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Abstract: Bird welfare and comfort is highly impacted by extreme environments, including hot/cold
temperatures, relative humidity, and heat production within the coops during loading at the farm,
transportation, and holding at the processing plants. Due to the complexity of the multiphysics
phenomena involving fluid flow, heat transfer, and multispecies mixtures (humidity) within the coops,
machine learning models may be helpful to evaluate broiler welfare under various environments.
Machine learning techniques (Artificial Neural Networks and Bayesian Optimization) were applied
to estimate the desired parameters required to ensure broiler welfare inside the coops. Artificial
Neural Networks (ANNs) were trained with the results of Computational Fluid Dynamics (CFD)
simulations for various ranges of inputs related to the microenvironment. Input variables included
air velocity, broiler heat production, ambient temperature, and relative humidity. The Output variable
was the Enthalpy Comfort Index (ECI), which is a measure of the bird welfare. The trained networks
were then analyzed using Bayesian Optimization (BO) for the inverse mapping of ANNs and to
predict the range of acceptable input parameters for a desired output, i.e., ECI in the comfort level.
Results indicate that reducing the broilers heat production inside the coop along with increasing fan
velocity enhances the broiler welfare and the thermal microenvironment. The BO developed in this
study provide the microenvironmental parameters to estimate the bird welfare that is comfortable.

Keywords: machine learning; bird welfare; microenvironment; artificial neural network

1. Introduction

Bird welfare and comfort is highly impacted by extreme environments (ambient
temperature, relative humidity, and heat production by the bird within the poultry coop)
during loading at the farm, transportation, and holding at the processing plants. The birds
can be exposed to extremes of temperature and humidity during transportation, especially
during the summer months and these conditions are a major cause for dead birds on arrival
(DOAs) [1,2]. In the hot temperature environment, the broiler is unable to efficiently lose the
produced heat (generated within the bird), resulting in an increase in its body temperature
which could be fatal and/or reduce the meat quality [3]. Use of fans along with surface
wetting of the birds (evaporative cooling) are among the promising approaches for reducing
the body temperature and dealing with the thermal discomfort [4–6].

Computational Fluid Dynamics (CFD) simulations have been applied for better under-
standing the effects of various parameters on the bird welfare [7–12]. Heymsfield et al. [9]
simulated the air velocity distribution inside coops but did not consider the impact of
ambient relative humidity and the bird heat production. Pawar et al. [11] included the
heat production by the birds to investigate different ventilation schemes via a 2-D CFD
model; however, the ambient relative humidity was not studied. Shivkumar et al. [12]
incorporated the bird’s heat flux in their 3-D model, yet the ambient relative humidity
was not considered. Recently, we conducted 3-D CFD simulations to study the effects of
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the ambient temperature and relative humidity along with the bird heat production on
the thermal microenvironment inside poultry coops [13]. While CFD simulations provide
insight on the impacts of various parameters on the microenvironment, they fall short in
estimating the range of acceptable input parameters to acquire the optimal microenviron-
ment condition in the coops. The parameter estimation is an optimization problem, where
the parameters are adjusted in a way to minimize a function (in this case the difference
between the microenvironment and the desired conditions). Machine learning methods
have been widely used to solve optimizations problem and have been the subject of various
studies in agricultural engineering in the past decade for applications including, but not
limited to, optimal lighting control in the greenhouse [14,15], irrigation management [16],
estimation of wheat yield [17], classification of the ripeness of mango fruit [18], and disease
detection in wheat [19], as well as prediction of the behavior pattern and health of broiler
chicken [20–22]. Despite the ever-growing application of machine learning in agricultural
research, to the best of our knowledge, it has not been used in any previous study for the
broiler welfare inside poultry coops. This is especially important given that various param-
eters such as air velocity and heat production by the birds, as well as ambient temperature
and relative humidity, affect the microenvironment inside the coops and the bird’s welfare.
In the current study we applied machine learning to estimate the range of acceptable input
parameters that ensure bird welfare.

In this context, we trained shallow Artificial Neural Networks (ANNs) that map the
input parameters to the bird welfare index using the data from our CFD simulations results
from our previous work [13]. The trained network was then used for the inverse mapping
using Bayesian Optimization (BO) to estimate the range of input parameters for a desired
broiler comfort state.

