which is an undesirable outcome for B. crispa. The literature review
showed a lack of information on the basal temperature of this crop. The minimum and maximum
air temperatures at the end of the autumn (March–June) and winter (June–September) experimental
periods were 2.38 and 41.13 ◦C, respectively, while the mean relative humidity reached 74.94%.

However, the recorded minimum temperature values, mainly those recorded in June and July 2016,
reached the lower limit set in Andrião [32] for the desired thermal amplitude of this crop. Burmeister
and Guttenberg [33] reported that the production of essential oils in medicinal plants is an exothermic
process; thus, the ambient air temperature is a variable that regulates this secondary metabolic process.
Dos Santos et al. and García [1,34] noted a reduction in the B. trimera essential oil content as the
temperature decreased while the content increased with temperature. Figure 1 shows the response of
the mean dry biomass production of B. crispa (carqueja) to a wide range of six irrigation regimes based
on the reference crop evapotranspiration (ETo) values.
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Figure 1. Air temperature (Tair), evapotranspiration of reference (ETo), and mean dry biomass for
treatment according to the six irrigation regimes: T100 optimal irrigation regime (applying 100%
ETo); T75, T50, and T25 sustained the deficit irrigation regimes, applying 75%, 50%, and 25% ETo,
while T125 and T150 represented excess irrigation regimes (applying 125% and 150% ETo) in different
crop-growing seasons.

3.2. Essential Oil Components

Essential oil components (EOC) (expressed as dry weight) were equal to 8.84% ± 0.05% and
10.52% ± 0.10% in summer (December–March) and winter (June–September), respectively, and 100%
ETo (fully irrigated condition) at 45 and 46 DAP. These results are not in agreement with those
reported earlier for the EOC of B. trimera leaves (3.00%) in winter (June–September) in Paraná State,
Brazil [35], in which a 0.05% essential oil yield was reported for the leaves of B. trimera cultivar
CPQBA 1 [5]. In another study, B. dracunculifolia DC was reported to have the highest essential oil
content (0.8% ± 0.1%), followed by B. cylindrica (Less.) DC (0.6% ± 0.0%), B. articulata (Lam.) Pers.
(0.5% ± 0.0%), and B. gaudichaudiana DC (0.1% ± 0.0%) [36]. Variations in the content of essential oils
have been related to the genetic patterns of species as well as seasonal conditions and environmental
factors that influence plant development [37]. Some compounds are unique to these species, and
hence, can be used as chemical markers for species identification and authentication. β-Pinene and
limonene were shown to be major compounds in B. pauciflosculosa. α-Bisabolol was found only in
B. punctulata. B. reticularioides was shown to contain α-pinene, while α-pinene, β-pinene, limonene,
and spathulenol were the major compounds in B. sphenophylla [38]. Another study reported lower
essential oil yield (1.0%) at the full flowering stage in Paraná State (Southern Brazil) [39,40] and 0.0591%
yield under 100% solar radiation in Minas Gerais State (Southeastern Brazil) [9]. Using the grinding
method, a 0.56% yield of the essential oil of B. articulata (Lam.) Pers. was obtained in the analysis [41].
According to Zribi et al. [42], the differences in essential oil yield can be attributed to environmental
conditions and different maturity and growth stages. Essential oil content and the composition of
essential oils in aromatic plants are affected by environmental conditions [12]. Water deficit decreased
the growth, water potential, and plant biomass of S. officinalis shoots, as well as its fatty acid content,
but such deficits increased the essential oil yield [11]. Moderate irrigation regimes resulted in higher
EOC content in rose-scented geranium (Pelargonium graveolens L.), whereas water deficit was more
favorable for essential oil biosynthesis in plants compared to thorough watering treatments [43]. To the
authors’ best knowledge, this is the first report on the yield of essential oil extracted from Brazilian
B. crispa shoots.



