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Abstract: The quantification of forage availability in tropical grasses is generally done in a destructive
and time-consuming manner, involving cutting, weighing, and waiting for drying. To expedite this
process, non-destructive methods can be used, such as unmanned aerial vehicles (UAVs) equipped
with high-definition cameras, mobile device images, and the use of the normalized difference veg-
etation index (NDVI). However, these methods have been underutilized in tropical pastures. A
literature review was conducted to present the current state of remote tools’ use in predicting forage
availability and quality in tropical pastures. Few publications address the use of non-destructive
methods to estimate forage availability in major tropical grasses (Megathyrsus maximus; Urochloa spp.).
Additionally, these studies do not consider the fertility requirements of each cultivar and the effect of
management on the phenotypic plasticity of tillers. To obtain accurate estimates of forage availability
and properly manage pastures, it is necessary to integrate remote methods with in situ collection of
soil parameters. This way, it will be possible to train machine learning models to obtain precise and
reliable estimates of forage availability for domestic ruminant production.

Keywords: mobile device; drone; soil nutrients; Megathyrsus maximus; Urochloa spp.

1. Introduction

The measurement of forage mass in tropical pasture environments is often obtained
through destructive methods (forage cutting), which is a practice applied in plant breeding
programs during the selection phase of more productive hybrids of Megathyrsus maximus
(Syn. Panicum maximum) and Urochloa spp. (Syn. Brachiaria spp.) [1–4]. Additionally,
destructive methods are also employed to assist in obtaining the accumulation rate and
availability of forage mass in research assessing the effect of different defoliation intensities
on animal performance in continuous stocking, rotational stocking, and integrated pro-
duction systems [5–9], as well as in research on feed supplements (e.g., mineral, energy,
protein) with forage for ruminant production [10–14].

The measurement of forage mass is relatively simple to obtain (cutting, weighing the
fresh forage, and subsequently drying it in an oven to obtain a constant weight). However,
there are certain steps that require a significant amount of time, making the methodology
impractical and less applicable for technicians and producers. In Brazil, public research
institutions encourage the use of direct methods through canopy height measuring for
pre-grazing and post-grazing recommendations of main forage cultivars [15]. Since there
is a correlation between canopy height and forage mass [16], it is possible to use height
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as a predictive model for dry forage availability. However, predictions based on canopy
height do not consider the effect of abiotic factors (temperature, soil nutrient availability,
and precipitation), as well grazing management and phenotypic plasticity, which influence
tissue flow in tillers and the nutritional condition of the pasture.

The images obtained through mobile devices (cell phones) and unmanned aerial
vehicles (UAVs) can generate models that assist in predicting primary production and
controlling diseases and insect pests in important agricultural commodities and pastoral
environments [17–19]. With these tools, it is possible to enhance the decision-making
process in management by identifying areas with higher risk and/or production levels.

Another highly promising tool in the field of agricultural and environmental monitor-
ing is the Normalized Difference Vegetation Index (NDVI). This index proves invaluable
in swiftly and accurately assessing the amount of biomass covering the soil surface. Fur-
thermore, it serves as a critical indicator of plant nutritional status and water balance all
achieved with remarkable precision and speed [20]. The NDVI holds immense significance
due to its transformative impact on both agriculture and environmental management.
It goes beyond being a mere technical metric, serving as a cornerstone for data-driven
decision-making. When interpreting satellite or drone images, the NDVI provides precise
information about vegetation health and growth patterns.

In today’s dynamic landscape, access to invaluable data has become a crucial asset,
enabling stakeholders to make informed choices. This, in turn, leads to the optimization of
resource allocation and the promotion of sustainable practices. One such potent tool for
achieving this lies in the amalgamation of nitrogen leaf content data, Soil Plant Analysis
Development (SPAD), and NDVI. The synergy of these data sources can be harnessed
effectively to manage nitrogen levels within grasses, thus playing a pivotal role in bolstering
primary production [21]. This strategy empowers individuals and organizations to make
decisions that not only maximize productivity but also contribute to environmentally
responsible practices, aligning with the broader goal of sustainability.

In this context, the substantial objective of this literature review is to delve into the
utilization of non-invasive approaches, in conjunction with forage mass prediction models,
for a comprehensive assessment of the nutritional status of tropical grasses in pastoral
environments.

