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Abstract: Nutrient availability plays a crucial role in microalgae growth in domestic wastewater. In
this study, we investigated the impact of different nitrogen and phosphorus ratios (5:1, 10:1, and
20:1, m·m−1), and the addition of inorganic carbon on microalgae growth and nutrient uptake from
domestic wastewater. Microalgae biomass achieved values ranging from 0.54 to 1.41 g·L−1. The
cultivation process had maximum removal efficiencies of 83.7% for soluble chemical oxygen demand
(sCOD), 74.0% for total Kjeldahl nitrogen (TKN), and 100.0% for ammonia (NH3) and orthophosphate
(PO4

3−). All the NH3 and PO4
3− concentrations from domestic wastewater without supplementation

were completely removed on the fourth day of cultivation. Moreover, no significant differences
in microalgae growth, and NH3 and PO4

3− removals were observed between the conditions with
and without nutrient supplementation on the fourth day of cultivation. This study has shown the
feasibility of growing microalgae in domestic wastewater without any nutritional supplementation.
Further investigations are required to check the long-term performance, energy requirements, and
economic viability of this system for wastewater treatment and the production of nutrient-rich
biomass for agricultural applications.

Keywords: Pectinodesmus pectinatus; biological treatment; microalgae cultivation; nutrient recycling;
algal-bacterial processes

1. Introduction

Wastes are recognized as valuable sources of nutrients in the circular economy [1] and
it has been estimated that 30% of imported phosphates in the European Union could be
recovered from various sources, such as sewage sludge and biodegradable wastes [2]. Over
the past decades, microalgae-based wastewater treatment systems have been extensively
studied as an alternative to conventional municipal wastewater treatment [3]. These
systems offer an environmentally friendly solution for the removal of carbon, nitrogen, and
phosphorus from wastewater, and the biomass generated can be converted into high-value
agricultural biofertilizers [2,4].

The availability of nutrients in the culture medium plays a crucial role in microalgal
growth and poses a challenge for scaling up wastewater treatment processes [5,6]. Domestic
wastewater (DWW) derived from centralized sanitation systems in Brazil is highly diluted,
which can make it technically and economically impractical for microalgae cultivation [7].
As an alternative approach, Leite et al. (2019) [7] investigated the feasibility of blending
DWW with piggery effluent to enhance the nutrient concentrations (carbon, nitrogen, and
phosphorus) for microalgae cultivation. This study reported the successful production of
1.0 g·L−1 of Chlorella sorokiniana, accompanied by average removals of dissolved inorganic
carbon, PO4

3−, and NH3 ranging from 46% to 56%, 40% to 60% and 100%, respectively.
Besides the nutrient availability, the efficiency of microalgae-based wastewater pro-

cesses is often limited by the unbalanced carbon-to-nitrogen-to-phosphorus (C/N/P) ratio,
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for example, the ratio (100/25/12) of secondary effluent [8]. A well-balanced C/N/P
ratio is required for microalgae growth and effective N and P removal from wastewater
through assimilation [8], although it has received limited attention in previous studies.
Choi and Lee (2015) [9] checked the effect of the N:P ratio (5 to 70) on Chlorella vulgaris
cultivation in municipal wastewater. The optimum N/P ratio for biomass productivity and
nutrient removal varied from 5 to 20, depending on the specific ecological conditions of
the wastewater. These results oppose the traditional Redfield N:P ratio of 7.23:1 m·m−1 [9],
endorsing the need for optimizing the N:P for each wastewater type and microalgae species.

In this context, the direct application of DWW following preliminary treatments
(screening and grit removal) is advantageous for wastewater treatment mediated by
algae [9]. Therefore, it is essential to thoroughly investigate the nutrient removal and
biomass production aspects specific to this type of effluent. In this study, we aim to assess
the impact of different N/P ratios (5:1, 10:1, and 20:1 m·m−1) and bicarbonate addition on
biomass production and nutrient removal from DWW.

2. Materials and Methods
2.1. Biomass Production

The genus Chlorella is predominant in some cultivation systems using wastewater
as a culture medium [7,10]. Microalgae Chlorella sorokiniana (strain CK) was chosen for
this experiment because of its effective application for wastewater remediation and the
production of value-added products [11,12].

