Energy Balance Assessment in Agricultural Systems; An Approach to Diversification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection
- Type of crops;
- Cultivated area;
- Seed rate;
- Type and rate of fertilizer used;
- Type and rate of pesticides;
- Number of laborers and working hours;
- Fuel consumption for production (ploughing, tillage, and transportation);
- Electricity consumption for irrigation.
2.3. Calculation of Energy Balance
2.3.1. Total Energy Input for Crop Production
2.3.2. Total Energy Output for Crop Production
2.3.3. Total Energy Input for Livestock Production
2.3.4. Total Energy Output for Livestock Production
2.3.5. The Energy Balance and Net Energy Ratio
2.3.6. Calculation of Water Use Efficiency Based on Energy
2.4. Overall Methodology
3. Results
3.1. Crop Production
3.1.1. Energy Inputs and Energy Outputs
3.1.2. Energy Balance and Net Energy Ratio (NER)
3.2. Livestock Production
Total Energy Inputs and Outputs in Livestock Production
3.3. The Energy Balance, the Net Energy Ratio, and WUE Based on Energy
4. Discussion
4.1. Crop Production
4.2. Livestock Production
4.3. Limitations
4.4. Way Forward
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
K | Potassium |
LCA | Life cycle assessment |
N | Nitrogen |
NER | Net energy ratio |
P | Phosphorus |
SDGs | Sustainable Development Goals |
WUS | Water use efficiency |
References
- Yan, Z.; Hou, F.; Hou, F. Energy Balances and Greenhouse Gas Emissions of Agriculture in the Shihezi Oasis of China. Atmosphere 2020, 11, 781. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy Use in Open-Field Agriculture in the EU: A Critical Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. Renew. Sustain. Energy Rev. 2022, 158, 112098. [Google Scholar] [CrossRef]
- Mathur, S.; Waswani, H.; Singh, D.; Ranjan, R. Alternative Fuels for Agriculture Sustainability: Carbon Footprint and Economic Feasibility. AgriEngineering 2022, 4, 993–1015. [Google Scholar] [CrossRef]
- Khoshroo, A.; Emrouznejad, A.; Ghaffarizadeh, A.; Kasraei, M.; Omid, M. Sensitivity Analysis of Energy Inputs in Crop Production Using Artificial Neural Networks. J. Clean. Prod. 2018, 197, 992–998. [Google Scholar] [CrossRef]
- Wang, X. Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 24 January 2023).
- Kennedy, S. Energy Use in American Agriculture; Massachusetts Institute of Technology: Cambridge, MA, USA, 2000; pp. 1–26. [Google Scholar]
- Saleem, M. Possibility of Utilizing Agriculture Biomass as a Renewable and Sustainable Future Energy Source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef]
- Esengun, K.; Gündüz, O.; Erdal, G. Input–Output Energy Analysis in Dry Apricot Production of Turkey. Energy Convers. Manag. 2007, 48, 592–598. [Google Scholar] [CrossRef]
- Khaledian, M.R.; Mailhol, J.C.; Ruelle, P.; Mubarak, I.; Perret, S. The Impacts of Direct Seeding into Mulch on the Energy Balance of Crop Production System in the SE of France. Soil Tillage Res. 2010, 106, 218–226. [Google Scholar] [CrossRef]
- Frorip, J.; Kokin, E.; Praks, J.; Poikalainen, V.; Ruus, A.; Veermäe, I.; Lepasalu, L.; Schäfer, W.; Mikkola, H.; Ahokas, J. Energy Consumption in Animal Production—Case Farm Study. Agron. Res. 2012, 10, 39–48. [Google Scholar]
- Elahi, E.; Zhang, Z.; Khalid, Z.; Xu, H. Application of an Artificial Neural Network to Optimise Energy Inputs: An Energy- and Cost-Saving Strategy for Commercial Poultry Farms. Energy 2022, 244, 123169. [Google Scholar] [CrossRef]
- Eurostat Energy Balance Guide. Methodology Guide for the Construction of Energy Balances & Operational Guide for the Energy Balance Builder Tool; Eurostat: Luxembourg, 2019. [Google Scholar]
- ISO SO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO/TC 207/SC 5 Life Cycle Assessment. International Organization for Standardization: Geneva, Switzerland, 2006; p. 28.