2. Utilizing UAVs and Mobile Devices for Pasture Management
2.1. Perspectives on the Inclusion of UAVs in Pasture Management

One of the most formidable obstacles in ruminant production within tropical climates
is effectively managing canopy height and accurately estimating the availability of forage
mass for appropriate livestock feeding. Presently, the traditional techniques used to obtain
agronomic data in pastures demand a substantial investment of time to execute [22,23].

The use of low-cost acquisition drones can generate a database structure for accurate
and precise predictions of botanical composition, species diversity, productivity, disease
incidences, and pest infestations in agricultural environments [24–26]. In pastoral environ-
ments, Bazzo et al. [27] found that there has been an increase in studies involving the use of
UAVs to estimate forage biomass between the years 2018 and 2022, with a greater focus on
research conducted in Germany, China, and the United States. Studies involving tropical
pasturelands in Latin American countries appear with low frequency in indexed journals,
raising concerns about how researchers, technicians, and producers are integrating new
technologies into ruminant food production in tropical pastoral environments.

In the genetic breeding program of Megathyrsus maximus grasses, Oliveira et al. [28]
found that the combination of remote sensing with low-cost UAVs equipped with high-
resolution RGB (red, green, and blue) sensors, along with convolutional neural networks
(CNNs), enabled the selection of models to accurately estimate forage mass. This allowed
for the identification of more productive hybrids and the segregation of genotypes with
satisfactory performance. Furthermore, it was a prospect of training models to detect plants
that are more susceptible to diseases.
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In the realm of tropical pasture management, the utilization of drones has demon-
strated remarkable efficacy. In the Mato Grosso do Sul region of the Brazilian Cerrado,
Batistoti et al. [17] have unearthed an intriguing capability: the ability to gauge the canopy
height of Tamani guinea grass (Megathyrsus maximus cv. BRS Tamani) by utilizing aerial
photographs captured via Unmanned Aerial Vehicles (UAVs). The researchers have put
forth linear models, characterized by a substantial coefficient of determination (R2 = 0.80),
linking the height measurements taken with a graduated ruler to those derived from the
aerial images. Subsequent investigations have unveiled that the canopy height, ascertained
with the ruler, serves as a reliable indicator for approximating the forage biomass (R2 = 0.81).
Furthermore, it has been established as a viable method to estimate the available forage
mass of Tamani guinea grass based on the heights extracted from the aerial photographs
(R2 = 0.74).

2.2. The Use of Mobile Devices in Agricultural Environments

The use of photos obtained from mobile devices (e.g., cell phone or tablet) can assist
in predicting the growth rate of forage plants, but it is necessary to use robust models.
Santos et al. [19] employed convolutional neural network (CNN) training to estimate
regrowth rates in Megathyrsus maximus tussocks from the germplasm bank of the Brazilian
Agricultural Research Corporation (EMBRAPA—Beef Cattle). The authors found that
images captured from two cell phones allowed the generation of a regression model with a
mean absolute error of 7.70%.

This finding emphasizes the importance of adopting robust models when working
with images from mobile devices for agricultural prediction purposes. By using photos
captured by cell phones or tablets, researchers were able to achieve impressive results in
estimating plant growth rates. These widely accessible and commonly used devices proved
to be effective in generating reliable data to feed regression models. Subsequently, advance-
ments in predicting the growth of forage plants utilizing images obtained from mobile
devices have the potential to assist farmers and researchers in monitoring and planning
forage crops, contributing to improved agricultural productivity and sustainability.

In Jiangmen province, China, Deng et al. [29] observed that using images obtained
from mobile devices to train CNN models estimated population density of productive
tillers for ten varieties of rice (Oryza sativa) that were similar to manually counted values
(R2 = 0.98). According to the authors, with the use of the model generated from the images,
it is possible to predict the crop’s productivity before harvest.

In soybean (Glycine max) fields in Canada, Laamrani et al. [30] found that due to
the low bias obtained (±5%), the use of photographs in mobile applications can assist in
estimating the amount of crop residue. In the Brazilian Cerrado region, Theodoro et al. [31]
evaluated monocultures of maize (Zea mays) and pigeon pea (Cajanus cajan) and found that
it is possible to estimate the proportion of soil covered with crop residue after harvest using
images captured on mobile devices. By subjecting the images to analysis in the SisCob 1.0
software [32] through neural network-based training, the method employed provided soil
coverage estimates similar to conventional methods.