Chlorella sorokiniana was cultivated in a modified M8a medium [13], as described by
Leite et al. (2021) [14]. The microalgae were acclimated to domestic wastewater obtained
from the Monjolinho Wastewater Treatment Plant (WWTP) in São Carlos, SP, Brazil. Se-
quential dilutions were performed over four weeks to gradually transition the microalgae
from the culture medium to the wastewater. Subsequently, 1.25% (v·v−1) of this acclimated
inoculum was utilized in the seven-day batch experiments.

Each photobioreactor (PBR) unit was equipped with an individual aeration system,
consisting of a rotameter and needle valve for precise control. The distribution of air inside
the reactor was achieved using a porous hose commonly used in fish farming, with an
internal diameter of 16 mm and 5 mm thickness. The airflow rate was 10 L·min−1 for the
volume of 40 L per unit. For each PBR, 16 tubular fluorescent lamps (8 on each side) of
40 W and 120 cm long were installed on a stainless-steel plate to increase the light intensity.
A 12 h photoperiod was used with a light intensity of approximately 261.89 µmol·m−2·s−1

(14,156 lux). The inoculum added to all the PBRs at the beginning of each operation was
obtained from the same PBR with the best biomass production.

For each batch, a volume of approximately 165 L DWW was collected from the
full-scale Monjolinho WWTP. The samples were collected strictly at the same time for
characterization in terms of pH, total alkalinity, partial alkalinity, TKN, total phosphorus
(TP), and chemical oxygen demand (COD), according to APHA (2017) [15]. The evaluation
of the cultivation was conducted in three stages as indicated in Figure 1. Stage 1 was
performed in the month of February 2021, Stage 2 in June and July 2021, and Stage 3 in
September 2021. The first stage corresponds to operations 1–3 (OPRs 1–3), with supplemen-
tation of N and P by the addition of NH4Cl and KH2PO4. The inorganic carbon was not
added (i.e., no bicarbonate-NB). Four nutritional conditions (N:P) were analyzed: DWW
without supplementation (negative control) (DWW—NB), 5:1 (5:1—NB), 10:1 (10:1—NB),
and 20:1 (20:1—NB). The nitrogen concentration was the same (100.0 mg N·L−1) for all
the N:P conditions (5:1, 10:1, and 20:1). The N:P ratios were selected based on a previous
study [9].

In Stage 2, operations 4, 5, and 6 (OPRs 4–6) had supplementation of N, P, and inorganic
carbon by the addition of NaHCO3 (i.e., with bicarbonate-WB). The nutritional conditions
were: DWW without supplementation (negative control) (DWW—WB), 5:1 (5:1—WB),
10:1 (10:1—WB), and 20:1 (20:1—WB). The nitrogen concentration (100 mg N·L−1) and
initial partial alkalinity of 400 mg CaCO3·L−1 were applied for the three conditions of N:P.
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For both Stages 1 and 2, 200 mL of samples were collected at the beginning and the end
of each operation, strictly at the same time. In Stage 3, the best N:P ratio (TKN: total P) in
terms of biomass production was evaluated with and without NaHCO3 supplementation
(OPR 7). The evaluation was made using two PBRs, one of which added NaHCO3 (up to a
concentration of, approximately, 400 mg CaCO3·L−1 in terms of partial alkalinity), while
the other PBR was used with DWW without supplementation as a negative control. In this
stage, 50 mL of samples were collected daily, strictly at the same time. All the samples were
analyzed immediately.
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Figure 1. Cultivation stages evaluated in this study.

2.2. Monitoring of Microalgae Growth and Wastewater Treatment

The analyses performed and their frequency are shown in Table 1. The temperature
was measured daily by TMM Zurich. The DO and pH variables were measured at the end
of the light period, according to APHA (2017) [15].
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Table 1. Frequency of analyses in each stage. Stage 1: without NaHCO3 supplementation and with NH4Cl and KH2PO4 supplementation, to obtain N:P ratios of 5:1,
10:1, and 20:1. Stage 2: with supplementation of NaHCO3, NH4Cl, and KH2PO4. Stage 3: two nutritional conditions, with and without NaHCO3 supplementation
for the best N:P condition verified in Stages 1 and 2.