The remainder of this paper is organized as follows. The method, CFD model, and
the machine learning methods, i.e., ANN and the inverse mapping using BO are discussed
in Section 2. Section 3 presents the results for a typical bird welfare optimization problem.
The conclusions from this study are presented in Section 4.

2. Methodology

The poultry coops are loaded with broilers on the farm, stacked on a trailer, transported
to the processing plant and are parked in holding sheds as shown in Figure 1. These holding
sheds are equipped with fans to blow air to improve the immediate bird environment
inside the coop. Temperature and relative humidity are the two significant environmental
parameters that determine the broilers welfare inside the coop. The combined effects of
both temperature and relative humidity are often used to evaluate the bird welfare via an
integrated comfort index called Enthalpy Comfort Index [23,24]. In this context, Enthalpy
Comfort Index (ECI) is defined as:

ECI = 1.006t +
RH
pb

(71.28 + 0.052t) 10
7.5t

237.3+t (1)

Here, t is the temperature in Celsius, RH is the relative humidity percentage, and
pb is the barometric pressure in mmHg [23]. The ECI in the ranges of ECI ≤ 48 kJ/kg,
48.1 ≤ ECI ≤ 57.6 kJ/kg, 57.7 ≤ ECI ≤ 66.1 kJ/kg, and 66.2 ≤ ECI kJ/kg are considered to
be in the comfort, warning, critical, and lethal region, respectively.

Equation (1), despite being a powerful tool to estimate the welfare of the broilers
using two most important parameters (i.e., ambient temperature and relative humidity), is
not capable of distinguishing between the bird welfare along the length of the coop (fan
side, center, or far from the fan). Typically, due to the heat production by the birds, birds
located at the center and downstream of the coop experience more thermal discomfort
compared to those near the fan (inlet). In the absence of experimental data, we applied
computational fluid dynamics (CFD) simulations to model the immediate bird environment
inside the coop via calculating a microenvironment metric (ECI) and using this metric in
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the machine learning model (Artificial Neural Networks and Bayesian Optimization). The
CFD model [13], ANN model, and Bayesian optimization are presented below.
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Figure 1. The stacks of poultry coops on a trailer, and the 3-D model for a single coop. Cubes repre-
sent broilers. 
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locity inlet boundary condition was assigned at the inlet, and the flow velocity was varied 
in the range of 0.15  ܸ  0.5 m/s. The Reynolds numbers were in the order of magni-
tude of O(104–105) and the flow was hence turbulent. A ݇ − ε turbulence model was used 
for the simulations, which added the following two equations, Equations (2) and (3), for 
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Figure 1. The stacks of poultry coops on a trailer, and the 3-D model for a single coop. Cubes
represent broilers.

2.1. CFD Model

In the simulations, air was blown from the inlet and passed through the coop. Despite
the fact that the simulations could be conducted for any number of birds, for the sole
purpose of a parametric study, the coop was assumed to be loaded with 16 broilers each
weighing 2.5 kg. For the sake of geometry and mesh simplicity, the wire meshing and metal
supports on the side faces were excluded and broilers were modeled as cubes with surface
area similar to that for 2.5 kg broilers [25]. Ansys Fluent 2020 R2 was utilized to conduct
the CFD simulations, where a steady state 3-D model was considered for the humid air
flow (humidity modeled by species transport model). The length, width, and height of
the coop considered in this study were 1.19, 1.17, and 0.25 m, respectively. Velocity inlet
boundary condition was assigned at the inlet, and the flow velocity was varied in the
range of 0.15 ≤ V ≤ 0.5 m/s. The Reynolds numbers were in the order of magnitude
of O(104–105) and the flow was hence turbulent. A k− ε turbulence model was used for
the simulations, which added the following two equations, Equations (2) and (3), for the
turbulent kinetic energy (k), and the turbulent dissipation rate (ε).