3. Determination of Forage Mass and Nutritional Condition of Forage Plants in
Tropical Climates Using Non-Destructive Methods
3.1. Utilization of Satellite Imagery in Pasture Management

In recent years, the use of remote sensing technology has gained prominence in
agricultural and environmental research worldwide. The Sentinel-2 satellite, in particular,
has emerged as a valuable tool for collecting data on vegetation cover, biomass, and
other land-related variables. In the Brazilian context, a country with a unique diversity of
ecosystems and a strong connection to agriculture, these studies have become increasingly
relevant.

The research conducted by Bretas et al. [33] showcased the practicality of utilizing
Sentinel-2 spectral bands to estimate the height of Mombaça guinea grass (Megathyrsus
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maximus cv. Mombaça). Their use of the random forest algorithm yielded highly effective
predictions for both canopy height and above-ground biomass. Notably, their results re-
vealed impressive precision, recall, and accuracy values, reaching up to 73% for each metric
in canopy height classification. Furthermore, their models exhibited strong predictive
capabilities for above-ground fresh biomass and dry matter concentration, as reflected in
R2 values of 0.61 and 0.69, respectively.

In a related study by Batista et al. [34], the Agreste region of Pernambuco, Brazil,
served as the backdrop for research conducted on Urochloa decumbens under continuous
stocking management, primarily for grazing Girolando heifers. This study harnessed
the power of remote sensing technology, specifically using Sentinel-2 satellite imagery.
The findings from this investigation underscored the effectiveness of this approach in
generating vegetation index maps, which vividly illustrated the impact of grazing activity
on the aboveground biomass cover and its chemical attributes. These maps, in turn, played
a pivotal role as valuable indicators for informing decisions related to the potential risks of
soil degradation.

In the unique context of the Brazilian semiarid region, Silva et al. [35] delved into a
cultivated area of forage cactus, specifically exploring the varieties ‘Mexican Elephant Ear’
(Opuntia stricta) and ‘Miúda’ (Nopalea cochenillifera). This research unveiled a significant
correlation between the use of Sentinel-2 satellite images and key agricultural variables.
Notably, plant height, the number of cladodes, and specific vegetation indices emerged as
crucial predictor variables within their multiple regression model.

Collectively, these studies demonstrate the increasing relevance of remote sensing tech-
nology, particularly using Sentinel-2 satellite imagery, in agricultural and environmental
research within Brazil. They highlight the potential of this technology to provide valuable
insights into vegetation dynamics, biomass estimation, and land management, ultimately
contributing to more informed decision-making processes in these critical domains.

3.2. Determination of Forage Biomass Using NDVI

The NDVI is a widely used index to assess the health and vigor of plants based on
data obtained through remote sensing. This index is calculated by dividing the difference
between near-infrared (NIR) and red (R) light reflectance by the sum of these same two
reflectances, following the formula: NDVI = (NIR − R)/(NIR + R) [36]. It is worth noting
that reflectance values typically range from 0 to 1, where 0 indicates no reflectance and 1
indicates total reflectance.

Within the realm of precision agriculture, the utilization of crop imagery via NDVI has
emerged as a promising tool for estimating primary production and evaluating the health
of major crops [37–39]. However, when it comes to pastoral landscapes, they exhibit distinct
characteristics compared to grain crops, primarily stemming from their diverse botanical
composition. These landscapes frequently encompass a variety of environments featuring a
wide array of plant species and non-uniform growth patterns. This complexity can lead to
diminished predictive accuracy. In the northwestern region of Patagonia, Argentina, Fariña
et al. [40] conducted an examination of ground cover in areas hosting perennial grasses and
shrubs using NDVI. The authors reported that both conditions yielded imprecise estimates
of vegetation cover.

In five dairy farms specialized in milk production in Tasmania, Australia, Chen
et al. [41] observed a low relationship (R2 ≤ 0.39) between in situ measurements of forage
biomass and NDVI information through linear regression analysis. The discrepancy be-
tween the two datasets indicates that vegetation NDVI cannot be directly used to estimate
biomass on the ground surface. Therefore, it is necessary to calibrate the model for each
region (farm) to reduce error [42].

In diverse pastoral environments with plants of the same growth pattern, the use of
NDVI provided a different perspective when considering other agronomic parameters
collected in situ. In six farms in Western Spain that had mixed pastures of legumes (Trifolium
subterraneum L. subsp brachycalycinum and yanninicum, Ornithopus sativus L., T. incarnatum
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L., T. michelianum Savi cv. Balansae, T. resupinatum L., T. vesiculosum Savi, and T. glanduliferum
Boiss), Pulina et al. [43] found that NDVI is a promising tool for measuring leaf nitrogen (N)
content and forage biomass yield, as it showed moderate correlations with both mentioned
characteristics (r = 0.52 and 0.52, respectively).