Daily Analyses Abbreviation Unit Reference
Stage

PBR Input and Output Analysis Abbreviation Unit Reference
Stage

1, 2 3 1, 2 3

Maximum and
minimum temperature TMAX and TMIN

◦C [15] X X Cell Biovolume - µm3 [20,21] X X

Dissolved Oxygen DO mg O2·L−1 4500-O [15] X X Genus and Species Identification - - [22,23] X X
pH - - 4500-H+ [15] X X Volatile Suspended Solid VSS mg·L−1 2540 D [15] X X

Partial and Total Alkalinity - mg
CaCO3·L−1 2320-B [15] X X Total Suspended Solid TSS mg·L−1 2540 D [15] X X

Optical Density at 530
and 680 nm OD530 and OD680 - [16,17] X X Fixed Suspended Solid FSS mg·L−1 2540 D [15] X X

Chlorophyll-a - mg·L−1 [18,19] X Ammonia Nitrogen NH3 mg N·L−1 4500-NH3C [15] X
Dry Weight DW mg·L−1 [7] X Total Kjeldahl Nitrogen TKN mg N·L−1 4500-Norg.B [15] X

Ammonia Nitrogen NH3 mg N·L−1 4500-NH3C [15] X Nitrate NO3
− mg N·L−1 Hach® 10020 [15] X

Total Kjeldahl Nitrogen TKN mg N·L−1 4500-Norg.B [15] X Nitrite NO2
− mg N·L−1 Hach® 10019 [15] X

Nitrate NO3
− mg N·L−1 Hach® 10020 X Total Phosphorus TP mg P·L−1 4500-P E [15] X

Nitrite NO2
− mg N·L−1 Hach® 10019 X Orthophosphate PO4

3− mg P·L−1 4500-P E [15] X
Total Phosphorus TP mg P·L−1 4500-P E [15] X Soluble Chemical Oxygen Demand sCOD mg O2·L−1 5220 B [15] X
Orthophosphate PO4

3− mg P·L−1 4500-P E [15] X
Soluble Chemical
Oxygen Demand sCOD mg O2·L−1 5220 B [15] X
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The microalgae development was monitored by absorbance at 530 and 680 nm
(i.e., OD530 and OD680) using a spectrophotometer (DR 5000™, Hach®, Ames, Iowa, USA),
chlorophyll-a [18,19], and DW [7].

Samples were fixed in 1% acetic Lugol and kept in amber glass vials for subsequent
analysis. The identification of the microalgae genus and species was conducted according
to Bicudo and Menezes (2017) [22], and Oliveira (2015) [23], respectively. It was based on
the morphometric characteristics of population samples (n = 30).

The counts for cell density (cells·mL−1) in each sample were performed in a Fuchs–
Rosenthal chamber for each square (ranging from 2 to 8 cells). The estimation of the cell
density was performed using a trinocular optical microscope (BX51, Olympus®) with a
photographic camera attached (Roper ScientificTM). The Image-Pro Plus v.7.0 software was
used to obtain the cell measurements.

The counting error (e, %) with a confidence limit of 95% was calculated based on the
total number of cells counted in the sample (N), according to Equation (1).

e =
2√
N
·(100) (1)

The cell volume (V, µm3) was calculated using Equation (2) with the information on
the cell diameter (d, µm) and length (l, µm) obtained according to the criteria reported
previously [20,21].

V =
π

6
·d2·l (2)

The volume correction was made to determine the real nutrient concentrations in
the reactors considering the evaporation effect. The samples were filtered into 0.45 µm
membranes before the analysis of the sCOD, PO4

3−, NH3, NO3
−, and NO2

−. All the
analyses were made in triplicate and the nutrient removal efficiency was determined.

2.3. Statistical Analyses

All the results were expressed by the mean and standard deviation. The one-way
ANOVA and Tukey test were used to compare the efficiencies obtained for each condition
tested. The statistical analyses were performed with a significance level of 0.05 using the
OriginPro software (OriginLab Corp., Northampton, MA, USA).

