Survey and Cost–Benefit Analysis of Sorting Technology for the Sweetpotato Packing Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Packinghouse Survey
2.2. Cost–Benefit Analysis
3. Results
3.1. Sorting Line Survey
3.2. Cost–Benefit Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA-NASS, United States of Department of Agriculture National Agricultural Statistics Service. Vegetables 2021 Summary; United States of Department of Agriculture National Agricultural Statistics Service: Washington, DC, USA, 2022. [Google Scholar]
- USDA, U.S. Department of Agriculture. United States Standards for Grades of Sweet Potatoes; U.S. Department of Agriculture: Washington, DC, USA, 2005. [Google Scholar]
- Edmunds, B.A.; Boyette, M.D.; Clark, C.A.; Ferrin, D.M.; Smith, T.P.; Holmes, G.J. Postharvest Handling of Sweetpotatoes; North Carolina Cooperative Extension Service: Raleigh, NC, USA, 2008. [Google Scholar]
- Boyette, M.D. The investigation of negative horizontal ventilation for long-term storage of sweetpotatoes. Appl. Eng. Agri. 2009, 25, 701–708. [Google Scholar] [CrossRef]
- Simcox, N.; Flanagan, M.E.; Camp, J.; Spielholz, P.; Synder, K. Musculoskeletal Risks in Washington State Apple Packing Companies; Field Research and Consultation Group, University of Washington Department of Environmental Health: Seattle, WA, USA, 2001. [Google Scholar]
- Bollen, A.F.; Prussia, S.E. Sorting for defects. In Postharvest Handling: A Systems Approach, 4th ed.; Florkowski, W.J., Banks, N.H., Shewfelt, R.L., Prussia, S.E., Eds.; Academic Press: London, UK, 2022; pp. 377–398. [Google Scholar]
- Sofu, M.M.; Er, O.; Kayacan, M.C.; Cetisli, B. Design of an automatic apple sorting system using machine vision. Comput. Electron. Agri. 2016, 127, 395–405. [Google Scholar] [CrossRef]
- Fan, S.; Li, J.; Zhang, Y.; Tian, X.; Wang, Q.; He, X.; Zhang, C.; Huang, W. On line detection of defective apples using computer vision system combined with deep learning methods. J. Food Eng. 2020, 286, 110102. [Google Scholar] [CrossRef]
- Chen, Y.; An, X.; Gao, S.; Li, S.; Kang, H. A deep learning-based vision system combining detection and tracking for fast on-line citrus sorting. Front. Plant Sci. 2021, 12, 622062. [Google Scholar] [CrossRef] [PubMed]
- Mohi-Alden, K.; Omid, M.; Firouz, M.S.; Nasiri, A. A machine vision-intelligent modeling based technique for in-line bell pepper sorting. Info. Proc. Agri. 2022; in press. [Google Scholar] [CrossRef]
- Lu, Y.; Saeys, W.; Kim, M.; Peng, Y.; Lu, R. Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress. Postharvest Biol. Technol. 2020, 170, 111318. [Google Scholar] [CrossRef]
- Blasco, J.; González, M.G.G.; Chueca, P.; Cubero, S.; Aleixos, N. Advances in automated in-field grading of harvested crops. In Robotics and Automation for Improving Agriculture; Billingsley, J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 215–232. [Google Scholar]