- Ximenes, F.D.A. Life Cycle Assessment—Principles, Practice and Prospects. Austral Ecol. 2010, 35, 117–118. [Google Scholar] [CrossRef]
- Abbas, A.; Zhao, C.; Waseem, M.; Ahmed Khan, K.; Ahmad, R. Analysis of Energy Input–Output of Farms and Assessment of Greenhouse Gas Emissions: A Case Study of Cotton Growers. Front. Environ. Sci. 2022, 9, 826838. [Google Scholar] [CrossRef]
- Drosou, F.; Kekes, T.; Boukouvalas, C. Life Cycle Assessment of the Canned Fruits Industry: Sustainability through Waste Valorization and Implementation of Innovative Techniques. AgriEngineering 2023, 5, 395–412. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Wang, F.; Liu, Y.; Li, M.; Wang, Q.; Dong, S.; Zhao, W.; Tran, L.-S.P.; Sun, Y.; et al. Effects of Agricultural Activities on Energy-Carbon-Water Nexus of the Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 331, 129995. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; Verdini, L.; De Mastro, G. Implications of No-Tillage System in Faba Bean Production: Energy Analysis and Potential Agronomic Benefits. Open Agric. J. 2018, 12, 270–285. [Google Scholar] [CrossRef]
- Bamgboye, A.I.; Kosemani, B.S. Energy Input in the Production of Cassava. Energy Environ. Res. 2015, 5, 42. [Google Scholar] [CrossRef]
- Olaniran, J.A.; Jekayinfa, S.O.; Adekanye, T.A. Energy Consumption and Environmental Burden Analysis of Cassava Tuber Production in Ogbomoso Southwest Nigeria. IOP Conf. Ser. Earth Environ. Sci. 2020, 445, 012062. [Google Scholar] [CrossRef]
- Akcaoz, H. Analysis of Energy Use for Banana Production: A Case Study from Turkey. Afr. J. Agric. Res. 2011, 6, 5618–5624. [Google Scholar] [CrossRef]
- Bautista, E.G.; Minowa, T. Analysis of the Energy for Different Rice Roduction Systems in the Philippines. Philipp. Agric. Sci. 2010, 93, 322–333. [Google Scholar]
- Kosemani, B.S.; Bamgboye, A.I. Energy Input-Output Analysis of Rice Production in Nigeria. Energy 2020, 207, 118258. [Google Scholar] [CrossRef]
- Polat, R.; Copur, O.; Saglam, R.; Saglam, C. Energy Use Pattern and Cost Analysis of Cotton Agriculture: A Case Study for Sanliurfa, Turkey. Philipp. Agric. Sci. 2006, 89, 368–371. [Google Scholar]
- Moghaddam, P.R.; Feizi, H.; Mondani, F. Evaluation of Tomato Production Systems in Terms of Energy Use Efficiency and Economical Analysis in Iran. Not. Sci. Biol. 2011, 3, 58–65. [Google Scholar] [CrossRef]
- Yuan, S.; Peng, S.; Wang, D.; Man, J. Evaluation of the Energy Budget and Energy Use Efficiency in Wheat Production under Various Crop Management Practices in China. Energy 2018, 160, 184–191. [Google Scholar] [CrossRef]
- Kheiry, A.N.O.; Dahab, M.H. Energy Input-Output Analysis for Production of Selected Crops in the Central Clay Vertisols of Gezira Agricultural Scheme (Sudan). IJSR 2016, 5, 1215–1220. [Google Scholar] [CrossRef]
- Ozkan, B.; Akcaoz, H.; Fert, C. Energy Input–Output Analysis in Turkish Agriculture. Renew. Energy 2004, 29, 39–51. [Google Scholar] [CrossRef]