3. Results and Discussion
3.1. Inoculum Characterization

The characteristics of the inoculum added in each operation are shown in Table S1.
The dominance of Pectinodesmus pectinatus (P. pectinatus), formerly Scenedesmus pectinatus,
of 90–100% was observed in all samples, despite the cultivation operations being per-
formed in different seasons of the year. The other species that appeared sporadically in
the samples were: Desmodesmus communis, Navicula sp., and Chlorella vulgaris. Although
Chlorella sorokiniana has been previously acclimated to the effluent used as inoculum for
this research, its cultivation in non-sterile systems is susceptible to contamination by wild
strains unless additional means of control are utilized [24]. Therefore, the predominance
of Pectinodesmus pectinatus in our inoculum is probably due to its natural presence in the
domestic wastewater used in our work. Our study did not control the microalgae species
to simulate the conditions when microalgae are applied to treat wastewater at a large scale,
which is impossible to control.

The cell density reported was 1.12–1.32× 105 cell·mL−1 for Stage 1, 0.29 × 105 cell·mL−1

for Stage 2, and 9.78 × 105 cell·mL−1 for Stage 3. The lowest values of cell density and dry
weight were observed in OPR 6. The ratio between the OD680 and OD530 is an indicator of
the chlorophyll-a per cell and the values lower than 1.0 suggest inhibition of chlorophyll-
a synthesis by the microalgae cells. All the values were above unity (1.05–1.35), which
indicates that all the inoculums used were healthy.
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3.2. Microalgae Cultivation

Most microalgae species have an optimum growth range between 20 and 30 ◦C and
a light intensity between 33 and 400 µmol·m−2·s−1 [25]. The light intensity applied in
this study was approximately 261.9 µmol·m−2·s−1 for all the PBRs. Furthermore, the
temperature during the cultivation varied according to the seasons of the year in which
they were performed: summer (31.35 ± 1.45 ◦C, Stage 1), winter (26.04 ± 1.80 ◦C, Stage 2),
and spring (34.08 ± 2.08 ◦C, Stage 3), however, the values were within the optimal growth
range for P. pectinatus (10 to 37 ◦C) [26].

The same DO trend was observed in all nutrient conditions in Stages 1 and 2: an
increase until 72 h, followed by a decrease until 96 h, and a new increase until the end of
the operation (Figure 2c). The increase in DO in the first hours of cultivation indicates the
increment of photosynthetic activity by the microalgae population, since the aeration rate
was the same in all the PBRs [27]. The following oscillations are typical of mixotrophic
cultures during the photoperiod. Besides respiration, oxidation of NH3 to NO3

− and of
NO3

− to NO2
− may also consume the DO in the medium [28].
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No significant differences in DO concentration were observed between the N:P ratios at
each stage. The average concentrations reached up to 15.6 ± 0.9 mg·L−1 of DO (DWW-WB)
in Stage 2, a value that exceeds 2.5 mg·L−1 of DO, the corresponding nutrient treat-
ment verified in Stage 1 (DWW-NB). A similar relationship was reported previously
for the performance of high-rate algae ponds with and without the supplementation
of inorganic carbon [29]. The author verified a higher DO concentration in ponds with
CO2 supplementation.

Abiotic factors, such as temperature, also affect the concentration of DO in the medium.
In general, the higher the temperature, the lower the solubility of oxygen in water, which
results in a lower concentration of DO. This was observed in Stages 1 and 2 of the present
study: the lowest mean DO concentrations were found during the stage with the highest
mean temperature (Stage 1), and the lowest mean DO concentrations were observed during
the stage with the lowest mean temperature (Stage 2).
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The negative controls (DWW-NB and DWW-WB) had the lowest alkalinity consump-
tion (Figure 3). In Stage 1, the DWW-NB showed removal of total and partial alkalinity of
34.1% and 22.2%, respectively. In Stage 2, the DWW-WB had removal of total and partial
alkalinity of 43.4% and 39.6%, respectively. The nutritional adjustments, 5:1, 10:1, and
20:1, in Stage 1 resulted in the highest total (76.6, 91.2, and 98.3%, respectively) and partial
(99.8, 95.9, and 99.6%, respectively) alkalinity reductions, resulting in a pH decrease to
values of 3.7, 6.0, and 4.5, respectively, after 168 h of cultivation. In Stage 2, the same
nutritional conditions resulted in total alkalinity reductions of 75.7, 81.7, and 80.4% (respec-
tively for 5:1, 10:1, and 20:1) and partial alkalinity of 75.9, 83.4, and 78.1% (respectively for
5:1, 10:1, and 20:1), which maintained pH at higher values (8.1, 7.3, and 8.3, respectively, for
5:1, 10:1, and 20:1) than those observed in Stage 1 (Figure 2). The alkalinity consumption is a
result of the use of bicarbonate (HCO3

