Ventilation Operating Standard for Improving Internal Environment in Pig House Grafting Working Conditions Using CFD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Pig House
2.2. Computational Fluid Dynamics
2.3. Tracer Gas Decay Method
2.4. Experimental Procedure
2.4.1. Field Monitoring of Harmful Gas Concentrations
2.4.2. CFD Analysis for Ventilation Efficiency and Thermal Environment
2.4.3. CFD Analysis for Ventilation Efficiency and Thermal Environment
3. Results and Discussion
3.1. Field Monitoring for Harmful Gas Concentrations
3.2. CFD Analysis for Ventilation Efficiency and Thermal Environment
3.3. Ventilation Operating Standard for Improving Working and Breeding Environments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thorne, P.S.; Ansley, A.C.; Perry, S.S. Concentrations of bioaerosols, odors, and hydrogen sulfide inside and downwind from two types of swine livestock operations. J. Occup. Environ. Hyg. 2009, 6, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.; Heo, Y.; Lim, G.; Song, E.; Roque, K.; Lee, J.; Kim, Y.; Cho, A.; Shin, S.; Kim, C. Altered immune responses in broiler chicken husbandry workers and their association with endotoxin exposure. Ind. Health 2017, 56, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.-H.; Jeong, B.-Y. Characteristics and causes of musculoskeletal disorders for employees aged 50 years or older. J. Ergon. Soc. Korea 2009, 28, 139–145. [Google Scholar] [CrossRef]
- Chapin, A.; Boulind, C.; Moore, A. Controlling odor and gaseous emission problems from industrial Swine facilities. Yale Environ. Prot. Clin. Handb. 1998. [Google Scholar]
- Bruce, J. Ventilation and Temperature Control Criteria for Pigs. Environ. Asp. Hous. Anim. Production. 1981, 197–216. [Google Scholar]
- Donham, K.J.; Scallon, L.J.; Popendorf, W.; Treuhaft, M.W.; Roberts, R.C. Characterization of dusts collected from swine confinement buildings. Am. Ind. Hyg. Assoc. J. 1986, 47, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-B.; Won, J.-U.; Roh, J.-H.; Lee, K.-H.; Lee, H.-J.; Lee, H.-S.; Lee, H.-J. Study on manifestation of allergic symptoms by cultivation of Cyperus exaltatus & manufacture of hwamunsok. J. Agric. Med. Community Health 1995, 20, 187–195. [Google Scholar]
- Dutkiewicz, J. Bacteria and fungi in organic dust as potential health hazard. Ann. Agric. Environ. Med. 1997, 4, 11–16. [Google Scholar]
- KIM, G.S.; Kim, E.A.; Lee, S.H.; Pakr, H.S. A Study on Risk Factors of Grain Dust-Induced Occupational Asthma in Grain Feedmill Workers. Korean J. Occup. Environ. Med. 1997, 9, 628–640. [Google Scholar] [CrossRef]
- Lim, H.-S.; Bae, G.-R.; Kim, D.-H.; Jun, K.-H. Respiratory symptoms occurring among mushroom farmers. J. Agric. Med. Community Health 1998, 23, 259–268. [Google Scholar]
- Bottcher, R.W. An environmental nuisance: Odor concentrated and transported by dust. Chem. Senses 2001, 26, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, H.-J. Beware of swine respiratory diseases in winter. Feed J. 2006, 4, 106–110. [Google Scholar]
- Oh, B.-W.; Lee, S.-W.; Kim, H.-C.; Seo, I.-H. Analysis of working environment and ventilation efficiency in pig house using computational fluid dynamics. J. Korean Soc. Agric. Eng. 2019, 61, 85–95. [Google Scholar] [CrossRef]
