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Abstract: Fusarium ear rot (FER) is a common disease in maize caused by the pathogen Fusarium
verticillioides. Because of the quantitative nature of the disease, scoring disease severity is difficult and
nuanced, relying on various ways to quantify the damage caused by the pathogen. Towards the goal
of designing a system with greater objectivity, reproducibility, and accuracy than subjective scores or
estimations of the infected area, a system of semi-automated image acquisition and subsequent image
analysis was designed. The tool created for image acquisition, “The Ear Unwrapper”, successfully
obtained images of the full exterior of maize ears. A set of images produced from The Ear Unwrapper
was then used as an example of how machine learning could be used to estimate disease severity
from unannotated images. A high correlation (0.74) was found between the methods estimating
the area of disease, but low correlations (0.47 and 0.28) were found between the number of infected
kernels and the area of disease, indicating how different methods can result in contrasting severity
scores. This study provides an example of how a simplified image acquisition tool can be built and
incorporated into a machine learning pipeline to measure phenotypes of interest. We also present
how the use of machine learning in image analysis can be adapted from open-source software to
estimate complex phenotypes such as Fusarium ear rot.

Keywords: semi-automated image acquisition; disease severity phenotyping; machine learning;
Fusarium ear rot; maize

1. Introduction

Imaging of plant material for the purpose of phenotypic analysis continues to gain
popularity in fields such as plant breeding, plant pathology, and plant systematics [1–4].
On a larger scale, drone, airplane, and satellite imagery are used in large-scale agriculture
for monitoring a myriad of agronomic traits [5,6]. Imaging technology and the subsequent
analysis allow for a reduction in labor and time-related costs while maintaining, if not
improving, accuracy. The use of machine learning (ML) pipelines can decrease bias from
human subjectivity, improve the efficiency of analysis pipelines, and increase the accuracy
of predictions [7,8]. However, obtaining and preprocessing enough high-quality training
data often creates a barrier to entry that is too high for labs or individuals to develop a
robust, accurate, and efficient pipeline of image acquisition and analysis.

In plant pathology, accurate disease phenotyping results are used to guide day-to-day
agricultural production (choice of plant variety, applications of pesticides, rogueing of
plants), long-term breeding programs, and molecular research [9–11]. To acquire images
for analysis, the type and scale of the image were based on the purpose of the study. Those
attempting to identify regions in a field under stress and image acquisition from drones,
satellites, or other aerial tools are the most common [12]. Conversely, studying individual
plants requires close-up and high-resolution images that are either compiled by hand or by
using another device close to the target. Most studies using ML in plant pathology attempt
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to accurately identify (or classify) a microorganism; therefore, images are often obtained
with microscopes or hand-held tools [13,14]. Quantitative disease severity estimations that
are required by plant breeding programs are not limited to local image acquisition but
instead depend on the scale of the study. Regardless, quantification of biotic or abiotic
stressors is generally achieved by breaking down an image or set of images into smaller
component parts (such as pixels) and using classification methods on those smaller parts
before they are quantified [15,16]. This is often calculated or presented as a ratio to provide
a consistent scale that is associated with plant health.

Maize (Zea mays L.) is a cereal crop that is grown worldwide and is the primary
calorie source for livestock. As it is an international staple crop, maize has been the subject
of ML for image analysis in a variety of studies where image acquisition methods are
standardized [17–21]. The disease addressed in this work is Fusarium ear rot (FER) of maize
caused by the pathogen Fusarium verticillioides (Sacc.) Nirenberg (synonym F. moniliforme
Sheldon, teleomorph Gibberella moniliformis Wineland), and the investigation focuses on
the area of infected tissue on the ear of the maize plant. FER is an important disease
internationally, as the mycotoxin produced by F. verticillioides, fumonisin, causes diseases
in humans and livestock; therefore, breeding to reduce FER is desirable. Conventional
phenotyping of FER severity has been highly subjective, relying on a researcher to quantify
the severity by quickly inspecting each ear and deciding on a severity score. Breeding
efforts to reduce FER, or any such disease, require accurate phenotyping to determine
resistant and susceptible varieties in a population. Only minimal gains towards breeding
FER resistant lines have been achieved, likely due to the difficulty in obtaining accurate
phenotypic data. As mentioned, image analysis can improve objectivity and reliability
of phenotyping generally, but it has not been performed in the FER pathosystem. FER
severity cannot be estimated without removing the husk of the ear and viewing the whole
ear to observe the damage caused by the pathogen [22–24]. Thus, traditional imaging of
one side of a harvested ear is not sufficient to capture information from the entire ear. In
addition, high-quality image acquisition of the ear is required to be able to distinguish
between different types of damage or disease that may be present on the ear, whether for
an ML pipeline or for traditional phenotyping.