−) as a source of inorganic carbon for photosynthesis.
The HCO3

− is converted into CO2 by intracellular enzymes of carbonic anhydrase and
there is a consequent release of OH− into the medium [25], which justifies the increase in
pH at the beginning of the operations (Figure 2).
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During Stage 1, the pH of treatments 5:1, 10:1, and 20:1 had an ascending behavior
until 24 h (probably because of photosynthetic activity), and then presented a decreasing
profile, with some oscillations in the decline until the end of the operation. The highest
pH values were observed in the negative control (DWW-WB) and the 20:1-WB nutritional
condition in Step 2, reaching 9.8 and 9.4, respectively (Figure 2). The bicarbonate addition
kept the pH relatively constant in Stage 2 for all testing conditions.

No considerable difference was observed between the treatment without and with
bicarbonate during Stage 3 for pH, DO, and temperature. The total alkalinity concentration
without NB and WB were 245.2 ± 64.4 mg CaCO3·L−1 and 377.5 ± 82.0 mg CaCO3·L−1,
respectively. The partial alkalinity concentrations of NB and WB were 193.7 ± 47.3 mg
CaCO3·L−1 and 315.7± 66.8 mg CaCO3·L−1, respectively. The behavior of these conditions
differed mainly at the end of the operation. The total and partial alkalinity decreased from
120 h for NB, while there was an exponential increase in these variables from 144 h for WB.

3.3. Microalgae Growth

The microalgae growth was evaluated by the OD680, OD680/OD530, and DW in
Stages 1 and 2; and the cell density, biovolume, and OD680 during the operations of
Stage 3 (Figure 4).

The highest DO680 (1.63) was found in the 5:1-WB condition. There was a trend of
increasing OD680 until 100 h in Stages 1 and 2. After this point, the cultures supplemented
with NaHCO3 continued to increase OD680. However, the cultures without NaHCO3 sup-
plementation tended to decline until the end of the batch, except for the 5:1-NB condition.
This suggests that longer periods of cultivation with NaHCO3 supplementation should be
evaluated. This result is consistent with previous studies [30,31].

No significant differences were observed in terms of the OD680 between the treatments
(p > 0.05, Table 2). The OD680/OD530 values remained above 1.0 from 48 to 168 h in
Stages 1 and 2. In general, the WB showed higher values than the NB cultivations.

A distinct behavior was observed for the DW in the 5:1-WB compared to the other
conditions. It reached a higher value at 72 h of cultivation, corresponding to 1.41 g·L−1

or a productivity of 0.47 g·L−1·d−1. No significant differences (p > 0.05) were found in
terms of the DW between the conditions with NB (Table 2). The same was observed for the
WB (Table 2), despite the higher biomass production.

These findings contrast with previous studies that identified an optimal N:P ratio.
Choi and Lee (2017) [9] found the best N:P ratio of 10:1 for Chlorella vulgaris cultivation in
municipal wastewater, reaching 2.97 g·L−1·d−1 of biomass productivity, while Arbib et al.
(2013) [32] observed maximum biomass productivity (0.32 g L−1·d−1) at an N:P ratio of
13:1 for Scenedesmus obliquus cultivation in wastewater.

In Stage 3 (Figure 4), the WB showed 5.55 ± 3.71 × 105 cell·mL−1 for cell density,
7.76 ± 2.21 × 10 µm3 for biovolume, and 0.71 ± 0.27 for OD680, while the NB showed
6.55 ± 5.25 × 105 cell·mL−1 for cell density, 7.78 ± 3.01 × 10 µm3 for biovolume, and
0.70 ± 0.28 for OD680. No significant differences (p > 0.05) were observed between the
WB and NB for OD680. The addition of NaHCO3 did not result in a considerable difference
in these variables. It is common to find different results about the effect of inorganic carbon
addition in the literature [33,34]. In this case, there is no reason for supplementation,
which is more advantageous from the perspective of cost and operational simplicity in
microalgae-based systems.
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Figure 4. Values for absorbance (OD680, OD680/OD530) and dry weight (DW), during (a) Stages 1 and 2,
and cell density, biovolume and absorbance (OD680) during the operations of (b) Stage 3. The mean value
of the triplicate samples is shown.
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Table 2. Results of the N:P conditions in Stage 1 (without bicarbonate addition—NB) and Stage 2 (with bicarbonate addition—WB).