- Lee, S.-W.; Kim, H.-C.; Seo, I.-H. Monitoring of Internal Harmful Factors According to Environmental Factors in Pig Farm. J. Korean Soc. Agric. Eng. 2020, 62, 105–115. [Google Scholar] [CrossRef]
- Bjerg, B.; Svidt, K.; Zhang, G.; Morsing, S.; Johnsen, J.O. Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Comput. Electron. Agric. 2002, 34, 223–235. [Google Scholar] [CrossRef]
- Seo, I.-H.; Lee, I.-B.; Hong, S.-W.; Hwang, H.-S.; Bitog, J.P.; Yoo, J.-I.; Kwon, K.-S.; Ha, T.-H.; Kim, H.-T. Development of a CFD model to study ventilation efficiency of mechanically ventilated pig house. J. Korean Soc. Agric. Eng. 2008, 50, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Seo, I.-H.; Lee, I.-B.; Moon, O.-K.; Hong, S.-W.; Hwang, H.-S.; Bitog, J.P.; Kwon, K.-S.; Ye, Z.; Lee, J.-W. Modelling of internal environmental conditions in a full-scale commercial pig house containing animals. Biosyst. Eng. 2012, 111, 91–106. [Google Scholar] [CrossRef]
- Hong, S.-W.; Exadaktylos, V.; Lee, I.-B.; Amon, T.; Youssef, A.; Norton, T.; Berckmans, D. Validation of an open source CFD code to simulate natural ventilation for agricultural buildings. Comput. Electron. Agric. 2017, 138, 80–91. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zhang, G. Reliability of turbulence models and mesh types for CFD simulations of a mechanically ventilated pig house containing animals. Biosyst. Eng. 2017, 161, 37–52. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Wu, B. Assessment of hygrothermal conditions in a farrowing room with a wet-pad cooling system based on CFD simulation and field measurements. Trans. ASABE 2014, 57, 1493–1500. [Google Scholar] [CrossRef]
- Rong, L.; Nielsen, P.V.; Bjerg, B.; Zhang, G. Summary of best guidelines and validation of CFD modeling in livestock buildings to ensure prediction quality. Comput. Electron. Agric. 2016, 121, 180–190. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.-W.; Lee, I.-B.; Ha, T.-H.; Yeo, U.-H.; Lee, S.-Y.; Lee, M.-H.; Park, G.-Y.; Kim, J.-G. Development of CFD model for predicting ventilation rate based on age of air theory using thermal distribution data in pig house. J. Korean Soc. Agric. Eng. 2017, 59, 61–71. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zhang, G. Numerical study on the convective heat transfer of fattening pig in groups in a mechanical ventilated pig house. Comput. Electron. Agric. 2018, 149, 90–100. [Google Scholar] [CrossRef]
- Kwon, K.-S.; Lee, I.-B.; Ha, T. Identification of key factors for dust generation in a nursery pig house and evaluation of dust reduction efficiency using a CFD technique. Biosyst. Eng. 2016, 151, 28–52. [Google Scholar] [CrossRef]
- Reynolds, A. A model for predicting airborne dust concentrations within a ventilated airspace. J. Agric. Eng. Res. 1997, 66, 103–109. [Google Scholar] [CrossRef]
- Rong, L.; Elhadidi, B.; Khalifa, H.; Nielsen, P.V. CFD modeling of airflow in a livestock building. IAQVEC 2010, 2010, 7. [Google Scholar]
- Rong, L.; Elhadidi, B.; Khalifa, H.E.; Nielsen, P.V.; Zhang, G. Validation of CFD simulation for ammonia emissions from an aqueous solution. Comput. Electron. Agric. 2011, 75, 261–271. [Google Scholar] [CrossRef]