In Festuca grass (Festuca arundinaceavar), Schaefer and Lamb [44] found that the
combination of NDVI and height measurements obtained from a mounted vehicle resulted
in accurate estimations of forage biomass. In Mombaça guinea grass, Campana et al. [45]
observed that an NDVI value of 0.83 indicated the appropriate time to initiate grazing. For
this cultivar of Megathyrsus maximus, grazing is recommended when it reaches a height of
90 cm, corresponding to 95% light interception [9,46]. Additionally, a positive correlation
was observed, ranging from moderate to low, between NDVI and forage biomass (r = 0.49)
and leaf index (r = 0.33). However, the method did not show a correlation with the chemical
composition of the plants (crude protein and neutral detergent fiber).

3.3. NDVI Index for Assessing the Nutritional Status of Grasses

Quick NDVI mapping can assess nitrogen excess or deficiency in crops, improving
fertilizer management and reducing environmental stress caused by excess nitrogen use [47].
In wheat grain production (Triticum aestivum), Vian et al. [48] found that NDVI assessment
can be used for variable-rate nitrogen fertilization, allowing adjustment of the nitrogen
dose applied in different locations of the field. However, it is important to note that this
method has some limitations. An example of this was observed by Moral et al. [49] in the
Évora region of southern Portugal, where the exclusive use of NDVI was not sufficient to
assist in phosphorus (P) replenishment management in pasture areas.

Valle Júnior et al. [50], while diagnosing pasture degradation in the Uberaba River
Basin region (Minas Gerais, Brazil), found that it is possible to combine soil information (or-
ganic matter, macronutrients, penetration resistance) with remotely sensed NDVI imagery.
This combination allows for accurate estimation of the quantity and intensity of degrada-
tion in pasture areas. In the Amazon region, Valente et al. [51], studying the production of
Mombaça guinea grass for dairy buffaloes, found that NDVI, when associated with active
soil acidity (pH) information, enabled the distinction of less productive paddocks. With
this information, it becomes possible to identify areas that require maintenance fertilization,
as well as adjustments in stocking rates.

In an integrated crop–livestock system, Bernardi et al. [52] investigated the possibil-
ity of determining variations in vegetation indices between maize associated with Piatã
palisadegrass (Urochloa brizantha cv. Piatã) in a no-till system. According to the authors,
precise variations between the species can only be determined when combining NDVI
with soil chemical composition data. Furthermore, the combination of remote sensing
tools with in situ data can be applied to Urochloa decumbens pastures managed under con-
tinuous stocking, as observed by Batista et al. [53]. By employing NDVI in conjunction
with penetrometer resistance measurements acquired at evenly spaced intervals, it became
feasible to identify favored grazing zones for Girolando heifers. Additionally, this approach
allowed for the identification of areas characterized by elevated levels of compaction as a
result of trampling.

In Urochloa decumbens cv. Basilisk pastures managed under intermittent stocking
and grazed by beef sheep, it was possible to observe that NDVI values are related to
management criteria for the start of grazing. Using 85% of light interception (LI) with
a residual leaf area index (LAIr) of 1.8, NDVI values of 0.85 and 0.49 were obtained,
respectively. Meanwhile, a more conservative management approach, with 95% LI and 1.3
LAIr, yielded NDVI values of 0.88 and 0.44, respectively [54]. Under these two management
strategies, NDVI can indicate the appropriate timing for the start of grazing as well as the
ideal moment for pasture rotation.
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3.4. SPAD Index Is Used as an Indicator of Nutritional Requirements in Forage Plants

The SPAD index is a non-destructive and rapid method for measuring the relative
concentration of chlorophyll in plant leaves. It is widely used in agricultural research and
plant physiology studies to assess plant health and nutritional status [55]. However, it is
important to note that there is no single mathematical model for this index, as readings can
vary among different devices. Therefore, it is necessary to calibrate the device according to
the plant species and specific production system scenarios.