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[
(µ +

µt

σk
)

∂k
∂xj

]
+ Gk − ρε (2)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[
(µ +

µt

σε
)

∂ε

∂xj

]
+

ε

k
(C1εGk − C2ερε) (3)

Here, µt is the turbulent (eddy) viscosity and Gk is the generation of turbulent kinetic
energy computed as:

µt =
ρCµk2

ε
(4)

Gk = −ρu′iu
′
j
∂uj

∂xi
(5)

The following values were considered for the empirical constants:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1, σε = 1.3

The standard wall function was utilized to resolve the viscous sub-layer. No slip
boundary condition was assumed for all the walls (coop and bird). The coop walls were
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considered adiabatic, having zero heat flux, while heat flux in the range of 0–300 W·m−2

was assigned to the birds’ wall (to consider the broilers heat production). Various am-
bient temperature and relative humidity values in the range of 290 ≤ V ≤ 310 k, and
15% ≤ V ≤ 70% were assigned at the inlet. Pressure outlet boundary condition with a zero-
gauge pressure is assumed at the outlet. Symmetry boundary condition was defined for
the left and right sides of the domain. A structured mesh was used in this work, and finer
mesh was selected in the regions adjacent to the walls. A mesh independency study was
conducted over five different grid resolutions and a total of 470,500 hexahedral elements
with 510,346 nodes were selected (see Figure 2).
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Figure 2. The mesh independency analysis by calculating ECI along x-axis for an ambient temperature
of 300 k, relative humidity of 15%, the broilers heat production of 150 W·m−2 and air velocity of
0.5 m/s.

The CFD model in Ansys Fluent solved the conservation equations (conservation of
mass, momentum, energy, mass fraction of species, and turbulence parameters) subjected
to the boundary conditions until it reached the convergence. The solution convergence
was judged by monitoring the residual to ensure that solution does not change subsequent
iterations and has almost zero heat/mass imbalance. The CFD model was discussed
in detail in our recent study [13]. The CFD solution produces temperature and relative
humidity maps, showing the spatially varying values for both variables inside the coops
(see Figure 3).

In our study, local (rather than ambient) temperature and relative humidity (the
outputs of the CFD simulations) were applied in Equation (1), which results in a range of
ECI values. The variation of the ECI along the longitudinal and transverse direction of the
coop (i.e., x, and z-dir.) is shown in Figure 4.

2.2. Optimization Using Machine Learning

The maximum value of the ECI inside the coop was then selected for the design
(optimization) problem. In this section, we applied machine learning techniques to
the results of the CFD simulations to find a relationship between the maximum ECI
and air velocity, bird heat production, ambient temperature, and relative humidity as
ECImax = f (V, T, RH, Q′′ ).

2.2.1. Artificial Neural Network (ANN) Model

ANNs are statistical models used to find non-linear relations between input data (X)
and outputs (Y). In other words, ANN is a process of estimating the function f that maps
inputs to the outputs, i.e., Y = f (X). In general, the input and outputs can be vectors of
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lengths m, and n (m, n≥ 1), i.e., X = [X1, X2, . . . , Xm], and Y = [Y1, Y2, . . . , Yn] as shown in
Figure 5.

In the CFD analysis, there are four major input parameters, i.e., air velocity, heat
production, ambient temperature, relative humidity (m = 4) and one output parameter,
i.e., ECI (n = 1). Note that the ambient pressure is often a constant value (1 atm) and is not
considered as an individual input parameter in this study. The shallow ANNs (network
with a single hidden layer) with eight hidden neurons were trained with 108 training
examples obtained from CFD simulations. The training examples were randomly split in
a way that 70%, 15%, and 15% of the dataset was assigned for training, validating, and
testing the network, respectively. The architecture of the ANNs used for the training is
illustrated in Figure 6.