AgriEngineering 2020, 2 462

3.3. Differences in Content and Composition of Essential Oils between the Three Harvest Times

Forty-eight (48) components were identified during the two assessed seasons under the six
irrigation replacement levels. A number of volatiles identified in the current study have not previously
been reported for this Baccharis species. The identified volatiles accounted for 97.10%, 93.09%, 96.04%,
96.46%, 90.02%, and 83.22 % of the total volatile constituents in essential oils at 25%, 50%, 75%, 100%,
125%, and 150% ETo of the reference treatments, respectively (Tables S1–S3, Supplementary Materials).
There were differences in the number of identified volatile compounds in comparison to the values in
the literature. In a study carried out in Southern Brazil [18], 85.1% of the primary components of the
B. articulate volatile profile were identified, with 93.8% of them in B. cultrate, 59.5% in B. genistifolia, and
95.3% in B. gibertii. In some cases, the compounds were identified for the first time using an experiment
conducted under various abiotic and hydric conditions.

Clear differences in the qualitative and quantitative compositions among the three harvest times
were observed through a comparison of EOC. The Oxygenated sesquiterpenes (OS) were more abundant
in harvest 3 (Figure 2).

Figure 2. Relative composition (%) of the chemical classes of volatiles in B. crispa under the three
harvests H1: first harvest, H2: second harvest, and H3: third harvest. SH: sesquiterpene hydrocarbons;
PP: phenylpropanoids; OS: oxygenated sesquiterpenes; OM: oxygenated monoterpenes; OC: other;
MH: monoterpene hydrocarbons.

For simplicity, the identified volatiles were grouped into six chemical classes: sesquiterpene
hydrocarbons (SH), phenylpropanoids (PP), oxygenated sesquiterpenes (OS), oxygenated
monoterpenes (OM), others (OC), and monoterpene hydrocarbons (MH). The essential oils of B. crispa
were characterized by an abundance of oxygenated sesquiterpenes (OS), which were major essential oil
component (EOC) in all three harvests (48.34% at H3, followed by 32.51% at H2), as shown in Figure 2.
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In total, 22.51% phenylpropanoids (PP) and 21.69% of the other compounds (OC) were detected at H3.
Sesquiterpene hydrocarbons (SH) peaked at H1 (13.05%), and monoterpene hydrocarbons (MH) were
only detected at H1 (5.84%). Other studies have revealed that essential oil can be extracted from the
fresh leaves of B. trimera (Less) DC via steam distillation, yielding 0.05%. The analyses carried out
using GC–MS showed that this oil contained 4.40% monoterpenes and 80.40% sesquiterpenes [35].

Spathulenol was the first compound recorded at the highest level, and was the only oxygenated
sesquiterpene found in the essential oils from all experiments—it was recorded in high levels (95.43%)
during summer (December–March) at H3 and T150 (Figure 3). The authors of [44] extracted 29.69% of
B. articulata (Lam.) Pers. essential oil without grinding [41] and 16.41% B. unicella, 14.49% B. anomala,
and 6.84% B. dendata essential oil in autumn through steam distillation. Oxygenated monoterpenes
were recorded at 21.08%, 3.86%, and 8.27% at H1, H2, and H3, respectively. They were dominated by
1.8-cineole (41.96%), which was detected in winter (June–September) at H1 and T25. This value was
higher than that reported in earlier analyses applied to three Baccharis species: 0.34% for B. unicella,
0.38% for B. anomala, and 0.32% for B. dendata in winter (June–September) when the essential oil
was extracted through steam distillation in an experiment carried out in Southern Brazil [44]. Other
compounds, such as methyl-d3 1-dideuterio-2-propenyl ether (41.36%), were detected in winter
(June–September) at H3 and T125.

Figure 3. Distribution of chemical classes of volatiles in B. crispa during the summer
(December–March) and winter (June–September) seasons. SH: sesquiterpene hydrocarbons;
PP: phenylpropanoids; OS: oxygenated sesquiterpenes; OM: oxygenated monoterpenes; OC: other;
MH: monoterpene hydrocarbons.

Eugenol (30.19%) was the main phenylpropanoid detected in winter (June–September) at H1
and T125. This outcome is in stark contrast to the value recorded for eugenol content (6.69%) in the
essential oil of P. integrifolia in [45]. There was also an important difference between the ledol content
at H1 and at T75 (10.63%) detected during summer. The authors of [46] found a concentration of ledol
equal to 13.7% in plants collected in Rio de Janeiro, Brazil, whereas the study in [5] reported a value of
1.30% in the essential oil of B. trimera (Less) DC.