The SPAD index helps in identifying grasses that are more efficient in nutrient uti-
lization, as observed by Almeida et al. [56]. They studied three cultivars of Megathyrsus
maximus (Zuri guinea grass, Quênia guinea grass, and Tamani guinea grass) which were
grown in a red latosol soil and received increasing doses of nitrogen. The authors found
that Zuri guinea grass exhibited a high chlorophyll level and, regardless of the nitrogen
dosage used, resulted in the highest values of forage mass. However, Quênia guinea grass
showed similar chlorophyll values to Zuri guinea grass but did not demonstrate the same
productivity potential under the same management conditions.

In pastures of Piatã palisadegrass, it was observed that the cultivar exhibited pheno-
typic plasticity at different nitrogen (N) levels when managed under intermittent grazing.
The chlorophyll values obtained through SPAD showed a linear increase with the N dosage,
and this increase was proportional to the forage mass. Additionally, there was an increase
in the percentage of leaf mass in the forage canopy [57].

In maize plants, the SPAD index increases with the age of tillers, but a reduction in
the index occurs when plants reach the reproductive stage. Furthermore, a correlation is
observed between grain yield and SPAD index. Plants that exhibit higher SPAD values
during the vegetative and early reproductive stages show higher grain production [58].

In a study by Edalat et al. [21] evaluating maize under increasing N doses, a correlation
was found between grain yield, grain N content, NDVI, and SPAD values at different stages
of plant development. The combination of leaf nitrogen, SPAD, and NDVI in a regression
equation can be considered a potential tool for predicting maize grain yield. However, the
SPAD index performed better than the NDVI in early detection of N deficiency.

4. Remote Tools Used in Pasture Management

Wróbel et al. [59] showed that there are several technological tools and computational
methods for pasture management. However, in the context of tropical environments, partic-
ularly focused on Brazil, two tools stand out in the remote evaluation and management of
pastures, represented by Manejo Remoto (AIRED—Inovação em Geotecnologia, Uberaba,
Minas Gerais, Brazil) and Atlas das Pastagens (Laboratório de Processamento de Imagens
e Geoprocessamento da Universidade Federal de Goiás, Goiânia, Brazil) (Table 1). These
tools gained prominence because they offer greater accessibility for technicians, producers,
and the academic community.
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Table 1. Systems available for evaluation and management of pastures in tropical environments.

Technology/Commercial Name Parameters Link

Manejo Remoto®

(1) Stocking rate; Lot weight control; (2) Purchase
and sale of animals control; (3) Repositioning of
animals between paddocks; property
management history.

https://www.manejoremoto.com.br/
Accessed on 13 June 2023.

© Atlas das Pastagens

(1) Mapping of pasture areas in Brazil; (2)
Mapping of the quality of these areas, estimates
of carbon stock in pastures in the Cerrado biome;
(3) Information on the Brazilian cattle herd
analyzed from municipal livestock research data.

https://atlasdaspastagens.ufg.br/
Accessed on 3 July 2023.

The Manejo Remoto tool is available both through a website and a mobile application.
This tool offers a range of functionalities that enable more efficient control of animal
management activities. The main features include:

(a) Stocking rate and lot weight control: With Manejo Remoto, it is possible to monitor
and adjust the number of animals in specific areas, ensuring proper distribution and
avoiding overloading or underutilizing pastures. Additionally, the tool allows for
tracking lot weights, assisting in nutritional planning and identifying potential health
or performance issues.

(b) Buying and selling animal control: Through Remote Management®, all transactions re-
lated to buying and selling animals can be recorded, from negotiation to delivery. This
feature allows for maintaining an accurate transaction history, facilitating financial
management, and supporting strategic decision-making.

(c) Animal repositioning between paddocks: The tool also offers the ability to reposition
animals between different paddocks on the property, according to specific manage-
ment needs. This enables better utilization of available resources, optimizing grazing
and avoiding excessive grazing in certain areas.

In addition to these functionalities, Manejo Remoto also provides access to a complete
management history of the property, providing valuable information for retrospective
analysis and informed decision-making. With this tool at hand, farmers can optimize their
management activities, promoting more efficient and profitable operations.

The Atlas das Pastagens aims to map the areas occupied by pastures in Brazil and
assess the quality of these areas. Using image processing and geoprocessing techniques, the
atlas provides detailed information on the geographical distribution of pastures and their
condition, including parameters such as vegetation cover, soil fertility, and water resource
availability. Additionally, the atlas estimates carbon stocks in the Cerrado biome pastures
and analyzes data from municipal livestock research to provide relevant information about
the Brazilian cattle herd, such as its geographical distribution and evolution over time. This
information is essential for monitoring and planning livestock activities in the country.

