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Abstract: Physical classification is the procedure adopted by the rice unloading, delivery, storage,
and processing units for the commercial characterization of the quality of the grains. This step occurs
mostly by the conventional method, which demands more time and specialized labor, and the results
are subjective since the evaluation is visual. In order to make the operation faster, more accurate,
and less dependent, non-destructive technologies and computational intelligence can be applied to
characterize grain quality. Therefore, this study aimed to characterize and predict the quality of whole,
processed rice grains, as well as classify any defects present. This was achieved by sampling from the
upper and lower points of four silo dryers with capacities of up to 40,000 sacks. The grain samples had
moisture contents of 16%, 17%, 18%, and 19% and were subjected to drying-aeration until reaching
12% moisture content (w.b.). Near-infrared spectroscopy technology and Machine Learning algorithm
models (Artificial Neural Networks, decision tree algorithms Quinlan’s algorithm, Random Tree,
REPTree, and Random Forest) were employed for this purpose. By analyzing Pearson’s correlation
statistics, a strong negative correlation (R2 = 0.98) was found between moisture content and the yield
of whole grains. Conversely, a strong positive correlation (R2 = 0.97) was observed between moisture
content and classified physical defects across the various characterized physicochemical constituents.
These findings indicate the effectiveness of near-infrared spectroscopy technology. The Random Tree
model (RandT) successfully predicted the grain quality outcomes and is therefore recommended
as the model of choice, obtained Pearson’s correlation coefficient (r = 0.96), mean absolute error
(MAE = 0.017), and coefficient of determination (R2 = 0.92). The results obtained here reveal that
the combination of near-infrared spectroscopy technology and Machine Learning algorithm models
is an excellent non-destructive alternative to manual physical classification for characterizing the
physicochemical quality of whole and defective rice grains.

Keywords: artificial intelligence; post-harvest innovations; monitoring of stored grains; non-destructive
technology; rice quality

1. Introduction

The classification step is responsible for characterizing the physical quality of the
grains by manually separating the physical defects. Physical defects can come from the
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crop, for example, due to weather conditions (fermented, burnt, and moldy grains), cultivar
type (chalky grain), or due to harvesting processes (broken rice), as well as physical
defects can appear or worsen in the post-harvest stages. Regardless of the stage, for
quality standardization, there are specific regulations, which attribute maximum levels
of defects, as well as specifications for product marketing [1]. During the classification
process, the grains with defects are visually identified, classified according to the specific
standard, and then removed from the sample [2,3]. The conventional classification process
demands more processing time and specialized labor, which can directly interfere with
the logistics and flow of the grain mass at the pre-processing and storage unit. Moreover,
physical evaluations are often subjective and can lead to errors, impacting the quality of
the commercialized product.

To meet this demand, the need for new studies to evaluate technologies for indirect
measurement of grain quality has emerged, so that the process becomes faster and more
assertive. Non-destructive technologies and computational intelligence algorithms have
been applied for characterizing the qualitative parameters of agricultural products [4,5].
Among the currently available technologies, near-infrared spectroscopy (NIR) is one of
the most addressed and applied for agricultural product evaluation. Near-infrared spec-
troscopy is a highly flexible form of analysis that can be used in a wide range of research and
industrial process applications. NIR spectroscopy is a method that uses the near-infrared
region of the electromagnetic spectrum (from about 700 to 2500 nanometers). By measuring
scattered light from and through a sample, NIR reflectance spectra can be used to quickly
determine the properties of a material without altering the sample [4]. Scientists applied
this technology in the evaluation of rice grains and they are achieving 93% accuracy [4].
Furthermore, the NIR technology obtained satisfactory results in the evaluation of rice
quality for different cultivars and fertilizer levels [1].

The use of Machine Learning (ML) algorithms has also presented expressive outcomes
when applied to predict the quality of agricultural products. Machine learning focuses
on the principle that all complex data points can be mathematically linked by computer
systems, provided they have enough data and computing power to process those data. In
this context, the use of ML algorithms has offered greater capacity for processing, analyzing,
and interpreting data [6]. When properly modeled, ML techniques can offer responses in
less time when compared to statistical regression models. Overall, the main algorithms that
have been applied in agricultural studies are: Artificial Neural Networks, Decision Trees,
Random Forest, and Support Vector Machines [7,8]. Random Forest (RF) is an ML technique
successfully used in yield forecasting and quality assessment [9]. This model proved to be
an effective and easier-to-use method for predicting corn and wheat quality when compared
to multiple linear regression models. Artificial Neural Networks (ANN) is another model
that can be trained from data related to corresponding inputs and outputs [10]. ANNs
are useful tools for the analysis and interpretation of complex food security data, and
predictions of physical and chemical seed quality. During the last few years, research
has investigated the results of using ML methods for classification within the context of
agricultural problems, such as the prediction of nitrogen content [11], soil correction, seed
classification [12], phosphorus reduction in wastewater [13], protein prediction in stored
grains [14].

Some authors utilizing computational intelligence obtained positive results for soybean
seed quality prediction, highlighting the speed of analysis compared to conventional meth-
ods [7]. Similarly, Lutz and Coradi [8] verified that the use of ML techniques predicts the dete-
rioration of stored grains, assisting in decision-making. Moreover, Kiratiratanapruk et al. [15]
used and developed computational intelligence techniques to classify rice grain varieties,
obtaining accuracies above 90% for different models. Therefore, the NIR and ML technologies
have a wide and successful application in the characterization and qualitative prediction of
different agricultural products, and are of paramount relevance particularly for rice grains,
due to the rigorous standardization requirements, justified by the way of commercializing the
product and the level of market demand.
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In order to reduce errors and the time for decision-making on the quality of rice batches
received or shipped from processing and storage units, due to the subjectivity of visual and
manual physical classification, the application of the technique of measurement by NIR
and prediction by ML models. Therefore, understanding the physical-chemical parameters
of rice grains through non-destructive and prediction technologies enables the replacement
of the conventional method of physical classification. As a hypothesis, characterizing the
quality of whole and defective rice grains by being analyzed through non-destructive
technology and with the aid of ML algorithms makes the operation more assertive, fast,
and independent of visual evaluations. Thus, the objective of this study was to evaluate the
application of near-infrared spectroscopy and Machine Learning models for characterizing
and predicting the quality of whole and defective rice grains to replace the conventional
method of physical classification. Specifically, we aimed to: (i) physically characterize the
quality of rice through manual physical classification; (ii) evaluate the physicochemical
quality of whole and defective rice grains for different water contents using near-infrared
spectroscopy; (iii) predict the physicochemical quality of whole and defective rice grains
for different water contents by applying ML algorithms; and (iv) evaluate the performance
of near-infrared spectroscopy combined with ML as an alternative to conventional rice
grain classification methods.