- Heidari, M.D.; Omid, M.; Akram, A. Energy Efficiency and Econometric Analysis of Broiler Production Farms. Energy 2011, 36, 6536–6541. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Safarzadeh, D.; Ahmadi, E.; Nabavi-Pelesaraei, A. Optimization of Energy Consumption of Dairy Farms Using Data Envelopment Analysis—A Case Study: Qazvin City of Iran. J. Saudi Soc. Agric. Sci. 2018, 17, 217–228. [Google Scholar] [CrossRef]
- Yan, Z.; Li, W.; Yan, T.; Chang, S.; Hou, F. Evaluation of Energy Balances and Greenhouse Gas Emissions from Different Agricultural Production Systems in Minqin Oasis, China. PeerJ 2019, 7, e6890. [Google Scholar] [CrossRef]
- Barman, A.; Saha, P.; Patel, S.; Bera, A.; Barman, A.; Saha, P.; Patel, S.; Bera, A. Crop Diversification an Effective Strategy for Sustainable Agriculture Development; IntechOpen: London, UK, 2022; ISBN 978-1-80355-697-0. [Google Scholar]
- Hufnagel, J.; Reckling, M.; Ewert, F. Diverse Approaches to Crop Diversification in Agricultural Research. A Review. Agron. Sustain. Dev. 2020, 40, 14. [Google Scholar] [CrossRef]
- Wimalasiri, E.M.; Jahanshiri, E.; Perego, A.; Azam-Ali, S.N. A Novel Crop Shortlisting Method for Sustainable Agricultural Diversification across Italy. Agronomy 2022, 12, 1636. [Google Scholar] [CrossRef]
- Rahman, S.; Kazal, M.M.H. Whether Crop Diversification Is Energy Efficient: An Empirical Analysis from Bangladesh. Renew. Sustain. Energy Rev. 2015, 45, 745–754. [Google Scholar] [CrossRef]
- Martey, E. Empirical Analysis of Crop Diversification and Energy Poverty in Ghana. Energy Policy 2022, 165, 112952. [Google Scholar] [CrossRef]
- Pérez-Neira, D.; Schneider, M.; Armengot, L. Crop-Diversification and Organic Management Increase the Energy Efficiency of Cacao Plantations. Agric. Syst. 2020, 177, 102711. [Google Scholar] [CrossRef]
- Alletto, L.; Vandewalle, A.; Debaeke, P. Crop Diversification Improves Cropping System Sustainability: An 8-Year on-Farm Experiment in South-Western France. Agric. Syst. 2022, 200, 103433. [Google Scholar] [CrossRef]
- Koocheki, A.; Ghorbani, R.; Mondani, F.; Alizade, Y.; Moradi, R. Pulses Production Systems in Term of Energy Use Efficiency and Economical Analysis in Iran. Int. J. Energy Econ. Policy 2011, 1, 95–106. [Google Scholar]
- Malunjkar, V.S.; Balakrishnan, P.; Deshmukh, S.K.; Dugad, S.B. Energy Efficiency of Banana (Musa sp.) Crop under Different Irrigation Methods. Int. J. Innov. Technol. Explor. Eng. 2015, 4, 43–47. [Google Scholar]
- Tuti, M.D.; Prakash, V.; Pandey, B.M.; Bhattacharyya, R.; Mahanta, D.; Bisht, J.K.; Kumar, M.; Mina, B.L.; Kumar, N.; Bhatt, J.C.; et al. Energy Budgeting of Colocasia-Based Cropping Systems in the Indian Sub-Himalayas. Energy 2012, 45, 986–993. [Google Scholar] [CrossRef]
- Banzon, J.A. The Coconut as a Renewable Energy Source. Philipp. J. Coconut Stud. 1980, 5, 11–27. [Google Scholar]
- Mihov, M.; Antonova, G.; Masheva, S.; Yankova, V. Energy Assessment of Conventional and Organic Production of Head Cabbage. Bulg. J. Agric. Sci. 2012, 18, 320–324. [Google Scholar]
- Zhanbota, A.; Noor, R.S.; Wang, G.Y. Yield, Energy and Economic Analysis of Greenhouse Cucumber (Cucumis Sativus L.) Production under Different Farming Treatments. THE JAPS 2020, 31, 509–521. [Google Scholar] [CrossRef]
- Fazeli, M. Energy Balance in IPM Rice Farms Compared to Conventional Farms. Ann. Agrar. Sci. 2017, 15, 287–293. [Google Scholar] [CrossRef]