Based on these results, the EOC at H1 showed 20.53% oxygenated sesquiterpenes, such as
caryophyllene, in winter (June–September) at T150. Costa et al. [47] found 4.0% ± 1.6% caryophyllene
oxide in the essential oils of Eugenia uniflora leaves collected during the dry months (April–September)
in the Brazilian Cerrado. Some specific compounds were only detected when the highest rates of
monoterpene hydrocarbons were obtained, for example, ascaridole (7.02%), which was detected during
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summer at H1 and T150. The results of Rahman et al. [45] indicated that Premna integrifolia Linn EO
featured 12.12% spathulenol, 8.21% 1-oc-ten-3-ol, 6.69% eugenol, 5.81% phenylethyl alcohol, and 2.6%
caryophyllene oxide. These compounds can play key roles in antibacterial activity [48,49].

Differences between our results and the lower levels observed for other samples in the literature of
less than or equal to 1.50% could be linked to the environmental conditions and time of harvest, as well
as to water deficits and irrigation management [11–42]. Several studies based on Eugenia uniflora
leaves show that the prevalence of factors, such as seasons, influences the prevalence of oxygenated
sesquiterpenes in plants collected during all sampling months and under all chemical variations
among the oils [46]. Additionally, the influence of factors such as elevation above sea level, soil type,
longitude, and latitude was reflected in the prevalence of sesquiterpenes (83.66%) in Cordia verbanacea
and Cordia leucocephala leaves [49]. Another study has also demonstrated the influence of climatic and
environmental conditions on plant volatile emissions [42].

Earlier investigations also demonstrated the influence of rainfall, temperature, seasonal stress,
and evapotranspiration. Harvest time may also determine the composition of essential oils [11–42,47].

3.4. Volatile Profiles under Different Irrigation Conditions

The volatile profiles corresponding to the six irrigation management treatments of B. crispa during
the three harvest seasons are characterized by variations, as shown in Table S1. Table S1 (Supplementary
Materials) contains details of all the identified volatile organic compounds, their retention indices, and
the relative compositions of the compounds found in each sample.

In total, 21 peaks were obtained through hydrodistillation, and 48 compounds were identified.
Volatile compounds ranged from 93.52% to 66.97% of the total area analyzed. These results were
not in agreement with those of previous studies using Baccharis sp. leaves in which only 19 EOCs
were described [7]. Spathulenol was the main compound in leaves (95.43%) at H3 and T150 in winter
(June–September), with 78.38% at H1 and T50, and 72.79% at H2 and T75, both corresponding to
summer. Phthalic acid (56.82%) at H3 and T75 was the second main compound; it was also recorded in
30.39% at H1 and T100 (winter: June–September) and 28.52% at T100 (summer: December–March).
This compound is followed by 1.8-cineole, which was the most abundant (41.96%) in winter at H1
and T25; it was also recorded in 14.53% in winter (June–September) at H1 and T125 and 8.36% at H3
and T125 in summer. Eugenol was present in 30.19% at H1 and T125 in winter and 4.05% at H3 and
T125 in summer, and linalool was recorded in 27.22% at H1 and T25, 8.28% at H1 and T125 (both in
winter: June–September), and 10.09% at H3 and T125 in summer. According to the literature, the main
compounds identified in the essential oil of B. trimera under different nitrogen sources and levels
formed 30 peaks: (E) caryophyllene, bicyclogermacrene, and germacrene D [35] and, common among
all treatments, α-pinene, D-limonene, caryophyllene, spathulenol, ledol, and globulol [35]. α-Pinene,
β-pinene, and spathulenol (B. uncinella); spathulenol, β-caryophyllene, and β-selinene (B. anomala); and
germacrene-D, caryophyllene oxide, and spathulenol (B. dentata) were the main compounds identified
via GC–MS [44].

Based on Figure 4, B. crispa leaves were rich in oxygenated sesquiterpenes (37.00%) at T100, followed
by T150 and T75. Variations in the levels of chemical volatiles, such as oxygenated sesquiterpenes (OS),
were found in most treatments, with 22.35% at T125 and 37% at T100. Moreover, phenylpropanoid
(PP) compounds were mostly detected at T75 (27.97%) and were lower at T125 (13.82%). Oxygenated
monoterpenes (OM) represented around 26% in some cases. They were detected at T75 (25.31%) and
T125 (9.81%). Sesquiterpene hydrocarbons (SH) were detected at T150 (10.20%) and T125 (7.14%).
Notably, monoterpene hydrocarbons were only observed at T150. This outcome demonstrates that
increased water replacement levels can transform the presence of these compounds in the response
to water excess and low oxygen content in the soil profile. The authors of [50] reported increased
monoterpene concentrations under drought conditions, and the authors of [11] demonstrated that a
water deficit can affect Salvia officinalis, which was shown in early investigations to contain 1.8-cineole
as its main constituent (17.86%). The water deficit increased the content of compounds such as linalool,
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menthone, and rose oxide in the EOs of Pelargonium graveolens L. and decreased geraniol and geranyl
formate [43].