Condition
DW 96 h

OD 96 h (680 nm) sCOD Removal (%) TKN Removal (%) NH3 Removal (%)
NO2− NO3− PO43− Removal

VSS Increment (%)(g·L−1) (mg·L−1) (mg·L−1) (%)

Stage 1
DWW-NB 0.54 ± 0.29 a 0.73 ± 0.16 a 72.09 ± 7.99 a 73.98 ± 32.08 a 100 a 1.20 ± 1.79 a 1.28 ± 0.10 b 94.09 ±9.16 a 8.82 ± 96.51 a

5:1-NB 0.51 ± 0.22 a 0.86 ± 0.03 a 83.65 ± 12.53 a 52.80 ± 18.33 a 79.55 ± 16.97 a 1.09 ± 1.63 a 19.72 ± 7.45 a 1.99 ± 9.65 b 288.90 ± 530.97 a

10:1-NB 0.51 ± 0.57 a 1.01 ± 0.46 a 81.40 ± 15.96 a 46.76 ± 17.90 a 81.16 ± 27.29 a 6.83 ± 5.79 a 3.21 ± 1.94 b 5.13 ± 24.53 b 108.42 ± 161.13 a

20:1-NB 0.71 ± 0.01 a 1.5 ± 0.88 a 81.68 ± 10.64 a 42.51 ± 21.87 a 80.41 ± 25.88 a 2.28 ± 2.33 a 9.13 ± 5.18 ab 100 a 322.63 ± 498.63 a

Stage 2
DWW-WB 0.44 ± 0.11 c 0.95 ± 0.18 c 45.21 ± 35.07 c 62.87 ± 21.04 c 100 c 0.20 ± 0.04 e 0.76 ± 0.10 c 97.46 ± 4.00 c 440.95 ± 496.29 c

5:1-WB 0.82 ± 0.42 c 1.36 ± 0.58 c 41.39 ± 50.26 c 68.58 ± 8.97 c 100 c 7.05 ± 4.88 cd 5.22 ± 6.64 c −30.60 ± 162.25 c 63.29 ± 52.65 c

10:1-WB 0.64 ± 0.38 c 1.22 ± 0.84 c 19.53 ± 59.21 c 72.06 ± 7.52 c 95.97 ± 6.9 c 10.14 ± 0.15 c 6.33 ± 3.94 c 73.32 ± 21.78 c 301.35 ± 74.99 c

20:1-WB 0.45 ± 0.21 c 0.91 ± 0.33 c 35.21 ± 47.33 c 70.08 ± 6.54 c 100 c 2.54 ± 0.63 de 4.38 ± 2.97 c 98.33 ± 2.58 c 331.86 ± 18.28 c

Different letters in the same column indicate significant differences between reactors treatments (one-way ANOVA with Tukey test, p < 0.05). The statistical analysis was performed
specifically for each stage of the research, considering the nutritional conditions of DWW, 5:1, 10:1, and 20:1, with or without bicarbonate, depending on the stage. It is not a direct
comparison between Stages 1 and 2. The removal percentages are associated with the initial and final days of cultivation. As for the variables associated with microalgae growth
(OD 96 h—680 nm) and total biomass (DW 96 h), they correspond to a cultivation period of 96 h.
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3.4. Wastewater Treatment Monitoring
3.4.1. Nitrogen

The TKN removals were 74.0 ± 32.1%, 52.8 ± 18.3%, 46.8 ± 17.9%, and 42.5 ± 21.9%
for DWW-NB, 5:1-NB, 10:1-NB, and 20:1-NB in Stage 1, respectively (Figure S1). The TKN
removals were 63.0 ± 21.0%, 68.6 ± 9.0%, 72.1 ± 7.5%, and 70.1 ± 6.5% for DWW-WB,
5:1-WB, 10:1-WB, and 20:1-WB in Stage 2, respectively.