2. Materials and Methods
2.1. Description and Experimental Design

The paddy of the IRGA 424 variety was produced in the Cachoeira do Sul municipally,
Rio Grande do Sul, Brazil, in the year 2022 in Planossolo Háplico soil. The rice was
harvested with different initial moisture contents (Table 1), then the grains were subjected
to drying in silo dryers up to 12% (w.b.) in four full-scale silo dryer units, model SFP-18314
(Pagé industry, Araranguá, Santa Catarina, Brazil). Sampling was performed at 11 different
points for each of the four silo dryers. The first six points were located at the top of the silo
dryer, following the alignment of the thermometry cables allocated.

Table 1. Characterization of rice sample collection storage silos.

Silos Total Stored (Sc of 50 kg) Moisture Content (% d.b.)

Silo 1 42,218.60 19
Silo 2 36,871.40 18
Silo 3 28,660.20 17
Silo 4 46,212.20 16

The remaining five points were collected at the bottom of the silo dryers, near the
discharge points, and evenly distributed at the base (Figure 1). Subsequently, the rice
grain samples were processed and subjected to separation into whole and broken grains,
followed by classification according to defects.

Figure 2 illustrates the operations, including: sample collection during storage, pro-
cessing, manual physical classification, physical-chemical analysis using near-infrared
spectroscopy, and quality prediction using Machine Learning models.
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Figure 2. Flowchart of steps to determine the quality of rice grains.

2.2. Rice Processing and Physical Classification

For the processing of rice grains, a rice polisher, Paz-1/DTA model (Zaccaria company,
Limeira, São Paulo, Brazil), was used. It was calibrated and operated according to the
manufacturer’s technical recommendations. The paddy rice grains were gradually added
to the input hopper of the polisher to obtain the dehusked and polished rice.
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The polishing process involved the passage of grains between two abrasive stones
present in the equipment’s huller, which removed the outer layer of the grains. To separate
the whole grains from the broken ones, a cylinder separator with 5.5 mm cells, attached
to the rice polisher, was used. As the cylinder rotated, the broken grains entered the cells
and were discharged by gravity into a horizontal hopper, while the whole grains remained
retained in the cylinder for subsequent separation.

After processing, the samples underwent manual physical classification of the rice,
following the Normative Instruction No. 02, dated 7 February 2012, which establishes the
physical classification standards for grains and commercial information, considering the
following defects: red, yellow, scorched, immature, chalky, moldy, cut or stained, broken,
streaked, immature, and discolored, as well as impurities and foreign materials adhered to
the mass of grains [16]. After the physical classification, the grains with defects, along with
the broken grains, were combined into a single sample according to the evaluated moisture
content, resulting in samples of whole grains and samples of defective grains for the four
moisture contents analyzed.

2.3. Near-Infrared Spectroscopy (NIRS)

For the physicochemical evaluation of the rice grains, near-infrared spectroscopy
(NIRS) was used. A Metrohm DS2500 spectrometer (Metrohm company, Herisau, Switzer-
land) was employed. The samples were homogenized and placed in a sample capsule.
They were then illuminated with radiation of a specific wavelength in the near-infrared
region. The instrument measured the difference between the amounts of energy emitted
by the spectrometer and reflected by the sample to the detector at various bands, creating
a spectrum for each sample. The spectral data were recorded in reflectance mode in the
spectral range from 400 to 2500 nm, determining the content of starch (ST), crude protein
(CP), fat (Fat), ash (AS), and crude fiber (CF) in the whole and defective rice grains for
different moisture contents. Additionally, for the whole grains, the apparent specific mass
(ASM) was also determined, following the methodology described by Mohsenin [17]. Five
replicates were performed for each sample.

2.4. Pearson Correlation Network

Pearson correlation network analysis was performed using the free R software “ggfor-
tify”, following the methodology by Naldi et al. [18]. In the correlation network, the
proximity between the nodes was determined by proportionality to the absolute value
of the correlation between the nodes. Additionally, the thickness of the edges was con-
trolled by applying a cutoff value of 0.60, indicating that |r_xy| ≥ 0.60 had their edges
highlighted. Positive correlations were highlighted in green, while negative correlations
were represented in red.

2.5. Machine Learning Algorithms

Data analysis using Machine Learning algorithms involved the application of the
following models: Artificial Neural Networks (ANNs), decision tree algorithms Quinlan’s
algorithm (M5P), Random Tree (RandT) and REPTree (ReepT), and Random Forest (RF).
Multiple Linear Regression (MLR) was used as a control technique. Based on these models,
the following variables were predicted: crude protein (CP), ash (AS), fat (Fat), crude fiber
(CF), and starch (ST) for whole rice grains, and for defective grains with different moisture
contents. Additionally, the variable apparent specific mass (ASM) was included only for
the analysis of whole grains. The following variables were considered as input for each
prediction model of the physicochemical properties of rice grains: whole grain yield (YIE),
defects (GD), and moisture content (MC).