- Soheilifard, F.; Salvatian, S. Forecasting of Tea Yield Based on Energy Inputs Using Artificial Neural Networks (A Case Study: Guilan Province of Iran). Biol. Forum Int. J. 2015, 7, 1432–1438. [Google Scholar]
- Baran, M.F.; Oguz, H.I.; Gokdogan, O. Determination of Energy Input-Output Analysis in Plum (Prunus Domestica L.) Production. Erwerbs-Obstbau 2017, 59, 331–335. [Google Scholar] [CrossRef]
- Paramesh, V.; Parajuli, R.; Chakurkar, E.B.; Sreekanth, G.B.; Kumar, H.B.C.; Gokuldas, P.P.; Mahajan, G.R.; Manohara, K.K.; Viswanatha, R.K.; Ravisankar, N. Sustainability, Energy Budgeting, and Life Cycle Assessment of Crop-Dairy-Fish-Poultry Mixed Farming System for Coastal Lowlands under Humid Tropic Condition of India. Energy 2019, 188, 116101. [Google Scholar] [CrossRef]
- Sefeedpari, P. Assessment and Optimization of Energy Consumption in Dairy Farm: Energy Efficiency. IJEE 2012, 3, 213–224. [Google Scholar] [CrossRef]
- Meul, M.; Nevens, F.; Reheul, D.; Hofman, G. Energy Use Efficiency of Specialised Dairy, Arable and Pig Farms in Flanders. Agric. Ecosyst. Environ. 2007, 119, 135–144. [Google Scholar] [CrossRef]
- Clark, S.; Khoshnevisan, B.; Sefeedpari, P. Energy Efficiency and Greenhouse Gas Emissions during Transition to Organic and Reduced-Input Practices: Student Farm Case Study. Ecol. Eng. 2016, 88, 186–194. [Google Scholar] [CrossRef]
- Dalle Zotte, A. Rabbit Farming for Meat Purposes. Anim. Front. 2014, 4, 62–67. [Google Scholar] [CrossRef]
- Adekanye, T.A. Analysis of Energy Uses in Cassava Production in North-Central Nigeria. Agric. Eng. Int. CIGR J. 2020, 22, 98–104. [Google Scholar]
- Chamsing, A.; Salokhe, V.M.; Singh, G. Consumption Analysis for Selected Crops in Different Regions of Thailand. Agric. Eng. Int. CIGR J. 2006, VIII, 1–18. [Google Scholar]
- Çetin, B.; Vardar, A. An Economic Analysis of Energy Requirements and Input Costs for Tomato Production in Turkey. Renew. Energy 2008, 33, 428–433. [Google Scholar] [CrossRef]
- Yadav, S.N.; Chandra, R.; Khura, T.K.; Chauhan, N.S. Energy Input–Output Analysis and Mechanization Status for Cultivation of Rice and Maize Crops in Sikkim. Agric. Eng. Int. CIGR J. 2013, 15, 108–116. [Google Scholar]
- Wakil, M.; Ibrahim, A.; Umar, A.S.S.; Bukar, G. Analysis of Energy Input-Output of Irrigated Rice Production in Jere Bowl Borno State, Nigeria. Afr. J. Agric. Res. 2018, 13, 1661–1666. [Google Scholar] [CrossRef]
- Gul, O.M.; Erkmen, A.M.; Kantarci, B. UAV-driven sustainable and quality-aware data collection in Robotic Wireless Sensor Networks. IEEE Internet Things J. 2022, 9, 25150–25164. [Google Scholar] [CrossRef]
- Gul, O.M.; Erkmen, A.M. Energy-efficient cluster-based data collection by a UAV with a limited-capacity battery in Robotic Wireless Sensor Networks. Sensors 2020, 20, 5865. [Google Scholar] [CrossRef]
- Praveenkumar, S.; Agyekum, E.B.; Kumar, A.; Velkin, V.I. Thermo-Enviro-Economic Analysis of solar photovoltaic/thermal system incorporated with U-shaped grid copper pipe, thermal electric generators and nanofluids: An experimental investigation. J. Energy Storage 2023, 60, 106611. [Google Scholar] [CrossRef]