The goal of the system presented here was to obtain an image of a full ear of maize in
such a way that it could be used to quantify disease severity following inoculation. Our
expectation would be that if we could “unwrap” the ear, such as one might remove the
label from a can of food in order to convert a cylindrical object to a rectangular image,
we would be able to accurately measure lesion size from all parts of the ear. As diseases
(particularly FER) often occur in multiple places on a single ear or wraps around the ear,
obtaining a full view of the ear is necessary for accurate phenotyping. The images produced
by the machine presented here, named “The Ear Unwrapper”, were then analyzed with
an ML pipeline estimating disease severity using probabilistic pixel classification as an
example of how the images could be used in larger studies requiring high-throughput
phenotyping. This paper does not attempt to show improved performance compared to
other methods of severity estimation, as molecular genetics are required for validation.
Though we present an example of how the images can be processed using an ML pipeline,
there are additional uses for image-based-phenotyping, such as having a visual record
for subsequent researchers to use. The Ear Unwrapper can be applied to many studies
investigating maize ear phenotypes that require a 360◦ of the ear.

2. Materials and Methods
2.1. FER Disease Inoculation

A diversity panel of 66 sweetcorn and 2 field corn varieties of maize was grown in
Citra, FL, from March–June of 2022. Thirty ears were harvested approximately 21 days
after 50% silking was observed in each variety. The ears were brought to the inoculation
location before the husk was wiped down with 70% ethanol. Circles were drawn on the
husk in the center of each ear to indicate the inoculation location. An 18-gauge needle
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was then used to make a hole through the husk to the cob. A Prima-tech® vaccinator was
then primed with a spore solution, and another 18-gauge needle was attached. Prior to
inoculation, spore solutions were created by growing isolates of Fusarium verticillioides in
potato dextrose agar plates, taking five 1 cm2 mycelial plugs from the plates, and placing
them in 1

2 strength potato dextrose broth to shake for five days. After five days, spore
solutions were filtered through sterile cheesecloth and concentrated or diluted to equal
1 × 105 conidia per ml. Once the spore solution was primed into the vaccinator, the needle
was then placed into the existing hole in the ear, and 0.75 mL of the spore solution was
injected. Once inoculated, the ears were placed in bags for humidity and isolation before
being incubated at 27 ◦C for seven days. After seven days, the ears were removed from
the bags, husked, shanks were removed, and the ears were individually placed on The
Ear Unwrapper stepper motor. Often, maize ears would have damage from other sources,
primarily on the top of the ear. In these cases, the affected part of the ear was removed
before being mounted on The Ear Unwrapper to minimize the confounding factors that
would impact subsequent image analysis.

2.2. Hardware

To “unwrap” each ear of corn, the approach was to rotate the ear around its axis (the
cob) and, using a camera, take a continuous set of images to extract a single row of pixels
from each to form one image. The motor used was a Nema 17 stepper motor that controls
the position and rotation of the motor (and the object mounted on the motor) at a fraction of
a degree. Here, each pulse of the stepper motor represents 0.45 degrees thus, 800 pulses are
required to spin 360 degrees. The camera used was a See3CAM_24CUG camera (Figure 1B).
It was chosen because it has UVC driver compatibility that facilitates integration into an
operating system as a USB webcam and because it has an external shutter trigger. The
external trigger allows the microcontroller to control the shutter for synchronization with
the stepper motor. As the motor is sent a pulse to rotate 0.45 degrees, the camera is also
sent a pulse to capture an image. By syncing the pulses of the camera and the motor, one
can control the speed while maintaining the accuracy of the image that is being produced
via stitching. The pulses that are sent to the motor and the camera come from an Arduino
UNO (SparkFun RedBoard, Niwot, CO, USA) (Figure 1C). Although reducing the time it
took to obtain a single image was important, obtaining a clear, well-lit, and focused image
were all factors that reduced the frame rate. The USB bandwidth and stability of the corn
ear when rotating also forced a reduction in the frame rate.