The ML analyses were performed using stratified cross-validation with k-fold = 10
and ten repetitions (100 runs for each model) and adopting the default configuration for
all model parameters [19]. All prediction analyses were performed on the Weka software
version 3.9.5 on an Intel® CoreTM i5-3317U CPU with 4 GB of RAM. Weka aims to aggregate
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algorithms from different approaches in artificial intelligence dedicated to the study of
machine learning. This sub-area intends to develop algorithms that allow a computer to
“learn” either inductively or deductively. Weka performs computational and statistical
analysis of the data provided, resorting to data mining techniques, inductively trying
to generate hypotheses for solutions from the patterns found and, at the extremes, even
theories about the data in question. The ANN algorithm used consists of a single hidden
layer formed by a number of neurons equal to the number of attributes plus the number
of classes divided by 2 [20] REPTree model is an adaptation of the C4.5 classifier and
can be used in regression problems with an additional pruning step based on an error
reduction strategy [21]. RandomTree model is a class for constructing a tree that considers
K randomly chosen attributes at each node. It does not perform pruning and also has
the option to allow the estimation of class probabilities based on a waiting set. The M5P
model is a reconstruction of Quinlan’s M5 algorithm based on the conventional decision
tree with the addition of a linear regression function at the leaf nodes [22]. The RF (Random
Forest) model can generate multiple prediction trees for the same dataset and use a voting
scheme among all the learned trees to predict new values [23]. The MLR (Multiple Linear
Regression) model was used as a control model as it is suitable for predicting relationships
between variables.

The statistics used to verify the quality of fit of the prediction models were the mean
absolute error (MAE) and Pearson correlation coefficient (r) between observed and pre-
dicted values by each model. For comparison of the models, MAE and r means for each
model were grouped by the Scott–Knott test at 5% probability and shown through box-
plot graphs. These analyses were performed on the R software using the ExpDes.pt and
ggplot2 packages.

3. Results and Discussion
3.1. Whole Rice Grains

Table 2 shows the results of the physicochemical characterization of rice grains based
on the initial moisture content (MC) before drying and the percentage of whole grains (YIE)
obtained after drying. We observed that lower initial moisture content in the grains led to
higher percentages of beneficiated whole grains, resulting in higher percentages of starch
(ST) and fat (Fat). In grains with moisture content (MC) between 18 and 19%, higher values
of apparent specific mass (ASM) and crude protein (CP) were observed, along with lower
values of ash content (AS).

Table 2. Physical and physicochemical quality of whole rice grains in function of moisture content.

Moisture Content
(% d.b.)

Whole Grain
Yield (%)

Crude Protein
(%)

Fat
(%)

Crude Fiber
(%)

Ashes
(%)

Starch
(%)

Specific Apparent
Mass (kg m−3)

19 49.884 8.13 1.85 2.08 0.92 70.85 585.51
19 50.529 9.06 1.82 2.07 0.89 71.82 538.25
19 51.015 8.23 1.86 2.06 0.80 70.75 562.79
19 52.536 8.90 1.68 2.04 0.97 71.42 517.52
19 52.944 7.58 2.02 2.09 0.78 70.32 585.98
19 53.836 9.07 1.64 2.01 0.92 73.21 493.52
19 53.836 7.67 1.94 2.06 0.85 72.91 588.97
19 54.395 8.01 1.77 2.01 0.88 71.59 555.68
19 54.531 8.27 1.86 2.07 0.88 72.53 541.94
19 54.976 8.74 1.65 2.02 0.95 71.94 524.56
19 54.976 7.78 1.92 2.07 0.87 72.91 584.46
19 55.057 7.78 1.92 2.07 0.87 72.91 584.46

Average 53.836 d 8.18 a 1.855 a 2.065 a 0.88 b 71.88 b 559.235 a

Standard deviation 1.760 0.523 0.116 0.026 0.053 0.932 30.826
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Table 2. Cont.

Moisture Content
(% d.b.)

Whole Grain
Yield (%)

Crude Protein
(%)

Fat
(%)

Crude Fiber
(%)

Ashes
(%)

Starch
(%)

Specific Apparent
Mass (kg m−3)

18 58.237 8.44 1.62 2.09 1.09 71.34 548.90
18 58.668 10.24 1.51 2.07 1.12 70.62 469.23
18 58.903 7.19 1.91 2.13 1.02 72.47 571.40
18 59.030 8.61 1.61 2.06 1.07 72.30 493.12
18 59.298 8.02 1.86 2.11 1.01 71.19 524.85
18 59.537 10.19 1.71 2.05 0.95 68.98 499.48
18 59.564 7.78 1.87 2.10 1.02 71.47 561.26
18 60.075 10.14 1.75 2.00 0.97 71.56 523.58
18 60.115 7.410 1.94 2.11 1.01 72.65 560.69
18 60.702 10.81 1.74 2.06 1.09 67.39 521.58
18 61.143 7.490 1.89 2.14 1.03 72.38 516.77
18 61.223 7.490 1.89 2.14 1.03 72.38 516.77

Average 59.5505 b 8.23 a 1.805 a 2.095 a 1.025 a 71.515 b 522.58 b

Standard deviation 0.923 1.270 0.134 0.040 0.048 1.519 29.205

17 55.089 7.45 1.77 2.15 0.94 72.46 550.98
17 55.752 8.1 1.74 2.11 1.02 72.90 498.30
17 55.848 7.74 1.96 2.13 0.97 72.60 519.91
17 56.002 8.25 1.88 2.14 1.07 70.06 500.51
17 56.398 7.73 1.86 2.10 1.06 72.76 509.76
17 56.431 8.83 1.72 2.15 1.04 70.89 523.38
17 56.586 8.02 1.78 2.11 1.08 72.18 535.72
17 56.586 8.30 1.76 2.15 1.00 72.68 514.19
17 57.058 8.11 1.78 2.12 1.01 71.93 521.70
17 57.122 7.71 1.77 2.12 0.94 73.12 470.51
17 57.352 8.24 1.76 2.14 1.10 71.32 520.98
17 57.657 8.24 1.76 2.14 1.10 71.32 520.98