Figure 4. GC–MS grouped (%) by chemical classes in the volatiles of B. crispa. SH: sesquiterpene
hydrocarbon; PP: phenylpropanoid; OS: oxygenated sesquiterpene; OM: oxygenated monoterpene;
OC: other; MH: monoterpene hydrocarbon. Treatments of irrigation regimes based on T25, T50, T75,
T100, T125, T150 with values representing % of the reference evapotranspiration (ETo).

3.5. Multivariate Analysis

The volatile profile of the EOC of B. crispa showed clear differences between harvest seasons and
irrigation depth treatments. HCA and PCA were carried out to analyze the differences between harvest
seasons and irrigation treatments. Figure 5 shows the PCA score plot used to explore the relative
variability of B crispa based on the harvest season.

Figure 5. Principal component analysis (PCA) analysis grouped by chemical classes of B. crispa. EOS
analyzed by GC–MS with respect to different harvest seasons. Ketone (KTE), monoterpenes (MO),
alcohols (ALC), sesquiterpenes (SES), esters (EST), phenols (PHE), norisoprenoids (NOR), terpenoids
(TEI), oxides (OXI), acetates (ACE), triterpenes (TRI), ethers (ETH), and carboxylic acids (CAC).
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The PCA accounted for 98.12% of the total variance—PC1 accounted for 76.37% and PC2 for
21.75% of the variance. The PCA results separated the harvest seasons, as shown by the formation of
four well defined and clustered subgroups referring to the harvest seasons H1, H1, and H3. According
to the score chart, H1, H2, and H3 lie along the positive PC1 axis. H1 is characterized by high rates of
monoterpenes (MO) and alcohols (ALC), which have positive values along PC1. On the other hand,
this area is positively associated with H3; the ketones (KTE), phenols (PHE), and ether (ETH), along
with significant levels of sesquiterpenes (SES). PC2 showed positive associations with oxides (OXI)
and acetate (ACE). Norisoprenoids (NOR), triterpene (TRI), carboxylic acid (CAC), esters (EST), and
terpenoids (TEI) had negative associations with PC1 and PC2. These segregations could be due to the
productivity of these chemical classes during the three harvest seasons.

The PCA chemical differences were confirmed through HCA (Figure 6). The dendrogram
represents the partition hierarchies whose samples were grouped based on similarities. Group H1 was
clearly and visibly separated from the groups H2 and H3. Clusters from the H1 groups consisted of
higher-level classes of MO, ALC, and PHE than those of groups H2 and H3. The dendrograms also
revealed that the samples from H2 and H3 were mixed to form a cluster because the profiles of their
essential oils were similar.

Figure 6. Dendrogram obtained from the cluster analysis of the relative dissimilarity in compounds
according to the chemical classes based on the samples analyzed by GC–MS and grouped by harvest.

Regarding the behavior of the irrigation depth treatments, PCA accounted for 88.26% of the
total variance, PC1 accounted for 74.87%, and PC2 accounted for 13.39%. The PCA results showed
separation according to the harvest season. This outcome was revealed by the formation of four well
defined and clustered subgroups with respect to T25, T50, T75, T100, T125, and T150. The score chart
shows that T25, T50, T75, T100, T125, and T150 were aligned with the positive PC1 axis. T100 and
T50 were characterized by high percentages of ether (ETH), phenols (PHE), and oxides (OXI), and
significant sesquiterpene (SES) levels at T75, T150, T25, and T125. OXI had a negative association
with PC2. PC2, in turn, was positively associated with monoterpenes (MO), alcohols (ALC), ketones
(KTEs), and terpenoids (TEIs). Acetates (ACE), norisoprenoids (NOR), triterpenes (TRI), carboxylic
acids (CAC), and esters (EST) were negatively associated with PC1 and PC2 (Figure 7).