- Zhang, Z.; Lu, Y.; Lu, R. Development and evaluation of an apple infield grading and sorting system. Postharvest Biol. Technol. 2021, 180, 111588. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Lu, R. Development and preliminary evaluation of a new apple harvest assist and in-field sorting machine. Appl. Eng. Agri. 2022, 38, 23–35. [Google Scholar] [CrossRef]
- Boyette, M.D.; Tsirnikas, A.L. Evaluating the Shape and Size Characteristics of Sweetpotatoes Using Digital Image Analysis; 2017 ASABE Annual International Meeting Paper No. 1700038; ASABE: St. Joseph, MI, USA, 2017. [Google Scholar]
- Haque, S.; Lobaton, E.; Nelson, N.; Yencho, G.C.; Pecota, K.V.; Mierop, R.; Kudenov, M.W.; Boyette, M.D.; Williams, C.M. Computer vision approach to characterize size and shape phenotypes of horticultural crops using high-throughput imagery. Comput. Electron. Agri. 2021, 182, 106011. [Google Scholar] [CrossRef]
- Wright, M.E.; Tappan, J.H.; Sistler, F.E. The size and shape of typical sweet potatoes. Tran. ASAE 1986, 29, 0678–0682. [Google Scholar] [CrossRef]
- Ball, T.; Folwell, R.J. Economic analysis of alternatives to manual sorting using selected electronic graders in asparagus fresh packing. J. Food Proc. Pres. 2004, 28, 405–416. [Google Scholar] [CrossRef]
- Mizushima, A.; Lu, R. Cost benefits analysis of in-field presorting for the apple industry. Appl. Eng. Agri. 2011, 27, 33–40. [Google Scholar] [CrossRef]
- Zhang, Z.; Pothula, A.K.; Lu, R. Economic evaluation of apple harvest and in-field sorting technology. Trans. ASABE 2017, 60, 1537–1550. [Google Scholar] [CrossRef]
- ASAE EP496.3 FEB2006 (R2020); ASABE Standards. Agricultural Machinery Management. ASABE: St. Joseph, MI, USA, 2022.
- Internal Revenue Service. How to depreciate property Department of the Treasury Internal Revenue Service. Available online: https://www.irs.gov/publications/p946 (accessed on 23 April 2023).
- Castillo, M.; Martin, P.; Rutledge, Z. The H-2A Temporary Agricultural Worker Program in 2020; U.S. Department of Agriculture Economic Research Service: Washington, DC, USA, 2022.
- Casta, D.; Martin, P. Coronavirus and Farmworkers Farm Employment, Safety Issues, and the H-2A Guestworker Program; Economic Policy Institute: Washington, DC, USA, 2020. [Google Scholar]
- DOL, Department of Labor. Labor certification process for the temporary employment of foreign workers in Agriculture in the United States: Adverse effect wage rates for non-range occupations in 2023. Fed. Regist. 2022, 87, 77142–77143. [Google Scholar]
- Guidry, K.; Smith, T.; Sistrunk, M. Projected Costs and Returns Crop Enterprise Budgets for Sweet Potato Production in Louisiana, 2019; The LSU AgCenter: Baton Rouge, LA, USA, 2019. [Google Scholar]
- Julian, J.W.; Seavert, C.F. AgProfit: A net present value and cash flow-based decision aid for agriculture producers. Agri. Financ. Rev. 2011, 71, 366–378. [Google Scholar] [CrossRef]
- Zhang, Z.; Heinemann, P.H. Economic analysis of a low-cost apple harvest-assist unit. HortTechnology 2017, 27, 240–247. [Google Scholar] [CrossRef]