Average 56.5085 c 8.105 a 1.77 b 2.135 a 1.03 a 72.32 a 520.445 b

Standard deviation 0.708 0.349 0.066 0.017 0.055 0.896 19.207

16 61.534 7.47 1.85 2.05 0.99 72.26 550.14
16 61.759 9.00 1.67 2.10 1.11 70.51 544.36
16 62.547 8.33 1.67 2.10 1.00 70.38 491.48
16 62.547 9.13 1.78 2.07 1.02 72.01 527.28
16 62.797 7.56 1.80 2.08 0.98 71.35 507.31
16 62.818 7.72 1.85 2.10 1.07 72.68 552.41
16 63.235 8.10 1.95 2.07 0.87 71.99 552.61
16 63.941 8.78 1.63 2.07 1.06 71.22 551.15
16 64.083 8.08 1.85 2.04 0.82 72.05 551.16
16 64.724 9.32 1.66 2.05 1.10 69.93 548.89
16 65.784 7.40 1.94 2.09 0.97 72.09 534.21
16 66.456 7.40 1.94 2.09 0.97 72.09 534.21

Average 63.0265 a 8.09 a 1.825 a 2.075 a 0.995 a 72.00 a 546.625 a

Standard deviation 1.464 0.682 0.113 0.020 0.083 0.829 18.960

Means followed by the same letters do not differ by the Scott–Knott test at 5% probability.

By Pearson’s correlation (Figure 3 and Table 3), it is possible to verify a negative strong
correlation for MC × YIE, indicating an inverse relationship between them. The mass of
grains with higher initial moisture content (MC) accumulated a higher amount of heat at
the end of drying, increasing thermal damage and decreasing the yield of whole benefited
grains [24]. Weak negative correlations were found for MC × CF × AS, occasioned by the
physical changes in the morpho-cellular tissues that affected the physicochemical compo-
sitions of the grains. Moreover, there is a weak inverse relationship between MC × Fat,
since the lipid content was affected by the degradation of the aleurone layer due to the
metabolic activity of the grains resulting from the water contents [1,24]. Apparent specific
mass (ASM) had a positive and weak correlation with moisture content (MC). Some au-



AgriEngineering 2023, 5 1203

thors obtained higher ASM values in paddy rice grains stored with increased moisture
content [25]. According to the authors, the ASM was altered as the moisture content (MC)
of the grains decreased during drying [25].
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Figure 3. Pearson’s correlation network between the analyzed variables: moisture content (MC),
yield (YIE), apparent specific mass (ASM), starch (ST), ash (AS), crude fiber (CF), crude protein (CP),
and fat (FAT).

Table 3. Coefficients of the associations between the variables (Pearson’s correlation)—whole rice grains.

Variables MC YIE CP FAT CF AS ST ASM

MC 1 −0.76864 0.11273 0.06508 −0.30666 −0.43654 0.03568 0.24787
YIE −0.76864 1 0.00219 −0.03730 0.03704 0.40562 −0.12241 −0.16039
CP 0.11273 0.00219 1 −0.66926 −0.45180 0.26111 −0.63285 −0.36902
FAT 0.06508 −0.03730 −0.66926 1 0.25374 −0.49700 0.30056 0.54024
CF −0.30666 0.03704 −0.45180 0.25374 1 0.38640 0.12262 −0.12615
AS −0.43654 0.40562 0.26111 −0.49700 0.38640 1 −0.23959 −0.45760
ST 0.03568 −0.12241 −0.63285 0.30056 0.12262 −0.23959 1 0.10019

ASM 0.24787 −0.16039 −0.36902 0.54024 −0.12615 −0.45760 0.10019 1

Regarding YIE, weak negative correlations were observed with MEA and ST. Starch
(ST) is composed of amylose chains that form molecular structures, which directly influence
the hardness of the grain. Thus, rice grains with higher amylose contents are more resistant
to abrasion in processing, achieving a higher yield (YIE) of whole grains [1,26]. Medium
and weak negative correlations were observed between CP × Fat and CP × ST, respectively.
The highest concentrations of crude protein (CP) were located in the endosperm of the
grain, along with the starch content (ST), where the increase in one implied the reduction of
the other [1,26]. Furthermore, according to Nunes et al. [24] the drying operation interferes
with the decrease in the crude protein (CP) extraction, especially in the protein-starch ratio.
The inverse relationship between fat (Fat) and crude protein (CP) content in whole rice
grains was verified by Müller et al. [1]. According to Denardin and Silva [26], lipid bodies
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called triacylglycerols are stored in the endosperm of grains, where they are stabilized by
hydrophobic proteins, which mobilize fatty acid catalysis.

A negative correlation was observed between crude fiber content (CF) and moisture
content (MC). Although weak, the correlation indicated an inverse relationship between the
variables. Thus, as the grain mass dried, lower water contents resulted in higher crude fiber
levels. According to Nunes et al. [24], the higher CF content may be related to the increase
in compounds in the cell wall, into structures such as cellulose and hemicellulose, providing
greater stiffness to the grain. Thus, rice grains with higher CF in their composition were
less physically affected by mechanical processing operations. Ash contents (AS) showed
positive correlations with CF × CP × YIE. Ash contents (AS) were considerably reduced
in the polishing process of rice grains with higher whole grain yield (YIE). According to
Cecchi [27], the AS corresponds to the inorganic residue that remains after the burning of
organic matter, consisting mainly of large amounts of K, Ca, Na, and Mg.

Table 4 shows the results of the observed and estimated grain quality values for the
different Machine Learning models, while Figure 4 illustrates the potential results of the
models for predicting moisture (MC) and starch (ST), ash (AS), and crude fiber (CF) contents
in whole grain rice (YIE). In the prediction of starch (ST) as a function of MC and YIE,
similar correlation coefficients were observed for all models.

Table 4. Machine Learning models applied to physicochemical quality of whole rice grains with
different initial moisture contents.