5. Key Considerations to Be Considered in Studies Using Remote Sensing Methods to
Estimate Biomass and Nutritional Condition in Tropical Pasturelands

To promote efficiency in remote data collection, some key considerations should be
taken into account when training prediction models for biomass estimation and nutritional
condition assessment in tropical pasturelands:

(a) Based on studies conducted in pastoral environments, the selection of models consid-
ering the chemical composition of forage (crude protein, neutral detergent fiber, acid
detergent fiber, lignin, ether extract, in vitro dry matter digestibility) is not observed,
as the models are trained with a bias to estimate only productivity and/or availability
of forage biomass. The current model selection criteria may overlook factors that
compromise canopy quality (e.g., flowering period or stem elongation), leading to
undesirable accumulation of morphological components with lower nutritive value,

https://www.manejoremoto.com.br/
https://atlasdaspastagens.ufg.br/
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which compromises animal performance in pastoral environments [60–62]. Therefore,
it is necessary to train models to generate estimates of more productive pastures with
higher leaf biomass.

(b) It is important to consider that grazing intensity has a significant influence on pasture
growth dynamics. Studies conducted with Marandu palisadegrass (Urochloa brizantha
cv. Marandu) indicate that management at lower heights, under continuous stocking,
results in shorter leaf length and increased tiller population, while management at
higher heights leads to reduced tiller population and increased leaf length of the
tiller [63]. Due to phenotypic plasticity, this grass may exhibit growth dynamics
adapted to specific management conditions when managed under intermittent stock-
ing. Therefore, it is necessary to assess the need for parameterization of prediction
models for each management condition.

(c) The age of tillers influences forage biomass accumulation, as observed in pastures
of Megathyrsus maximus (Mombaça guinea grass and Tanzania guinea grass), white
‘Suvernola’ digit grass (Digitaria eriantha), and Marandu palisadegrass, where under
high defoliation frequencies, it impacts the production of young tillers, thus exposing
the canopy to higher growth vigor [64–67].

(d) Regarding pastures in the Brazilian savanna (Cerrado), it is important to note that
between the months of June and August, there is a decrease in temperature, with
values lower or equal to 15 ◦C, combined with water deficit. These conditions can
slow down tissue flow in tillers, change the structure of the forage canopy, and conse-
quently modify the relationship between forage biomass and the different evaluated
indices [64,65].

(e) The fertility requirements and nutritional condition of the canopy associated with
other abiotic factors (temperature, light, and precipitation) can cause fluctuations
in dry matter accumulation in the forage canopy [68]. To assist Brazilian producers
in understanding the specific characteristics of existing cultivars, Barrios et al. [69]
proposed an application called ‘Pasto Certo®’ (https://urlfr.ee/c1xxa, accessed on 3
January 2023).

(f) From the analysis of Figure 1A, it is possible to observe that it is necessary to train
models capable of predicting the daily accumulation rate of forage biomass and the
ideal timing to initiate grazing in pastures with lower height and higher population
density of tillers. In Figure 1B, the model should be able to estimate the forage growth
rate, as well as the appropriate forage biomass to initiate grazing. In a practical sense,
models capable of predicting the better time to start grazing can be more useful than
models of dry matter quantity prediction.

(g) Furthermore, it is crucial to develop algorithms and modeling techniques specifically
tailored to the growth of pastures in tropical climates, taking into account unique con-
ditions such as high temperatures, seasonal precipitation, and phenotypic plasticity.
This not only enhances the understanding and management of these ecosystems but
also promotes sustainable agricultural practices and environmental conservation in
tropical regions.

https://urlfr.ee/c1xxa


AgriEngineering 2023, 5 1622
AgriEngineering 2023, 5, FOR PEER REVIEW  9 
 

 

 
Figure 1. Management situation in intermittent stocking of the pasture of Paiaguás grass (Urochloa 
brizantha cv. BRS Paiaguás) in monoculture (A) and mixed pasture (B) of Urochloa spp. (Xaraés 
palisadegrass and Decumbens grass) with Megathyrsus maximus cv. BRS Quênia [Source: Compiled 
by the authors]. 