Machine Life | Salvage | Interest Rate | Ownership Factor | Working Hours | Machine Power | Labor Wage |
---|---|---|---|---|---|---|
10 years | 6.55% | 8.5% | 2% | 600 h/year | 10 kW | USD 13.67/h |
# Workers Reduced | Metrics | Machine Price (USD) | ||||||
---|---|---|---|---|---|---|---|---|
50,000 | 100,000 | 150,000 | 200,000 | 250,000 | 300,000 | 350,000 | ||
4 | NPV (USD) | 199,317.6 | 93,796.5 | − | − | − | − | − |
PP (years) | 0.63 | 2.78 | − | − | − | − | − | |
MIRR (%) | 40.9 | 24.6 | − | − | − | − | − | |
5 | NPV (USD) | 276,288.2 | 170,767.1 | 65,246.0 | − | − | − | − |
PP (years) | 0.45 | 1.49 | 5.54 | − | − | − | − | |
MIRR (%) | 45.3 | 30.8 | 18.3 | − | − | − | − | |
6 | NPV (USD) | 353,258.8 | 247,737.7 | 142,216.6 | 36,695.5 | − | − | − |
PP (years) | 0.35 | 1.01 | 2.73 | 9.01 | − | − | − | |
MIRR (%) | 48.8 | 35.1 | 24.7 | 13.4 | − | − | − | |
7 | NPV (USD) | 430,229.4 | 324,708.3 | 219,187.2 | 113,666.1 | 8145.0 | − | − |
PP (years) | 0.29 | 0.76 | 1.75 | 4.43 | 9.81 | − | − | |
MIRR (%) | 51.6 | 38.5 | 29.1 | 20.3 | 9.1 | − | − | |
8 | NPV (USD) | 507,200.0 | 401,678.9 | 296,157.8 | 190,636.7 | 85,115.6 | − | − |
PP (years) | 0.24 | 0.61 | 1.28 | 2.71 | 6.56 | − | − | |
MIRR (%) | 50.5 | 41.2 | 32.5 | 24.8 | 16.7 | − | − | |
9 | NPV (USD) | 584,170.5 | 478,649.4 | 373,128.3 | 267,607.2 | 162,086.1 | 56,565.0 | − |
PP (years) | 0.21 | 0.51 | 1.00 | 1.91 | 3.94 | 8.92 | − | |
MIRR (%) | 56.2 | 43.5 | 35.2 | 28.2 | 21.4 | 13.5 | − | |
10 | NPV (USD) | 661,141.1 | 555,620.0 | 450,098.9 | 344,577.8 | 239,056.7 | 133,535.6 | 28,014.5 |
PP (years) | 0.19 | 0.44 | 0.82 | 1.47 | 2.70 | 5.42 | 9.54 | |
MIRR (%) | 58.1 | 45.6 | 37.5 | 31.0 | 24.9 | 18.5 | 10.6 | |
11 | NPV (USD) | 738,111.7 | 632,590.6 | 527,069.5 | 421,548.4 | 316,027.3 | 210,506.2 | 104,985.1 |
PP (years) | 0.17 | 0.39 | 0.70 | 1.19 | 2.03 | 3.65 | 7.10 | |
MIRR (%) | 59.8 | 47.4 | 39.5 | 33.3 | 27.6 | 22.1 | 15.9 | |
12 | NPV (USD) | 815,082.3 | 709,561.2 | 604,040.1 | 498,519.0 | 392,997.9 | 287,476.8 | 181,955.7 |
PP (years) | 0.15 | 0.34 | 0.61 | 1.00 | 1.61 | 2.69 | 4.78 | |
MIRR (%) | 61.4 | 49.0 | 41.3 | 35.3 | 30.0 | 24.9 | 19.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Harvey, L.; Shankle, M. Survey and Cost–Benefit Analysis of Sorting Technology for the Sweetpotato Packing Lines. AgriEngineering 2023, 5, 941-949. https://doi.org/10.3390/agriengineering5020058
Lu Y, Harvey L, Shankle M. Survey and Cost–Benefit Analysis of Sorting Technology for the Sweetpotato Packing Lines. AgriEngineering. 2023; 5(2):941-949. https://doi.org/10.3390/agriengineering5020058
Chicago/Turabian StyleLu, Yuzhen, Lorin Harvey, and Mark Shankle. 2023. "Survey and Cost–Benefit Analysis of Sorting Technology for the Sweetpotato Packing Lines" AgriEngineering 5, no. 2: 941-949. https://doi.org/10.3390/agriengineering5020058
APA StyleLu, Y., Harvey, L., & Shankle, M. (2023). Survey and Cost–Benefit Analysis of Sorting Technology for the Sweetpotato Packing Lines. AgriEngineering, 5(2), 941-949. https://doi.org/10.3390/agriengineering5020058