Models
r MAE R2 r MAE R2

Starch (ST) Ashes (AS)

MLR 0.8169 0.6235 0.6674 0.2596 0.0700 0.0673
ANNs 0.8251 0.7657 0.6808 0.5125 0.0621 0.2626
M5P 0.9613 0.4299 0.9241 0.4609 0.0636 0.2124
RF 0.9758 0.6594 0.9522 0.4609 0.0636 0.2124

REPTree 0.9570 12.591 0.9160 0.5160 0.0620 0.2663
RandTree 0.9456 13.227 0.8942 0.5160 0.0620 0.2663

Crude Fiber (FB) Crude Protein (CP)

MRL 0.3488 0.0324 0.1217 0.0404 0.4557 0.0016
RNAs 0.8118 0.0204 0.6590 0.3461 0.4108 0.1198
M5P 0.7805 0.0192 0.6091 0.0651 0.4547 0.0042
RF 0.7913 0.0175 0.6261 0.7246 0.3185 0.5250

REPTree 0.8391 0.0178 0.7041 0.2029 0.4889 0.0411
RandTree 0.8228 0.0178 0.6770 0.8614 0.1520 0.7421

Fat (Fat) Apparent Specific Mass (ASM)

MRL 0.2065 0.1017 0.0426 0.1830 21.4990 0.0335
RNAs 0.2266 0.1081 0.0513 0.4278 20.1854 0.1830
M5P 0.0500 0.0981 0.0345 0.1830 21.4990 0.0335
RF 0.6490 0.0614 0.4212 0.5183 15.7880 0.2687

REPTree 0.4683 0.0846 0.2193 0.3920 18.7946 0.1540
RandTree 0.7325 0.0415 0.5366 0.4886 15.5575 0.2387

Pearson’s correlation coefficient (r), mean absolute error (MAE) and coefficient of determination (R2) for Machine
Learning models: Artificial Neural Network (ANN), Decision Tree (REPTree), Random Tree (RandTree), Quinlan’s
M5 algorithm (M5P), Random Forest (RF), and Multiple Linear Regression (MLR).

RF model showed the highest correlation (r > 0.97), followed by the M5P and REPTree
models. However, the lowest MAE was archived by the M5P model (MAE < 0.5), followed
by the RF model. Given this, RF and M5P were the most suitable for predicting the starch
content (ST) in whole rice grains. The RF model has wide applicability in the agricultural
industry. The efficiency and versatility of RF were evidenced by Zeymer et al. [28], who
satisfactorily predicted dry matter loss in soybeans as a function of water content and
storage time. Furthermore, Ramos et al. [9] verified the great ability of the RF model to
predict soybean plant height through spectral bands.
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Figure 4. Adjustments obtained by Pearson’s correlation coefficient (r) between the observed and
predicted values by each Machine Learning model and the mean absolute error (MAE) of the predicted
values in relation to the observed values for different rice moisture contents on the prediction of
starch (ST), ash (AS) and crude fiber (CF) contents in whole grains. Artificial Neural Network (ANNs),
decision tree algorithms REPTree (ReepT), Random Tree (RandT) and Quinlan’s M5 algorithm (M5P),
Random Forest (RF), and Multiple Linear Regression (MLR). Means followed by the same letters do
not differ by the Scott–Knott test at 5% probability.

The RandT, REPTree, and ANNs models showed the highest correlations and lowest
errors for observed and predicted starch contents (ST) (0.51 and 0.06), respectively. Further-
more, the M5P and RF models also showed similar fits to the other models. Despite the
low mean absolute error, the correlation was considered low (less than 0.7), and for this
reason, the models studied are not the most suitable for predicting the influence of MC
and YIE on ash contents (AS). Similar fit patterns were found for all ML models used to
predict CF, except for the conventional MLR model. Random Tree, REPTree and RF models
showed correlation coefficients around 0.8 and MAE around 0.016. Thus, the three models
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were suitable for predicting crude fiber (CF) in whole rice grains, with the REPTree model
standing out.

Figure 5 shows the performance of the MLR model to predict CP, Fat, and ASM. The
Random Tree model demonstrated a better fit for predicting the interference of moisture
content (MC) on crude protein (CP) levels. However, the RF model showed greater potential to
predict the same variable, with a correlation coefficient higher than 0.72 and MAE around 0.32.
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Figure 5. Adjustments obtained by Pearson’s correlation coefficient (r) between the observed and
predicted values by each Machine Learning model and the mean absolute error (MAE) of the predicted
values in relation to the observed values for different rice water contents on the prediction of crude
protein (CP), fat (Fat) contents and apparent specific mass (ASM) in whole grains. Artificial Neural
Network (ANNs), decision tree algorithms REPTree (ReepT), Random Tree (RandT) and Quinlan’s
M5 algorithm (M5P), Random Forest (RF), and Multiple Linear Regression (MLR). Means followed
by the same letters do not differ by the Scott–Knott test at 5% probability.

Among the models studied, the Random Tree archived the highest correlation coef-
ficient and the lowest mean absolute error and hence is suitable for predicting the effect
of MC and YIE on fat levels (Fat) in whole rice grains. These findings are supported by
Walter et al. [29], who reported a decreased lipid concentration in the grain milling process
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as they were present in different layers of the grain, even associated with the starch granules.
Likewise, Müller et al. [1] noted a progressive decrease in the lipid content on the surface
of whole-milled rice grains.

When analyzing apparent specific mass, all ML models achieved low Pearson’s corre-
lation coefficients (r < 0.52), in which the RF model outperformed the others. Similarly, all
models presented high MAE between observed and predicted ASM values, showing poor
fits. Therefore, none of the applied models was suitable to predict the direct relationship
between water content (WC) and apparent specific mass (ASM) in whole rice grains. Fi-
nally, we verified that the Random Tree model presented the highest consistency among
the models for predicting the variables studied, even with correlations lower than 0.7. In
the evaluation of ash (AS) and ASM), the Random Tree model remained among the best
models. Therefore, this Random Tree, which is based on random choices in the attribute
tree, has high potential to predict the physicochemical variables of whole grain rice grains
under different initial water content (MC) and whole grain yield (YIE).

3.2. Defective Rice Grains

The higher the initial water contents (WC) of the grains, the higher the percentages of
defects obtained in the processing after drying (Table 5).