6. Models to Determine the Forage Accumulation Rate in Tropical Pasturelands 
Generally, to assess pasture growth and the daily forage accumulation rate in tropical 

climates, destructive methods or morphological and structural evaluation of the tiller are 
used [68]. Destructive methods involve cutting the forage to calculate the ratio between 
the pre- and post-grazing forage mass, and by dividing this ratio by the number of days 
between cutting intervals, it is possible to estimate the daily pasture growth. This 
technique is applied in pastures managed under intermittent stocking, at pre-grazing and 
post-grazing stages [9]. Another approach is the use of exclusion cages for pastures 
managed under continuous stocking [70]. Regarding growth at the tiller level, the 
expansion and leaf elongation rate of each individual tiller are assessed [64,65,71,72]. 
Although this method provides insights into the growth process, it is time-consuming, 
making it impractical for data collection related to the daily routine of commercial farms. 
Moreover, these methodologies provide us information from the past in a specific 
location. However, to improve productive decision-making in precision livestock farming, 
this information is not very useful. We would like to have predictions for the near future, 

  

Start of the grazing cycle End of the grazing cycle 

A 

B 

Figure 1. Management situation in intermittent stocking of the pasture of Paiaguás grass (Urochloa
brizantha cv. BRS Paiaguás) in monoculture (A) and mixed pasture (B) of Urochloa spp. (Xaraés
palisadegrass and Decumbens grass) with Megathyrsus maximus cv. BRS Quênia [Source: Compiled
by the authors].

6. Models to Determine the Forage Accumulation Rate in Tropical Pasturelands

Generally, to assess pasture growth and the daily forage accumulation rate in tropical
climates, destructive methods or morphological and structural evaluation of the tiller are
used [68]. Destructive methods involve cutting the forage to calculate the ratio between
the pre- and post-grazing forage mass, and by dividing this ratio by the number of days
between cutting intervals, it is possible to estimate the daily pasture growth. This technique
is applied in pastures managed under intermittent stocking, at pre-grazing and post-grazing
stages [9]. Another approach is the use of exclusion cages for pastures managed under
continuous stocking [70]. Regarding growth at the tiller level, the expansion and leaf
elongation rate of each individual tiller are assessed [64,65,71,72]. Although this method
provides insights into the growth process, it is time-consuming, making it impractical
for data collection related to the daily routine of commercial farms. Moreover, these
methodologies provide us information from the past in a specific location. However, to
improve productive decision-making in precision livestock farming, this information is
not very useful. We would like to have predictions for the near future, specifically of what



AgriEngineering 2023, 5 1623

forage accumulation will be in the upcoming days, such as the next 30, 60, or 90 days,
or even the production curve for the next year. Therefore, the development of indirect
methodologies, predictive models, and/or remote techniques is essential for better pasture
management in a precision livestock farming context.

There is the possibility of using predictive models to estimate forage mass and pasture
growth rate, as linear equations, multiple equations, and exponential models are widely
used in agricultural sciences. They have been employed to estimate the growth and carcass
characteristics of sheep [73,74], dry matter intake [75], gas production [76], leaf area index,
and leaf area of forage plants [77–79].

The CROPGRO model is highly accurate in simulating growth and forage accumula-
tion in perennial grasses, as it incorporates agronomic information (such as sowing rate,
seed weight, daily leaf area index increment, leaf appearance rate, and specific leaf area),
soil chemical composition data (organic matter and macronutrients), and rainfall and tem-
perature data to make predictions. This model has been successfully used in Urochloa
brizantha pastures [80,81] and Amaranthus spp. [82]. However, its application in commercial
properties in South America is not common because producers do not collect most of the
data used in the model. Therefore, for this region, it is necessary to calibrate simple models
that require less information and that can be collected through remote and simple methods.

The use of less complex models to determine the amount of vegetation cover in
Medicago spp. areas undergoing recovery was employed by Cooke [83], using a linear
equation: biomass (g m−2) = 0.0381 × CV2 + 0.1134 × CV, where CV is the percent coverage
of all vegetation, including litter. Through this equation, it was possible to assess the
growth rate of the mentioned forage.

To determine the reduction in forage mass in Axonopus catarinensis pastures estab-
lished in silvopastoral systems under intermittent grazing management by Brahman cattle,
Benvenutti et al. [84] used a quadratic model: FM (kg ha−1) = β0 + β1 × CH + β2 × CH2,
where MF is the accumulated forage mass during the pre-grazing period, CH is the canopy
height (cm), and β0, β1, and β2 are the equation parameters (values not provided by the
author). Thus, with the use of this equation, it was possible to determine the residual
forage mass and quantify the effects of three forage allowances (low, moderate, and high)
on animal grazing behavior.