Ten different ANNs were trained in this study, and the best performer was selected
for the inverse mapping problem.
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2.2.2. Inverse Mapping of the ANNs Using Bayesian Optimization

Consider an optimization problem where we are interested in knowing the range of
heat production and inlet velocity parameters required to obtain a desired thermal comfort
level ECI0 (ECI0 ≤ 48 kJ/kg) for the birds in an ambient temperature and relative humidity
of T0 and RH0. In order to find an explicit equation between the optimization ECI and
input parameters like ECImax = f (V, T, RH, Q′′ ), shallow ANNs with eight hidden neurons
were fitted to our CFD data. MATLAB’s tansig transfer function was used as the activation
function in the hidden layer. Upon mathematical computation of the weight, bias, and
activation functions of the trained network (best performer), the ECImax is calculated as:

ECImax = 93.4272+
8

∑
i=1

ci (6)

with the ci being calculated from Table 1. This equation explicitly maps the input parameters
(T, RH, V, Q′′ ) to the output (ECImax), which simplifies the optimization problem. To get
the desired comfort index of ECI0 (output), for a specific ambient condition (T0, RH0), one
can plug these values into Equation (6) to have:

ECI0 = f (T = T0, RH = RH0, V, Q′′ ) = g(V, Q′′ ) (7)

Equation (7) becomes a problem of finding roots for V, Q′′ that satisfies g(V, Q′′ )−
ECI0 = 0, which can be solved using any traditional root finding approaches. In this
study, we applied the Bayesian Optimization (BO) to minimize (g(V, Q′′ )− ECI0)

2 which
ultimately gives the roots. BO is a learning algorithm for finding the minimum of an
objective function (cost function) j(x). BO is performed by first initializing a Gaussian
Process ‘surrogate function’ prior distribution, and then selecting several data points x in a
way that maximizes the acquisition function a(x) operating on the current prior distribution.
The data points x in the objective cost function j(x) are then evaluated and the results,
y, are obtained and added to the data set and the Gaussian Process prior distribution
will be updated with the new data to produce a posterior (basically the prior in the next
step). The above-mentioned steps were repeated over several iterations. Ultimately the
global minima were found by interpreting the current Gaussian Process distribution. The
Bayesian Optimization function of bayesopt in MATLAB R2020b was used in this study,
which considers the acquisition function of expected improvement [26].

Table 1. The coefficients for calculating the ECImax.

c1 +310.2581
(

1 + e(0.418V−0.0177RH−0.0786T−0.0015Q′′+26.5789)
)−1

c2 −0.6159
(

1 + e(0.0803Q′′−0.3673RH−2.6073T+42.7161V+773.3056)
)−1

c3 −3.2731
(

1 + e(0.756T−0.7118RH−0.0322Q′′−41.0195V−155.6548)
)−1

c4 −8.3053
(

1 + e(0.0947Q′′−0.0143RH+1.6077T+1.9214V−480.4114)
)−1

c5 +7.1696
(

1 + e(0.0159Q′′−1.0873RH−0.8966T+3.6897V+300.6368)
)−1

c6 +4.0429
(

1 + e(0.8199RH−0.07Q′′+1.4731T+46.5986V−465.7919)
)−1

c7 −81.3912
(

1 + e(0.0105Q′′−0.0027RH−0.0068T−14.0453V+1.1714)
)−1

c8 +15.3403
(

1 + e(9.9785−0.0171RH−0.0223T−6.4837V−0.034Q′′ )
)−1



AgriEngineering 2022, 4 374

3. Results and Discussion

The shallow neural networks with eight hidden neurons perfectly fit the training data
set (70% of the data; Figure 7a) where the data lie on a line with a slope of R = 0.99951 (the
45◦ line) in the output vs. target plot. It is also worth mentioning that the ANNs work
precisely for other data sets as well, e.g., the fit to the validation, test, and all datasets are
shown in Figure 7b–d, respectively. This proves the fact that shallow ANNs can perfectly
map the inputs to the output without any bias or variance problem.
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Figure 8a shows the error histogram illustrating the performance of the networks. It
is shown that most datasets lay near the zero-error point, where target equals the output
values, and only few instances are away from this point with maximum error being
negligible compared to range of ECIs (30–160). The performance of the ANN is shown
in terms of the Mean Squared Error (MSE) in Figure 8b. As shown in this figure, the
MSE keeps decreasing with each training cycle (epoch), until it converges and reaches a
minimum value for the validation datasets.