In the Figure 6 and Table 6, it is possible to see a positive and strong correlation between
the input variables physical defects (GD) and moisture content (MC). Nunes et al. [24]
reported that high moisture contents negatively affect the quality of stored rice grains due
to increased metabolic activity and increased percentages of physical defects at the end of
storage time. Exposing the grain mass to longer drying time left the grains more susceptible
to breakage during mechanical processing operations.

Table 5. Physical and physicochemical quality of rice grains with defects in function of moisture content.

Moisture Content
(% d.b.) Grain Defects (%) Crude Protein (%) Fat (%) Crude Fiber (%) Aches (%) Starch (%)

16 0.768 10.77 2.09 2.48 1.65 65.46
16 0.798 11.49 3.34 2.35 1.75 62.64
16 0.816 11.52 3.24 2.57 2.01 61.51
16 0.816 11.52 3.24 2.57 2.01 61.51
16 0.858 11.59 3.81 3.07 2.22 60.9
16 0.861 10.48 2.22 2.70 1.75 63.9
16 0.871 11.17 3.38 2.59 1.76 64.01
16 0.880 11.07 3.68 2.73 1.63 63.40
16 0.960 11.72 3.46 3.00 2.08 62.17
16 0.969 11.37 2.93 2.74 1.82 62.95
16 1.009 11.19 1.97 2.63 1.78 63.03
16 1.024 11.60 2.67 2.97 2.07 64.39

Average 0.866 d 11.43 a 3.24 a 2.665 c 1.80 b 62.99 a

Standard deviation 0.0815 0.3562 0.5998 0.2090 0.1832 1.2795

17 1.026 11.65 3.34 2.60 1.87 62.62
17 1.269 11.00 3.78 2.96 1.74 61.5
17 1.295 11.73 3.46 2.67 1.97 61.73
17 1.307 11.89 2.72 2.51 1.75 62.13
17 1.332 12.41 3.25 2.87 2.41 60.08
17 1.385 10.84 2.25 2.73 1.94 65.38
17 1.442 11.06 1.87 2.51 1.89 64.64
17 1.528 10.76 2.38 2.60 2.00 63.89
17 1.528 10.76 2.38 2.60 2.00 63.89
17 1.549 11.35 3.51 2.88 2.08 62.28
17 1.555 11.02 2.06 2.57 1.81 65.79
17 1.663 11.26 3.09 2.63 1.91 62.29
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Table 5. Cont.

Moisture Content
(% d.b.) Grain Defects (%) Crude Protein (%) Fat (%) Crude Fiber (%) Aches (%) Starch (%)

Average 1.4135 c 11.16 a 2.905 b 2.615 c 1.925 a 62.455 a

Standard deviation 0.1661 0.4925 0.6146 0.1439 0.1706 1.6338

18 1.713 11.18 3.46 2.53 1.69 62.71
18 1.713 11.18 3.46 2.53 1.69 62.71
18 1.953 10.81 2.27 2.59 1.81 64.01
18 1.966 12.07 3.73 3.05 2.24 59.86
18 1.966 12.07 3.73 3.05 2.24 59.86
18 2.094 12.20 3.32 2.87 2.01 60.03
18 2.195 10.98 3.30 2.68 1.87 63.43
18 2.380 11.79 3.02 2.86 1.99 61.85
18 2.408 11.37 2.97 2.91 1.94 62.39
18 2.420 11.66 3.76 2.88 2.04 59.41
18 2.433 10.70 2.94 2.60 1.86 64.36
18 2.444 12.15 3.16 2.87 2.03 60.99

Average 2.1445 b 11.515 a 3.31 a 2.865 a 1.965 a 62.12 a

Standard deviation 0.2664 0.5227 0.4094 0.1822 0.1726 1.6616

19 2.799 12.05 3.84 3.10 2.33 59.11
19 2.895 11.23 2.97 2.77 2.05 61.79
19 3.063 11.99 3.45 2.46 2.06 59.49
19 3.167 11.41 3.35 3.11 1.99 61.02
19 3.211 12.25 2.84 2.67 1.90 62.26
19 3.293 12.66 2.98 2.63 1.76 60.88
19 3.617 11.25 2.77 2.76 1.79 63.38
19 3.645 12.43 3.25 2.57 1.95 61.99
19 4.079 10.88 2.73 2.96 1.94 63.00
19 4.213 10.32 4.31 4.85 2.04 58.36
19 5.692 12.13 2.70 2.38 2.13 60.09
19 5.704 11.66 2.51 2.61 1.89 62.62

Average 3.455 a 11.825 a 2.975 b 2.715 b 1.97 a 61.405 c

Standard deviation 0.9520 0.6604 0.5042 0.6264 0.1475 1.5496

Means followed by the same letters do not differ by the Scott–Knott test at 5% probability.

Table 6. Coefficients of the associations between the variables (Pearson’s correlation)—whole rice
grains—defective rice grains.

Variables MC GD CP FAT CF AS ST

MC 1 0.87568 0.28664 0.16684 0.22435 0.21161 −0.43199
GD 0.87568 1 0.23186 0.03914 0.21896 0.18746 −0.36516
CP 0.28664 0.23186 1 0.29798 −0.15680 0.45045 −0.57519
FAT 0.16684 0.03914 0.29798 1 0.49972 0.35167 −0.72743
CF 0.22435 0.21896 −0.15680 0.49972 1 0.36886 −0.47669
AS 0.21161 0.18746 0.45045 0.35167 0.36886 1 −0.61148
ST −0.43199 −0.36516 −0.57519 −0.72743 −0.47669 −0.61148 1

Starch content (ST) showed a negative correlation with MC which, although weak,
indicated an inverse relationship. Walter et al. [29] reported that drying and storage interfere
with the ST of rice. Moreover, ST also showed a very weak negative correlation with
physical defects (GD), indicating an inverse relationship between the variables. According
to Scariot et al. [30], high MC can influence the formation of chalky grains, which are
considered defects by the industry due to the opaque appearance and interference in the
cooking of the product, caused by the non-compaction of the starch and protein granules
arrangement in the grains that form air spaces between them, resulting in diffraction of
the incident light. Chalky conditions reduce the hardness of the grain, making it more
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fragile to the polishing operation and leading to grain breakage, reducing the physical and
chemical quality of the product, which justifies the negative correlation between ST and
the percentage of grains with defects (GD) observed in the correlation network.