- PraveenKumar, S.; Agyekum, E.B.; Kumar, A.; Velkin, V.I. Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation. Energy 2023, 266, 126415. [Google Scholar] [CrossRef]
Input | Energy Equivalent (MJ Unit−1) | References | |
---|---|---|---|
Human labor (h) | 1.96 | [36] | |
Electricity (kWh) | 11.93 | [22,37] | |
Diesel fuel (l) | 47.8 | [38] | |
Tractor (kg) | 93.61 | [39] | |
Fertilizers (kg) | Nitrogen (N) | 75.46 | [40] |
Phosphorus (P) | 13.07 | [40] | |
Potassium (K) | 11.15 | [40] | |
Manure | 0.3 | [22] | |
Agro Chemicals (kg) | Herbicide | 238 | [41] |
Insecticide | 238 | [41] | |
Fungicide | 92 | [41] | |
Stalk (kg) | Cassava | 5.6 | [19] |
Seeds (kg) | Okra | 0.8 | [42] |
Luffa | 1.0 | [43] | |
Bean | 14.9 | [40] | |
Long bean | 14.9 | [40] | |
Cabbage | 0.8 | [42] | |
Radish | 0.8 | [42] | |
Chili | 1.0 | [44] | |
Tomato | 1.0 | [44] | |
Brinjal | 0.8 | [44] | |
Wing bean | 25.0 | [45] | |
Cucumber | 1.0 | [43] | |
Ela batu | 1.0 | [44] | |
Snake gourd | 1.0 | [43] | |
Paddy | 14.57 | [46] | |
Maize | 104.65 | [32] |
Output (in kg) | Energy Equivalent (MJ Unit−1) | References |
---|---|---|
Bean grain yield | 14.9 | [40] |
Bean straw yield | 12.5 | [40] |
Banana yield | 11.8 | [41] |
Banana stem yield | 18 | [41] |
Banana leaves yield | 10 | [41] |
Okra yield | 1.9 | [42] |
Okra Straw yield | 10 | [42] |
Coconut yield | 58.525 | [43] |
Husk yield | 16.736 | [43] |
Cassava yield | 5.6 | [20] |
Cassava stem | 5.6 | [20] |
Cabbage yield | 1.2 | [44] |
Cabbage residual yield | 10 | [42] |
Radish yield | 1.6 | [42] |
Long bean grain yield | 14.9 | [40] |
Long bean straw yield | 12.5 | [40] |
Cucumber yield | 0.8 | [45] |
Cucumber residuals | 7.5 | [45] |
Brinjal yield | 0.8 | [42] |
Brinjal residuals yield | 10 | [42] |
Chili yield | 0.8 | [45] |
Chili residuals yield | 10 | [42] |
Tomato yield | 0.8 | [42] |
Tomato residuals yield | 10 | [42] |
Maize grain yield | 18.26 | [32] |
Maize straw yield | 15.22 | [32] |
Wing bean yield | 14.7 | [40] |
Wing bean residuals yield | 12.5 | [40] |
Rice grain yield | 14.57 | [46] |
Rice straw yield | 12.5 | [46] |
Ela batu yield | 0.8 | [42] |
Ela batu residuals yield | 10 | [42] |
Tea leaves yield | 0.8 | [47] |
Snake gourd yield | 0.8 | [45] |
Snake gourd straw yield | 7.5 | [45] |
Luffa Yield | 0.8 | [45] |
Luffa residuals yield | 7.5 | [45] |
Input | Unit | Energy Equivalent (MJ Unit−1) | References | |
---|---|---|---|---|
Human labor | h | 1.96 | [48] | |
Electricity | kWh | 11.93 | [22,41] | |
Diesel fuel | L | 47.8 | [28] | |
Chick | kg | 10.33 | [49] | |
Feed | Forage (silage) | kg | 2.2 | [50] |
Concentrate | kg | 6.3 | [49] | |
Pig grower | kg | 3.4 | [51] | |
Saw feed | kg | 3.7 | [51] | |
Vitamin/Mineral | kg | 1.59 | [49] |
Outputs | Units | Energy Equivalent (MJ Unit−1) | References | |
---|---|---|---|---|
Manure | kg | 0.3 | [49] | |
Cattle | Milk | kg | 7.14 | [49] |
Broiler | Meat | kg | 10.33 | [49] |
Piggery | Meat | kg | 9.8 | [52] |
Layer | Eggs | kg | 7.28 | [49] |
Meat | kg | 10.33 | [49] | |
Weight | kg | 10.7 | [49] | |
Rabbit | Weight | kg | 6.03 | [53] |