The frame for the machine was built with nylon and high-density polyethylene (HDPE)
to provide durability for mounting the other components and allowing room for the ear
to rotate less than one foot from the camera lens. The camera and motor were mounted
on Picatinny rails. The stepper motor mount that came with the device was removed and
replaced with two spikes (sharpened screws) that screwed into the existing stepper motor
mount holes. Two spikes were used to provide the leverage required to rotate the ear on
the sliding rails. A single conical spike of aluminum was fixed directly above the center of
the modified stepper motor. This conical spike provided additional stability to the maize
ear when mounted on the modified stepper spikes and allowed the ear to rotate freely
(Figure 1D).

To prepare the ears to produce an image, the ears were husked, the shanks were cut or
snapped off, silks were removed, and the unpollinated tips of the ears were removed. The
Ear Unwrapper was placed in a photobox (Fotodiox™) to obtain images with consistent
lighting and background (Figure 1A). The ears were then mounted in The Ear Unwrapper
by gently pressing the base of the ear onto the modified stepper motor spikes until it would
stand without assistance and then sliding down the conical spike to the tip of the ear. The
door to the photobox was closed, and a custom Python script was used to capture, process,
and output images.
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2.3. Calibration and Error Correction

The 24CUG camera uses a wide-angle lens with focal length 3.0 mm and aperture
f/2.8, a benefit because the camera could be positioned closer to the maize ear while
keeping the full ear in view. To correct for the “fisheye” effect, a correction algorithm
was used to remove this distortion and extract the rectangular image. This was done
in Python with the OpenCV library and calibrated by printing out a checkerboard and
photographing it with the camera at a fixed distance from the camera to the motor. This
also allowed for the determination of pixels/cm measurements. The de-warped image of
the checkerboard was used to produce a correction matrix, which was then applied to every
image captured by the camera. To more efficiently use the sensor of the 24CUG camera
default 1280 × 720 resolution, we rotated the camera 90 degrees so that the 1280 resolution
was vertical and could better accommodate the geometry of the corn ears. When an image
was taken, a single vertical line of 1280 pixels was obtained before the motor turned
0.45 degrees and another image was taken, and the next vertical line was stitched to the
previous line of pixels. This was repeated 800 times until the ear completed a 360-degree
rotation. This value was based on an estimation that the average ear of corn is roughly
800 pixels or 2 inches in diameter when viewed at a specified distance and resolution from
the camera lens. Although there are substantial morphological differences in the ears of
corn that could cause the image to be stretched or compressed, particularly when using a
diversity panel, this was addressed by capturing an additional four images, each 200 pulses
(or 90 degrees) apart. These four additional images captured the full field of view rather
than a line of pixels. Segmenting the ear from these four images allowed us to calculate an



AgriEngineering 2023, 5 1220

estimate of the ear diameter, and correct distortions in the ‘unwrapped’ image incurred
when imaging ears that were significantly wider or narrower than the 2” ear diameter the
image dimensions were calibrated for.

2.4. Image Processing

A custom Python application was built to interface with the UVC driver, control the
camera shutter and the stepper motor (via the Arduino), and capture the images. This
application also provided a command–line interface to allow user control for photo capture
and file naming. The photos were captured, named, and saved according to the date,
time, and ID number entered by the user as a unique identifier. Images were saved as
PNG files and then filtered and sorted based on a set of criteria. First, images of ears with
<50% pollination, significant damage that was not caused by F. verticillioides, or images
that were blurred were removed as these factors influence the ability to measure disease
severity. After removing and filtering the images, 59 images remained before 10 images
were selected to train the model. When assigning images to the training folder, the images
were chosen based on morphological and phenotypic diversity to provide a range of disease
severity, ear size, and a diversity of lesion colors and shapes. Images used for training were
also selected so that the visual differentiation between healthy and diseased tissues was
clear. The testing set consisted of the remaining 49 images.