AgriEngineering 2023, 5, FOR PEER REVIEW  15 
 

 

 
Figure 6. Pearson’s correlation network between the analyzed and predicted variables for rice 
grains: moisture content (MC), grain defects (GD), starch (ST), ash (AS), crude fiber (CF), crude 
protein (CP), and fat (Fat). 

Table 6. Coefficients of the associations between the variables (Pearson’s correlation)—whole rice 
grains—defective rice grains. 

Variables MC GD CP FAT CF AS ST 
MC 1 0.87568 0.28664 0.16684 0.22435 0.21161 −0.43199 
GD 0.87568 1 0.23186 0.03914 0.21896 0.18746 −0.36516 
CP 0.28664 0.23186 1 0.29798 −0.15680 0.45045 −0.57519 

FAT 0.16684 0.03914 0.29798 1 0.49972 0.35167 −0.72743 
CF 0.22435 0.21896 −0.15680 0.49972 1 0.36886 −0.47669 
AS 0.21161 0.18746 0.45045 0.35167 0.36886 1 −0.61148 
ST −0.43199 −0.36516 −0.57519 −0.72743 −0.47669 −0.61148 1 

Starch contents (ST) and the other variables had a medium negative correlation with 
Fat. There is also a weak negative correlation between ST and ash (AS) contents, corre-
sponding to an inverse relationship between them for rice grains with physical defects 
(GD). Under the presence of moisture, starch granules expand due to diffusion and ab-
sorption, and this procedure is reversible through the drying process of the grain. How-
ever, besides altering the starch granules, there may be changes in macronutrients such as 
lipids and proteins, generating impacts on the physicochemical properties of the grain 
[26]. Overall, increasing starch content (ST) also interfered inversely with grain mass 
yield due to susceptibility to the occurrence of physical defects (GD) [1,27]. Furthermore, 

Figure 6. Pearson’s correlation network between the analyzed and predicted variables for rice grains:
moisture content (MC), grain defects (GD), starch (ST), ash (AS), crude fiber (CF), crude protein (CP),
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Starch contents (ST) and the other variables had a medium negative correlation with
Fat. There is also a weak negative correlation between ST and ash (AS) contents, corre-
sponding to an inverse relationship between them for rice grains with physical defects (GD).
Under the presence of moisture, starch granules expand due to diffusion and absorption,
and this procedure is reversible through the drying process of the grain. However, besides
altering the starch granules, there may be changes in macronutrients such as lipids and
proteins, generating impacts on the physicochemical properties of the grain [26]. Over-
all, increasing starch content (ST) also interfered inversely with grain mass yield due to
susceptibility to the occurrence of physical defects (GD) [1,27]. Furthermore, a positive
correlation was observed between Fat × CP and Fat × CF contents, indicating a direct
relationship between the variables. This influence is justified by the direct relationship
between lipid concentration and grain hardness, which is indirectly associated with the
protein and fiber contents present in the physicochemical constitution of the grains. The
crude protein content (CP) directly contributed to maintaining the lipid layers in the grains,
and its decrease implies the reduction of the fat content [31,32].



AgriEngineering 2023, 5 1210

Moisture contents (MC) and percentages of physical defects (GD) also showed a weak
positive correlation with CP, indicating a direct relationship between them. Nunes et al. [24]
observed that rice grains less exposed to high drying temperatures had lower percentages of
broken grains and consequently higher crude protein contents. According to Lima et al. [33],
high moisture content increases the respiration rate of the grain mass causing oxidation
and, as a result, the loss of total carbohydrates, starch, proteins, and other physicochemical
components of the grains.

Table 7 shows the correlation coefficient (r), mean absolute error (MAE), and coefficient
of determination (R2) between the observed and estimated values of rice grain quality with
defects for the different ML models.

Table 7. Machine Learning models applied to physicochemical quality of rice grains with defects for
different initial moisture contents.

Models
r MAE R2 R MAE R2

Ashes (AS) Crude Fiber (CF)

MLR 0.0555 0.1511 0.0030 0.2546 0.2276 0.0648
ANNs 0.0309 0.1575 0.0009 0.3639 0.2218 0.1324
M5P 0.0555 0.1511 0.0030 0.7904 0.2033 0.6247
RF 0.8790 0.0586 0.7726 0.9267 0.1053 0.8588

REPTree 0.5787 0.1153 0.3348 0.9128 0.1437 0.8333
RandTree 0.8449 0.0443 0.7138 0.9184 0.0842 0.8434

Fat (Fat) Crude Protein (CP)

MLR 0.1785 0.4664 0.0318 0.3574 0.4531 0.1278
ANNs 0.3430 0.2847 0.1177 0.6615 0.5165 0.4376
M5P 0.3548 0.5056 0.1258 0.6678 0.4007 0.4459
RF 0.9221 0.1731 0.8504 0.7317 0.2793 0.5355

REPTree 0.6133 0.3434 0.3762 0.7462 0.3060 0.5568
RandTree 0.9640 0.0757 0.9292 0.5577 0.2814 0.3110

Starch (ST)

MLR 0.2063 1.4960 0.0425
ANNs 0.2589 1.4880 0.0670
M5P 0.2063 1.4960 0.0425
RF 0.7096 0.7586 0.5036

REPTree 0.5300 1.0770 0.2809
RandTree 0.7540 0.5515 0.5686

Pearson’s correlation coefficient (r), mean absolute error (MAE), and coefficient of determination (R2) for Machine
Learning models: Artificial Neural Network (ANN), Decision Tree (REPTree), Random Tree (RandTree), Quinlan’s
M5 algorithm (M5P), Random Forest (RF), and Multiple Linear Regression (MLR).