Figure 6 exhibits a dendrogram obtained from the cluster analysis based on the relative dissimilarity
in compounds according to the chemical classes of B. crispa. T100 was clearly and visibly separated
from the groups H2 and H3. The clusters from group H1 consisted of higher-level classes of MO, ALC,
and PHE compared to groups H2 and H3. This figure also shows that the samples from H2 and H3
were mixed to form a cluster because the profiles of their essential oils were similar.

Figure 7 shows that T25 and T125 were combined to form a cluster. Regardless of the irrigation
regimes based on ETo, the clusters linked to T75, T150, and T50 did not show major differences between
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their chemical classes (Figure 6). These results established an obvious difference in the quality and
number of secondary metabolites controlled by the harvest season and irrigation regimes.

Figure 7. Principal component analysis (PCA) analysis grouped by chemical classes of B. crispa.
Essential Oils (Eos) extracted by GC–MS with respect to different irrigation treatments. Ketones (KTE),
monoterpenes (MO), alcohols (ALC), sesquiterpenes (SES), esters (EST), phenols (PHE), norisoprenoids
(NOR), terpenoids (TEI), oxides (OXI), norisoprenoids (NOR), acetates (ACE), triterpenes (TRI), ethers
(ETH), and carboxylic acids (CAC).

4. Conclusions

We found an abundance of sesquiterpenes in the leaf oils extracted via hydrodistillation from
a Baccharis species. To the best of our knowledge, we are the first to discover the presence of the
following compounds in B. crispa: allyl α-ionone, retinol, naphthalenyl, linalool, camphor, ascaridole,
9.10-dimethyl-tricyclo[4.2.1.1 2.5]decane-9.10-diol, eugenol, butanoic-acid, 2-heptanone, phtalicacid,
3-hydroxy-3.6-dimethyl-6-[3-(1-methylethenyl)-1-cyclopropen-1-yl], ethanone, naphthalenol,
9-(3,3-dimethyl-2-oxiranyl)-2,7-dimethyl-2,6-nonadien-1-ol, ergostane, methyl-propenyl-ether,
tricyclo[5.1.0.0(2,4)]octane-5-carboxylic acid, 3,3,8,8-tetramethyl, acetone, 1.8-cineole, linalool,
camphor, carotol, hinesol, and oxabicyclo. These compounds have demonstrated activities against
gastrointestinal inflammation in addition to antioxidant, antimalarial activity, anticancer, and analgesic
properties. The environment and soil water availability can change the essential oil content of B. crispa.
Harvest seasons were clearly differentiable due to their qualitative chemistry. The volatile profiles
and the specific features needed to separate the essential oil components (EOCs) from the leaves of
B. crispa were achieved using GC–MS. The chemical classes featuring EOCs separated from leaves were
different between harvest seasons and irrigation regimes (treatments). Oxygenated sesquiterpenes,
phenylpropanoids (PP), and oxygenated monoterpenes were the primary chemical classes and are
commonly known as preservative and antifungal agents. Based on these results, cultivation under
the applied conditions in a greenhouse in Piracicaba, SP, Brazil could maximize the production of
spathulenol, 1.8-cineole, and eugenol under irrigation and harvest time management. Spathulenol was
the main compound in leaf EOs in all treatments. Phthalic acid and 1.8-cineole were the second most
important compounds at early harvest (H1) and T50 and at H2 and T75 (deficit irrigation regime),
respectively. Eugenol was the primary compound at H1 and T125 in winter (June–September) and
at late harvest (H3) and T125 (excess irrigation regimes) in summer (December–March); linalool
was the main compound at H1 and T25 and H1 and T125 in winter and at H3 and T125 in summer.
These results will be useful for defining the conditions ultimately influencing the essential oil profile of
cultivated B. crispa and to achieve better agronomic management for commercial purposes.
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Table S1: Linear retention indices and percentage of the area present in the mass spectra of volatile compounds in
B. crispa identified by GC–MS (1st Harvest). Table S2: Linear retention indices and percentage of the area present in
the mass spectra of volatile compounds in B. crispa identified by GC–MS (2nd Harvest). Table S3: Linear retention
indices and percentage of the area present in the mass spectra of volatile compounds in B. crispa identified by
GC–MS (3rd Harvest).
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