2.5. Pixel Classification

To build and train the classification model, we used the interactive machine learning
software, “Ilastik” [25]. This software provides a pre-defined feature space across several
workflows for biological image analysis, reducing both the amount of computing time and
training data required to develop an accurate classifier. We used the ‘pixel classification’
workflow to semantically segment the images according to our three class labels: back-
ground, healthy tissue, and diseased tissue. The background consisted of all image areas
that were not ear tissue, and all maize ear tissues without fungal hyphae were considered
healthy. Any tissue that contained visually apparent disease symptoms was annotated as
diseased tissue (Supplemental Figure S2). We used the default Random Forest classifier and
feature selection settings of σ3 (Sigma of 1.60) for Color/Intensity, Edge, and Texture. The
ten training images were imported to Ilastik, and each image was manually annotated with
the class labels until the real-time classifier predictions became stable (i.e., when additional
annotation caused either no visible change or minimal change in the model feedback). Once
the training was complete, the remaining 49 testing/validation images were imported for
batch processing. The model was used to generate a probability map for each image, i.e.,
an image with identical dimensions, where each pixel is colored by the classifier according
to the class label that it most likely represents in the original image (Figure 2B).

2.6. ImageJ and OpenCV Processing

Outputs from the testing dataset were processed in ImageJ (FIJI) and OpenCV using
a custom Python script [26,27]. Probability files were converted from TIFF to PNG, and a
median blur function (Ksize = 11) was applied to each image in ImageJ. In OpenCV, the
RGB images were converted to an HSV (hue, saturation, and value) representation and
thresholded to create a mask for pixels classified as likely to be diseased. This mask image
was converted to binary (black and white), where the disease is represented as white pixels
(Figure 2D,E). These white pixels were then counted using a Python script and written out
to a CSV file with their corresponding unique ID numbers for reference to their manually
recorded scores.
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2.7. Scoring Methods and Correlations

The ears that were imaged were also scored in two different ways. The first was a
user with experience with FER infections, counting the kernels that had visual symptoms
consistent with FER. The second was by manually annotating each image in the program
Microsoft Paint (on Windows 10) by coloring the disease pixels with the same blue color
used in Ilastik, using the same methods to blur, threshold, and mask the image as in
the Ilastik output images (Figure 2C,E). It should also be noted that the expert counting
diseased kernels was the same person manually annotating the images on Paint to provide
continuity. To correlate the infected kernel counting scores with the predicted pixel counts
from Ilastik and the manually annotated pixel counts from Paint, the log scores of each
were calculated and compared.

3. Results
3.1. Image Acquisition and Descriptive Statistics

Each maize ear, once mounted on the modified stepper motor, required 10 s for
a full image to be taken. After size correction and de-warping, images were roughly
1280 × 450–600 depending on the diameter of the ear. Over 3000 ears were imaged using
The Ear Unwrapper, which showed high reproducibility and no errors in image acquisition.
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3.2. Correlation of Severity Scores

Using the index of each photo, the disease severity scores were adjusted and correlated
in different ways. Log adjusted counts of white pixels (representing disease) from the
manually annotated Paint output were compared to the log adjusted pixel counts from
the Ilastik prediction software, generating an R2 = 0.7409 (Figure 3A). Next, log values of
the pixel count for both Paint and Ilastik predictions were calculated and then correlated
with the log adjusted infected kernel counts. The log values of the Paint counts compared
with the log adjusted infected kernel counts generated an R2 = 0.4677 (Figure 3B), and the
log values of the Ilastik scores compared with the log infected kernel counts generated an
R2 = 0.2831 (Figure 3C). Additional statistics from the output of all scoring methods can be
found in Table 1.
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Table 1. Statistics from the output of infected kernel counts, Ilastik predictions, and Paint annotations.

Method Average Standard
Deviation Minimum Maximum

Log infected kernel count 1.48 0.22 0.85 1.90
Log Ilastik pixel count 3.78 0.67 0.78 4.62
Log Paint pixel count 3.87 0.39 2.81 4.62

Raw infected kernel count 33.9 16.9 7 80
Raw Ilastik pixel count 11,622 10,521 6 41,290
Raw Paint pixel count 10,270 7375 659 41,290

4. Discussion

The technology presented in this study demonstrates a method for quantifying disease
symptoms by imaging maize ears via “unwrapping” the ear exterior to be viewed in a single
rectangular image for different image analysis objectives. The Ear Unwrapper method of
image stitching and de-warping of the different sized and shaped ears showed reliable,
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consistent, and accurate results in the downstream analysis. As phenotypic data acquisition
is often the bottleneck that most breeding programs face, this study provides an example of
how to remove this bottleneck by pairing commercially available hardware with machine
learning. Here, we used images produced by The Ear Unwrapper in a machine learning
(ML) pipeline to quantify the severity of damage caused by the Fusarium ear rot (FER)
pathogen. The ML pipeline and results shown here are not meant as a validation of the
phenotyping method, nor confirmation of the ML software “Ilastik” in FER phenotyping,
but rather as an example application for images produced by The Ear Unwrapper. As FER is
an important disease in maize, accurate disease severity estimates are necessary to improve
disease resistance in maize breeding programs. The Ear Unwrapper platform could also
potentially be used for other diseases that infect maize ears or for other investigations
regarding the morphology and phenotypes of the maize ear.