Diavão et al. [85] conducted a study on the effect of different defoliation strategies (40%,
50%, 60%, and 70% of initial height) in Pennisetum clandestinum pastures managed under
intermittent stocking. They found that it was possible to estimate forage accumulation
using the marked tiller technique [86]. This was done by analyzing both the non-grazed
tillers and the grazed tillers. The following equations were determined: RNTFM (kg DM
ha−1 day) = 1.75 − 1.72 × ILAIr, R2 = 0.86, and RGTFM (kg DM ha−1 day) = 348.25 −
370.72 × LAIR, R2 = 0.97. In these terms, RNTFM represents the rate of non-grazed
tiller forage mass accumulation, RGTFM represents the rate of grazed tiller forage mass
accumulation, and LAIr is the residual leaf area index. We should observe how different
are the intercept and coefficient between non-grazed and grazed forages.

7. Considerations for the Main Remote and Non-Destructive Methods Used to
Measure Forage Biomass and Nutritional Condition of Pastures

The use of the sward height as the main tool for management in tropical and temperate
pasture was highlighted by Costa et al. [23]. However, when adopting the concept of
precision livestock farming, the inclusion of new technologies becomes crucial to efficiently
drive animal production. In Brazil, where large-scale farms can be found, the use of
remote tools can facilitate pasture management, similar to how remote methods are already
employed in agriculture to enhance agronomic performance of crops [87–89].

On the other hand, due to the scarcity of reliable literature involving prediction studies
of forage biomass in tropical pastures, it was necessary to expand the state-of-the-art study
to include research on legume crops, grain grasses, and cool-season plants with forage
suitability. Thus, the association between these studies revealed that to generate accurate
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and precise estimates, models need to incorporate remotely obtained data with in situ soil
information (penetration resistance and chemical composition). In other words, to predict
forage biomass production, it is necessary to understand the nutrient availability and the
level of nutritional management required for each cultivar.

The cultivation system (monoculture and intercropping), fertilization, and grazing
intensity used in the management of tropical grasses influence the phenotypic plasticity
of the forage canopy, altering the growth habit of the tiller, which in turn affects the
morphology of the tiller and the botanical composition of the canopy [90,91]. This is an
important factor to consider in studies involving remote data collection for training future
models via artificial neural networks.

The authors acknowledge that the use of remote methods can drive improvements in
pasture management and exponentially advance data collection for research and enhance
the management of pasture utilization for animal nutrition. However, to achieve positive
results, awareness among professionals and producers is necessary, demonstrating the
functionality and applicability of remote methods to maximize forage production and
utilization efficiency for domestic ruminant nutrition. Additionally, there is a lack of
suitable applications, programs, and proper training for the use of remote tools in predicting
forage biomass (Figure 2).
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Figure 2. Diagram of the main considerations regarding the use of remote methods for predicting
forage mass in tropical pastures (Source: Compiled by the authors).

Brestas et al. [92] highlight that despite rapid advancements in the integration of
precision technologies into pasture systems, significant challenges persist and must be
addressed in future research. These challenges encompass the lack of reliable reference data
[Figure 2] and the limited diversity in the datasets used for model calibration. To facilitate
the broad and effective dissemination of this knowledge in field environments, there is an
imperative need for greater emphasis on strengthening relationships between farmers and
researchers, transparently presenting the benefits, promoting collaboration among experts
from various domains, and developing software or applications that make the knowledge
accessible and easy to apply.

8. Conclusions

Undoubtedly, the management of tropical pastures is undergoing a significant trans-
formation, where the historical emphasis on grass height is being replaced by more tech-
nological approaches. The adoption of precision livestock farming is driving the need to
incorporate new technologies to optimize animal production. Especially in the Brazilian
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context, where large rural properties prevail, the implementation of remote tools has the
potential to simplify pasture management, following the example of agriculture.

However, it is important to note that, due to the lack of reliable studies related to
predicting forage biomass in tropical pastures, the concepts and information for applying
remote methods are derived from studies conducted with legumes, grain grasses, and
cool-season forage plants. The analysis of these studies underscores the importance of
integrating remotely collected data with on-site information, such as soil penetration
resistance and chemical composition, to produce more precise and accurate estimates.

Furthermore, for the generation of more reliable and accurate models for tropical
climate pastures, it is necessary to consider the effects of phenotypic plasticity, where
management height, as well as stocking rate, influences the rate of accumulation and the
availability of forage mass. Additionally, this should be associated with soil chemical
composition information.
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