For the sole purpose of demonstrating the accuracy of the ANN prediction, we con-
sidered a case with an inlet velocity of V = 0.3 m/s, temperature of T = 307 k, relative
humidity of RH = 57%, and a heat production of Q′′ = 200 W·m−2. Each of these input
values were different from those used to train the ANN which results in unbiased predic-
tions (in addition to the test set regression plot shown in Figure 7c). The trained ANN
predicts a maximum comfort index value of ECImax = 105.61 kJ/kg. After conducting the
CFD simulations for those input conditions the ECImax = 106.55 kJ/kg was computed,
which shows a reasonable accuracy for the ANNs prediction.
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As discussed earlier, the inverse mapping was conducted using the bayesopt function
in MATLAB. The results of the CFD simulations show that increasing ambient temperature
and/or relative humidity results in an increase in ECI, and unfavorable bird welfare
(distress). It is also known from CFD simulation that increasing the bird heat production
results in higher ECI. A similar trend was observed from the BO inverse mapping as seen
in Table 2. Note that to estimate each of the input parameters (e.g., T) via the BO, one needs
to plug the known values for other parameters (i.e., V = V0, Q′′ = Q′′0 , and RH = RH0)
into Equation (6) and solve for the unknown parameter.

Table 3 estimates the velocity and heat production for various broilers welfare condi-
tions on a typical day with ambient temperature of 300 k and relative humidity of 15%.

For the inverse mapping, one can specify any combinations of inputs and estimate the
other inputs. Table 4 estimates various input parameters for different welfare conditions.

Table 2. Results of BO inverse mapping to obtain ambient relative humidity and temperature for
various ECImax.

Case 1—V = 0.5 m/s, RH = 15%, Q′′ = 150 W·m−2

Welfare ECImax (kJ/kg) T (k)

Comfort 43 293.18
Warning 53 303.91
Critical 63 308.78
Lethal 73 312.39
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Table 2. Cont.

Case 2—V = 0.5 m/s, T = 300 k, Q′′ = 150 W·m−2

Welfare ECImax (kJ/kg) RH (%)

Comfort 43 16.06
Warning 53 30.82
Critical 63 38.76
Lethal 73 57.89

Case 3—T = 300 k, RH = 15%, Q′′ = 150 W·m−2

Welfare ECImax (kJ/kg) V (m/s)

Comfort 43 0.99
Warning 53 0.34
Critical 63 0.19
Lethal 73 0.13

Case 4—V = 0.5 m/s, T = 300 k, RH = 15%

Welfare ECImax (kJ/kg) Q′′ (W·m−2)

Comfort 43 62.14
Warning 53 223.78
Critical 63 436.13
Lethal 73 544.5932

Table 3. Results of BO inverse mapping to estimate input parameters for T = 300 k, RH = 15% and
various ECImax (kJ/kg) = 43 (comfort); 53 (warning); 63 (critical); and 73 (lethal).

Comfort Warning Critical Lethal

V (m/s) Q′′ (W·m−2) V (m/s) Q′′ (W·m−2) V (m/s) Q′′ (W·m−2) V (m/s) Q′′ (W·m−2)

0.9 109.21 0.55 243.8 0.677 531.5 1 895.7
0.43 62.364 0.5 222.1 0.153 122.2 0.95 873.7
0.87 108.99 1 474.7 0.969 691 1 896.8
0.71 72.518 0.74 338.4 0.72 553.7 1 898.9
0.79 87.284 0.43 200.1 0.941 639.3 0.52 560.6
0.95 121.79 0.2 92.33 0.252 213.6 0.87 845.4
0.45 61.171 0.66 297.8 0.637 516.3 0.85 824.5
0.69 66.244 1 474.5 0.868 601.2 0.62 649.1
0.54 58.114 0.27 116.5 0.545 466.6 0.79 758.9
0.67 65.801 0.5 221.4 0.966 686.7 0.96 882.3

Table 4. Results of BO inverse mapping to estimate input parameters for various ECImax (kJ/kg).

Case 1—V = 0.5 m/s, T = 300 k

Welfare ECImax (kJ/kg) RH (%) Q′′ (W·m−2)

Comfort 43 11.57 74.86
Warning 53 23.29 166.07
Critical 63 30.07 280.48
Lethal 73 59.42 160.08

Case 2—RH = 15%, Q′′ = 150 W·m−2

Welfare ECImax (kJ/kg) V (m/s) T (k)

Comfort 43 0.52 293.25
Warning 53 0.69 302.08
Critical 63 0.76 309.42
Lethal 73 0.59 311.34
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Table 4. Cont.