Fits obtained by the ML models are shown in Figure 7. The decision tree (REPTree)
and Random Forest (RF) models presented the highest correlation coefficients between the
observed and predicted variables for CP, and the lowest MAE was observed for the RF
model. Thus, both models are suitable for predicting crude protein levels in rice grains
with physical defects. The Artificial Neural Networks (ANNs) model obtained the highest
MAE for predicting the CP content in rice grains with defects, not being recommended for
the prediction of this variable.

For the crude fiber (CF) variable, the RF model showed the highest correlation co-
efficient (r > 0.92), followed by the Random Tree (RandT) and REPTree models, with r
above 0.90. Conversely, among the highlighted models, the lowest MAE was observed
for the Random Tree model (RandT), which was lower than 0.085. Given the observed
variations, the three models can be indicated to predict the influence of MC on CF. ANN
model presented the lowest r and the highest MAE.

Regarding ST prediction (ST), the highest r and the lowest MAE were observed for
the Random Tree (RandTree) model (around 0.75 and 0.55, respectively). Additionally,
the RF model showed a similar fit to the Random Tree, with r around 0.7 and MAE of
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0.75. REPTree, Artificial Neural Networks (ANNs), and M5P models did not provide good
prediction fits, with correlation coefficients lower than 0.53.
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Figure 7. Adjustments obtained by Pearson’s correlation coefficient (r) between the observed and
predicted values by each Machine Learning model and the mean absolute error (MAE) of the predicted
values in relation to the observed values for different rice moisture contents on the prediction of
crude protein (CP), crude fiber (CF), and starch (ST) contents in grains with physical defects. Artificial
Neural Network (ANNs), decision tree algorithms REPTree (ReepT), Random Tree (RandT) and
Quinlan’s M5 algorithm (M5P), Random Forest (RF) and Multiple Linear Regression (MLR). Means
followed by the same letters do not differ by the Scott–Knott test at 5% probability.
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The fit parameters obtained by ML models for the variables fat (Fat) and ash (AS) are
shown in Figure 8. The Random Tree model showed the best fit (r > 0.96 and MAE < 0.076),
being indicated to predict the fat contents in rice grains with defects. Likewise, the Random
Forest also achieved a high correlation (r > 0.92) [34], and a low MAE between the observed
and predicted fat content values, being indicated for predicting the fat content in rice grains
with physical defects.
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4. Conclusions 
The combination of the non-destructive technology Near-Infrared Spectroscopy and 

the Machine Learning models characterized successfully the physicochemical composi-
tion of whole and defective rice grains, being an alternative to the conventional method 
of physical classification. The Random Tree model (RandT) was the indicated model to 
predict the physicochemical quality in whole and defective rice grains for different 
moisture contents, obtained Pearson’s correlation coefficient (r = 0.96), mean absolute 
error (MAE = 0.017), and coefficient of determination (R2 = 0.92). The use of near-infrared 
(NIR) spectroscopy evaluation methods and machine learning models can ensure greater 
precision, robustness, and agility in evaluating the quality of rice samples in the pro-
cessing and storage units to reduce subjective errors in manual and visual physical clas-
sification. 

Author Contributions: Conceptualization, P.C.C., P.E.T. and L.P.R.T.; methodology, P.C.C., P.E.T. 
and L.P.R.T.; validation, P.C.C. and L.P.R.T.; formal analysis, L.d.O.C., D.M.R. and L.P.R.T.; inves-
tigation, P.C.C., D.M.R., R.E.L., R.S.d.M., M.T.N., M.M.L., L.R.L., T.A.V., J.C.R., A.H.S. and N.d.S.B.; 
resources, P.C.C. and P.E.T.; data curation, L.P.R.T. and D.M.R.; writing—original draft prepara-
tion, L.d.O.C., P.C.C., L.P.R.T. and P.E.T.; writing—review and editing, L.d.O.C., P.C.C., L.P.R.T. 
and P.E.T.; visualization, D.M.R., M.T.N. and N.d.S.B.; supervision, P.C.C.; project administration, 
P.C.C.; funding acquisition, P.C.C. All authors have read and agreed to the published version of the 
manuscript. 

Figure 8. Adjustments obtained by Pearson’s correlation coefficient (r) between the observed and
predicted values by each Machine Learning model and the mean absolute error (MAE) of the predicted
values in relation to the observed values for different rice water contents on the prediction of fat (Fat),
ashes (AS) contents in grains with physical defects. Artificial Neural Network (ANNs), decision tree
algorithms REPTree (ReepT), Random Tree (RandT) and Quinlan’s M5 algorithm (M5P), Random
Forest (RF), and Multiple Linear Regression (MLR). Means followed by the same letters do not differ
by the Scott–Knott test at 5% probability.

For ash content (AS), the RF model showed the highest correlation coefficient, followed
by the Random Tree (RandTree), with correlation coefficients of 0.87 and 0.84, respectively.
However, the lowest MAE was found for the Random Tree model (MAE < 0.045), fol-
lowed by the Random Forest. The increased ash content (AS) is a result of the organic
fraction degradation of the grains due to the metabolic activity arising from the presence of
water [35–37].

Random Tree (RandT) decision tree model presented the best fit to predict the physic-
ochemical variables of rice grains with physical defects as a function of different initial
moisture content (MC). Thus, Random Tree is the most suitable among the models stud-
ied [38]. The random choice among the attributes present in the tree, which is the property
of this model, allowed its constancy in relation to the others studied [39,40].
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4. Conclusions

The combination of the non-destructive technology Near-Infrared Spectroscopy and
the Machine Learning models characterized successfully the physicochemical composition
of whole and defective rice grains, being an alternative to the conventional method of phys-
ical classification. The Random Tree model (RandT) was the indicated model to predict the
physicochemical quality in whole and defective rice grains for different moisture contents,
obtained Pearson’s correlation coefficient (r = 0.96), mean absolute error (MAE = 0.017),
and coefficient of determination (R2 = 0.92). The use of near-infrared (NIR) spectroscopy
evaluation methods and machine learning models can ensure greater precision, robustness,
and agility in evaluating the quality of rice samples in the processing and storage units to
reduce subjective errors in manual and visual physical classification.
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