Different testing conditions showed total NH3 removal (DWW-NB, DWW-WB,
5:1-WB, and 20:1-WB, Figure 5), while the removals for the other conditions varied from
79.6 to 96% (Table 2). These values are in accordance with the removals previously reported
in the literature for different N:P ratios. Alketife et al. (2017) [35] found a complete nitro-
gen removal using an N:P ratio of 10:1 for C. vulgaris cultivation in synthetic wastewater.
Regarding N removal, Arbib et al. (2013) [32] reported an optimal N:P molar ratio of 9:1,
which achieved a 95% efficiency for S. obliquus cultivation in pretreated urban wastewater.
Furthermore, the results found endorse the expressive capacity of Pectinodesmus sp. for
removing nitrogen in domestic wastewater, as observed in previous studies [36,37].
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No significant differences (p > 0.05) were observed for TKN and NH3 (Table 2) concen-
trations between the treatments 5:1, 10:1, 20:1, and the negative control in Stages 1 and 2.
The differences observed between earlier studies and the present study can be attributed
to various factors that have an impact on microalgae growth and nutrient removal, such
as the microalgae species [38], initial nutrient concentration, physicochemical properties
(e.g., pH, temperature and nutrient concentration), and other growth conditions (e.g., light
and CO2) [39]. Similar to Lu et al. (2021) [40], total NH3 removal was observed for the
WB and NB in Stage 3 (Figure 5c), with a mean pH of 9.2 ± 0.6 (NB) and 9.4 ± 0.6 (WB).
No relevant differences were observed between the NB and WB for TKN (Figure S1) and
NH3 (Figure 5).

The decay of ammonia and, consequently, TKN can occur due to nitrogen transforma-
tions (e.g., ammonia oxidation, volatilization, and nitrification) in the reactors and the up-
take by microalgae [34]. Microalgae preferentially assimilate nitrogen in the ammonia form,
due to the lower metabolic expenditure in the process, when compared to other inorganic
nitrogen sources, such as nitrite (NO2

−) and nitrate (NO3
−). The environmental conditions

for the cultivation (pH > 9.0, aeration, and temperature of 20–25 ◦C) favor the volatilization
of ammonia, causing indirect nitrogen removal [7,40]. The NH3 oxidation reaction and
nitrification reaction are carried out by ammonia-oxidizing bacteria and nitrite-oxidizing
bacteria, respectively. The activity of the bacteria can be affected by the environmental
conditions (temperature, pH, and DO) and it can allow the NO3

− accumulation [41]. In
Stage 1 and 2, a considerable nitrification process is happening and concentrations up
to 10.14 ± 0.15 mg N·L−1 of NO2

− (10:1-WB, in Stage 2, Figure S2) and 19.72 ± 7.44 mg
N·L−1 of NO3

− (10:1-NB, in Stage 1, Figure 6) were reported during the cultivation period.
These processes can occur simultaneously, and it is challenging to accurately specify their
contribution to nitrogen removal.

Significant differences (p < 0.05) were found for the nitrate concentration (Figure 6,
Table 2) among the 5:1, 10:1, 20:1, and DWW-NB in Stage 1. Nitrate increased in all
testing conditions in Stage 1, showing maximum final concentrations of 19.72 ± 7.44 and
9.13 ± 5.18 mg N·L−1 for 5:1-NB and 20:1-NB, respectively. The nitrate concentration
increased in all N:P treatments in Stage 2, showing final concentrations of 6.33 ± 3.94 and
5.22 ± 6.64 mg N·L−1 for 10:1-WB and 5:1-WB, respectively, but there was no significant
difference among the treatments in Stage 2.

No significant differences (p > 0.05) were observed in the nitrite concentration (Figure S2,
Table 2) between 5:1-NB, 10:1-NB, 20:1-NB, and DWW-NB in Stage 1. The nitrite increased in all
testing conditions in Stage 1, showing final concentrations of 6.83± 5.79 and 2.27± 2.33 mg N·L−1

for 10:1-NB and 20:1-NB, respectively. However, in Stage 2, there was a significant difference
(p < 0.05) observed among the treatments DDW-WB, 5:1-WB, 10:1-WB, and 20:1-WB, showing
final concentrations of 0.20± 0.04 mg N·L−1, 7.04± 4.88 mg N·L−1, 10.14± 0.15 mg N·L−1 and
2.54± 0.63 mg N·L−1, respectively.