Case 3—T = 300 k, Q′′ = 150 W·m−2

Welfare ECImax (kJ/kg) V (m/s) RH (%)

Comfort 43 0.88 11.29
Warning 53 0.45 20.93
Critical 63 0.69 46.53
Lethal 73 0.80 69.56

Case 4—V = 0.5 m/s, Q′′ = 150 W·m−2

Welfare ECImax (kJ/kg) T (k) RH (%)

Comfort 43 292.25 27.81
Warning 53 298.91 36.11
Critical 63 298.97 51.12
Lethal 73 302.58 51.27

The accuracy of the inverse mapping using BO is shown here by considering one of the
cases in Table 4, where at an inlet velocity of V = 0.5 m/s and temperature of T = 300 k, for
the broilers to be in a critical welfare condition (with ECImax = 63 kJ/kg) the BO predicts
the relative humidity of RH = 30.07%, and a heat production of Q′′ = 280.48 W·m−2.
Performing CFD simulations for these input parameters (V, T, RH, and Q′′ ) results in a
maximum comfort index of ECImax = 64.79 kJ/kg, which has less than 3% difference with
the objective ECImax.

The birds are loaded in the coops at the farm, transferred to the trailer, transported
to the processing facility, and held in holding sheds until processing. At the farm and
in the holding sheds at the processing facility, fans are provided to blow air through the
coops to reduce the temperature and, in some cases, the humidity (water vapor) within
the coop—both generated by the bird. However, under extreme environmental conditions
prevalent during the summer months in Southeast U.S., Moghadam et al. [13] showed that
blowing air using the fans alone is not adequate to assure bird welfare (as indicated by the
ECI). Using the ANN approach, we were able to show that under extreme environmental
conditions (high temperate and humidity), the bird welfare can be assured by decreasing
the heat produced by the birds. Alternatively, for a given heat flux per bird this can be done
by decreasing the number of birds loaded on to the coop. This may be a practical approach
to minimize the bird mortality and other meat quality-related issues that reduce the value
of the broiler meat and the resulting economic loss for the processor. Another important
problem is finding the airflow velocity that assures welfare for increasing number of birds.
To investigate this problem, we applied BO on the ANN model for cases with a fixed
ambient temperature and relative humidity of 300 k and 15%, but with heat generation
in the range of 100–250 W·m−2 to find the velocity that assures the bird welfare with
ECI = 45 kJ/kg (see Table 5).

Table 5. Results of BO inverse mapping to estimate velocity to ensure comfort for various heat
production for T = 300 k, RH = 15% and ECImax (kJ/kg) = 45 (comfort).

Q′′ (W·m−2) V (m/s)

100 0.512
150 0.735
200 0.919
250 1.097

It is seen that larger airflow velocity is needed to assure comfort for an increasing
number of birds, which is implicitly represented by increasing heat flux in our study. An
explicit prediction of the maximum number of birds that needs to be loaded in the coop to
assure bird comfort for a particular set of environmental conditions (temperature, humidity,
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and maximum air velocity) can be accomplished by conducting CFD simulations with
similar environmental conditions and fan velocity, but various numbers of birds per coops
and calculating the ECImax, which could be the subject of a future study.

4. Conclusions

Machine learning techniques were applied to estimate the optimal conditions re-
quired for ensuring bird welfare and thermal microenvironment inside the poultry coops.
Simulation results of a CFD model for a loaded poultry coop were applied to train the
simple, yet highly efficient shallow ANNs which found a nonlinear mathematical equation
between the input (flow velocity, broiler heat production, ambient temperature, and relative
humidity) and the output (ECI) parameters. The inverse mapping of the trained ANNs was
then performed via BO method to estimate the range of acceptable parameters that result
in a comfort region in the entire coop microenvironment. The results show that the bird
welfare can be improved by reducing the number of birds in the coop, along with increasing
the air flow velocity. The results also show that the BO can be utilized to investigate the
combined effects of parameters, such as estimating the extent to which the airflow needs to
be increased to assure welfare for an increasing number of birds. This information might
be useful for poultry industries.
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