Though the sample size of the images chosen in this study was small (testing set
N = 49), correlations between the results of different phenotyping methods were consistently
positively correlated. While correlations between the log adjusted infected kernel counts
and the log adjusted pixel counts were low (R2 = 0.4677 and R2 = 0.2831), this assumes
a linear relationship between scoring methods. It is important to note that within the
FER pathosystem, several methods of measuring disease severity exist, though none are
universally used and accepted. However, when comparing the two methods that used
the same images generated by The Ear Unwrapper, the correlation was much higher
(R2 = 0.7409), suggesting that the ML prediction pipeline is more accurate for estimating
the disease area. By contrasting this high correlation with the lower correlation values
between infected kernel counting and pixel counts, it could provide evidence that infected
kernel counting does not correlate well with the lesion area. For example, the same size
lesion on ears with different sized kernels would generate two different kernel counts
but the same area of disease (or number of pixels). The most common method of FER
severity phenotyping is visual estimation between 1–10 or 1–7 but does not use quantitative
measures for these estimates. The correlations in the data table are provided to show how
different phenotyping methods could produce variable results and subsequent selection
changes in what varieties are used for breeding. No method is accepted as superior for
use in phenotyping disease severity, so additional work to determine the genetic basis
(heritability) of these different disease severity estimates should be performed.

Regardless, the high positive correlation between the images manually annotated in
Paint and those generated from Ilastik demonstrate how high-quality image production is
a valuable tool with or without building an ML pipeline, but that even with small data sets
ML pipelines can measure complex traits of interest such as FER infection severity using
probabilistic pixel classification. As image segmentation for quantitative analysis is usually
performed by complex deep learning neural networks, this evaluation of a quantitative
trait using a classification model provides an example of how more user-friendly software
and other data-driven models can be used to obtain reasonable results [28–30]. There
are several options that may be used to improve this method. Increasing the number of
images used for training will provide better resolution around the quality of the results and
possibly improve the calibration to provide more accurate predictions. Using more highly
customized pixel classification methods or applying more computationally intensive neural
network models could possibly provide better results; however, generating quantifiable
data that can be objectively validated would give greater weight to images that increase
correlations between predicted and actual scores.

While The Ear Unwrapper can only image a single ear at a time, the same framework
and image acquisition techniques could be applied using multiple ears/motors with only a
slightly higher cost. This technology could also be adapted for applications using other
wavelengths outside the visual spectrum, as the pipeline is mostly hardware-agnostic,
provided that the camera can accept external triggers for shutter control and supports
UVC device standards. Other imaging devices may be used if driver-level interfacing
or hardware modifications are provided. Similar technologies have been used for kernel
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analysis (counting and sorting), ear morphology (size, shape, and color), and molecular
traits. The Ear Unwrapper, given the appropriate downstream image analysis tools, can be
applied for these traits as well. While currently built to image maize ears, other cylindrical
products that require the analysis of the full image are easily adapted using the same
framework. In this study, only ears with high (>90%) seed set were included, but ears with
low seed set and irregular morphologies were also imaged and produced high-quality
results (Supplemental Figure S1).

5. Conclusions

In this paper, we describe how, by using off-the-shelf parts and open-source software, a
semi-automated image acquisition machine was built, and the produced images were used
in a pixel classification model to estimate disease severity from the maize disease Fusarium
ear rot. We also calculated the correlation between the different methods of severity
estimation to demonstrate how these methods could change the results and subsequent
actions taken by disease resistance breeders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriengineering5030077/s1, Supplemental Figure S1. Examples
of morphologically diverse maize sample images produced by The Ear Unwrapper. Supplemental
Figure S2. Example of annotation in Ilastik. Yellow lines are drawn on the background. Blue lines are
drawn on healthy tissue, and red lines are drawn on diseased tissue. Supplemental Table S1. All raw
data values were used to generate results.
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