Input Energy (MJ ha−1 Year−1) | Output Energy (MJ ha−1 Year−1) | Area (ha) | Input Energy (MJ Year−1) | Output (MJ Year−1) | |
---|---|---|---|---|---|
Pesticide | - | - | - | 128.11 | - |
Machine Energy | 151,570.03 | - | 0.38 | 57,141.90 | - |
(land preparation) | - | - | - | - | - |
Electricity for Irrigation | 20,244.85 | - | 0.44 | 8907.73 | - |
Bean | 14,868.89 | 83,272.21 | 0.03 | 446.07 | 2498.17 |
Banana | 830.12 | 58,344.82 | 0.17 | 141.12 | 9918.62 |
Okra | 20,957.14 | 26,460.88 | 0.02 | 482.01 | 608.60 |
Coconut | 8482.09 | 199,901.95 | 0.40 | 3392.84 | 79,960.78 |
Casava | 8602.22 | 31,490.65 | 0.06 | 516.13 | 1889.44 |
Cabbage | 34,686.35 | 15,241.00 | 0.01 | 242.80 | 106.69 |
Radish | 25,768.29 | 18,749.33 | 0.01 | 257.68 | 187.49 |
Long bean | 12,778.46 | 103,818.85 | 0.01 | 166.12 | 1349.64 |
Brinjal | 5828.46 | 20,436.36 | 0.10 | 582.85 | 2043.64 |
Tomato | 23,753.00 | 21,838.00 | 0.05 | 1068.88 | 982.71 |
Maize | 10,603.19 | 63,892.98 | 0.09 | 954.29 | 5750.37 |
Wing bean | 5422.80 | 23,714.87 | 0.03 | 173.53 | 758.88 |
Rice | 9451.98 | 18,600.57 | 0.01 | 122.88 | 241.81 |
Eggplant | 11,577.20 | 5141.70 | 0.01 | 92.62 | 41.13 |
Tea | 3311.41 | 4000.00 | 0.07 | 231.80 | 280.00 |
Snake gourd | 8011.71 | 3094.45 | 0.03 | 272.40 | 105.21 |
Luffa | 7756.83 | 4508.93 | 0.01 | 69.81 | 40.58 |
Cucumber | 15,736.28 | 14,599.03 | 0.02 | 314.73 | 291.98 |
Total | 400,241.30 | 717,106.56 | - | 75,706.30 | 107,055.74 |
Crop Production | Livestock Production | Overall Farm | |
---|---|---|---|
Total Energy Inputs (GJ Year−1) | 75.71 (400.24 MJ/ha/year) | 867.44 | 943.14 |
Total Energy Outputs (GJ Year−1) | 107.06 (717.11 MJ/ha/year) | 108.70 | 215.76 |
Energy Balance (GJ Year−1) | −31.35 | 758.73 | 727.38 |
NER | 1.71 | 0.13 | 0.23 |
WUE (MJ m−3) | −31.35 |
Energy Inputs (MJ Year−1) | Energy Outputs (MJ Year−1) | |
---|---|---|
Cattle | 415,127.5707 | 24,830.33 |
Broiler | 87,008.52 | 44,666.42 |
Layer | 130,516.41 | 30,461.38 |
Piggery | 39,842.83 | 4615.65 |
Goat | 116,603.776 | 3147.53 |
Rabbit | 25,272.6 | 981.66 |
Total | 867,437.00 | 108,702.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanapala, S.; Nilmalgoda, H.; Gunathilake, M.B.; Rathnayake, U.; Wimalasiri, E.M. Energy Balance Assessment in Agricultural Systems; An Approach to Diversification. AgriEngineering 2023, 5, 950-964. https://doi.org/10.3390/agriengineering5020059
Dhanapala S, Nilmalgoda H, Gunathilake MB, Rathnayake U, Wimalasiri EM. Energy Balance Assessment in Agricultural Systems; An Approach to Diversification. AgriEngineering. 2023; 5(2):950-964. https://doi.org/10.3390/agriengineering5020059
Chicago/Turabian StyleDhanapala, Susanthika, Helitha Nilmalgoda, Miyuru B. Gunathilake, Upaka Rathnayake, and Eranga M. Wimalasiri. 2023. "Energy Balance Assessment in Agricultural Systems; An Approach to Diversification" AgriEngineering 5, no. 2: 950-964. https://doi.org/10.3390/agriengineering5020059
APA StyleDhanapala, S., Nilmalgoda, H., Gunathilake, M. B., Rathnayake, U., & Wimalasiri, E. M. (2023). Energy Balance Assessment in Agricultural Systems; An Approach to Diversification. AgriEngineering, 5(2), 950-964. https://doi.org/10.3390/agriengineering5020059