The results suggest that nitrogen supplementation (Stages 1 and 2) favored nitrification,
however, the differences between the operations with N supplementation and DWW are
not significant (p > 0.05). Besides that, bicarbonate addition did not impact the nitrification
process in Stage 3 and the nitrite and nitrate concentrations in DWW-NB and DWW-WB
are not significantly different (p > 0.05).

3.4.2. Orthophosphate

The highest removals of PO4
3− (Figure 7) in Stage 1 were 94.08± 9.16 and 100.00 ± 0.00%

for the DWW-NB and 20:1-NB, respectively. The 5:1-NB and 10:1-NB had removals of
1.98 ± 9.65% and 5.13 ± 24.53%, respectively. While the highest removals in Stage 2 were
97.46 ± 3.99% and 98.33 ± 2.58% for the DWW-WB and 20:1-WB, respectively. The 5:1-NB
and 10:1-NB had removals of 1.98 ± 9.65% and 5.13 ± 24.53%, respectively. The 10:1-WB
had a removal of 73.32± 21.78%, while the 5:1-WB had an increment of 30.59± 162.25%. No
significant differences were found for orthophosphate removal in Stage 2 (p > 0.05, Table 2).
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−) during the operations of (a) Stage 1 (without bicarbonate addition),

(b) Stage 2 (with bicarbonate addition), and (c) Stage 3 (with and without bicarbonate addition). The
mean and standard deviation of the triplicate samples are shown.

In general, these values are in agreement with the removals previously reported
in the literature using different N:P ratios [42]. Delgadillo-Mirquez et al. (2016) [43]
reported a PO4

3− removal of 100% using an N:P of 17:1 after 100–150 h of cultivation
in municipal primary wastewater, using a high rate algal pond. Choi and Lee (2015) [9]
found total phosphorus removal of over 80% until the N:P ratio reaches a value of 1:20,
while the removal decreased significantly for higher N:P values. In our studies, the best
removals were obtained for DWW-NB (94.1%), DWW-WB (97.5%), 20:1-NB (100%), and
20:1-WB (98.3%).

In Stage 1, the phosphate removal resulting from the DWW-NB and 20:1-NB treat-
ments were statistically similar, while the phosphate removal from the 5:1-NB and 10:1-NB
treatments were also statistically similar (p > 0.005, Table 2). No significant differences were
found for the PO4

3− removal in Stage 2 (p > 0.05, Table 2).
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3.4.3. sCOD

The sCOD removals (Figure 8) were 72.09 ± 7.99, 83.65 ± 12.52, 81.39 ± 15.96, and
81.67 ± 10.64% for DWW-NB, 5:1-NB, 10:1-NB, and 20:1-NB, respectively. While the sCOD
removal efficiencies were 45.20 ± 35.06, 41.39 ± 50.25, 19.53 ± 59.20, 35.21 ± 47.33% for
DWW-WB, 5:1-WB, 10:1-WB, and 20:1-WB in Stage 2. No significant differences were
found between all testing conditions in Stages 1 and 2 (p > 0.05). In Stage 3, the removal of
80.14 ± 2.70 and 74.01 ± 3.32% were reported for DWW-WB and DWW-NB, respectively.
No significant differences (p > 0.05) were observed between these treatments. These results
are consistent with the ones previously reported in the literature for domestic/municipal
wastewater [28,44].
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without bicarbonate addition). The mean and standard deviation of the triplicate samples are shown.

4. Conclusions

In this study, different ratios of nitrogen and phosphorus (DWW, 5:1, 10:1, and 20:1)
and the addition of inorganic carbon were evaluated for microalgae growth and nutrient
uptake. Microalgae growth reached DW values ranging from 0.54 to 1.41 g·L−1. The
cultivation process had maximum removals of 87.7, 74.0, 100.0, and 100.0% for sCOD, TKN,
NH3, and PO4

3−, respectively. All the NH3 and PO4
3− concentrations from DWW without

supplementation were completely removed on the fourth day of cultivation. Moreover,
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no significant differences in the microalgae growth were observed between the conditions
with and without supplementation on the fourth day of cultivation. Similarly, no significant
differences in the removal of NH3 and PO4

3− were observed between the conditions tested
throughout the entire cultivation period. In our study, the supplementation of nitrogen,
phosphorus, and bicarbonate did not significantly change the microalgae growth, showing
the feasibility of cultivating microalgae in domestic wastewater.
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