- Saha, C.K.; Wu, W.; Zhang, G.; Bjerg, B. Assessing effect of wind tunnel sizes on air velocity and concentration boundary layers and on ammonia emission estimation using computational fluid dynamics (CFD). Comput. Electron. Agric. 2011, 78, 49–60. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, G.; Bjerg, B.; Nielsen, P.V. An assessment of a partial pit ventilation system to reduce emission under slatted floor—Part 2: Feasibility of CFD prediction using RANS turbulence models. Comput. Electron. Agric. 2012, 83, 134–142. [Google Scholar] [CrossRef]
- Bjerg, B.; Cascone, G.; Lee, I.-B.; Bartzanas, T.; Norton, T.; Hong, S.-W.; Seo, I.-H.; Banhazi, T.; Liberati, P.; Marucci, A. Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 3: CFD modelling. Biosyst. Eng. 2013, 116, 259–275. [Google Scholar] [CrossRef]
- Wu, W.; Zong, C.; Zhang, G. Comparisons of two numerical approaches to simulate slatted floor of a slurry pit model–large eddy simulations. Comput. Electron. Agric. 2013, 93, 78–89. [Google Scholar] [CrossRef]
- Zong, C.; Zhang, G. Numerical modelling of airflow and gas dispersion in the pit headspace via slatted floor: Comparison of two modelling approaches. Comput. Electron. Agric. 2014, 109, 200–211. [Google Scholar] [CrossRef]
- Rong, L.; Nielsen, P.V.; Zhang, G. Experimental and numerical study on effects of airflow and aqueous ammonium solution temperature on ammonia mass transfer coefficient. J. Air Waste Manag. Assoc. 2010, 60, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Zou, Z.-J.; Wang, Z.-H.; Zou, L.; Gao, H. Surrogate model based uncertainty quantification of CFD simulations of the viscous flow around a ship advancing in shallow water. Ocean Eng. 2021, 234, 109206. [Google Scholar] [CrossRef]
- Cravero, C.; De Domenico, D.; Marsano, D. The use of uncertainty quantification and numerical optimization to support the design and operation management of air-staging gas recirculation strategies in glass furnaces. Fluids 2023, 8, 76. [Google Scholar] [CrossRef]
- Cravero, C.; De Domenico, D.; Marsano, D. Uncertainty Quantification Analysis of Exhaust Gas Plume in a Crosswind. Energies 2023, 16, 3549. [Google Scholar] [CrossRef]
- Fluent, A. R2 User’s Guide. Available online: https://forum.ansys.com/uploads/846/SCJEU0NN8IHX.pdf (accessed on 23 June 2021).
- Seo, I.-H.; Lee, I.-B.; Moon, O.-K.; Kim, H.-T.; Hwang, H.-S.; Hong, S.-W.; Bitog, J.; Yoo, J.-I.; Kwon, K.-S.; Kim, Y.-H. Improvement of the ventilation system of a naturally ventilated broiler house in the cold season using computational simulations. Biosyst. Eng. 2009, 104, 106–117. [Google Scholar] [CrossRef]
- Kwon, K.-S.; Lee, I.-B.; Hwang, H.-S.; Bitog, J.P.; Hong, S.-W.; Seo, I.-H.; Choi, J.-S.; Song, S.-H.; Moon, O.-K. Analysis on the optimum location of an wet air cleaner in a livestock house using CFD technology. J. Korean Soc. Agric. Eng. 2010, 52, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Lee, I.-B.; Kwon, K.-S.; Ha, T.-H.; Yeo, U.-H.; Park, S.-J.; Kim, R.-W.; Jo, Y.-S.; Lee, S.-N. Analysis of Natural Ventilation Rates of Venlo-type Greenhouse Built on Reclaimed Lands using CFD. J. Korean Soc. Agric. Eng. 2015, 57, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Lee, I.-B.; Kim, R.-W. Evaluation of wind-driven natural ventilation of single-span greenhouses built on reclaimed coastal land. Biosyst. Eng. 2018, 171, 120–142. [Google Scholar] [CrossRef]
- Sun, H.; Keener, H.M.; Deng, W.; Michel, F.C., Jr. Development and validation of 3-d CFD models to simulate airflow and ammonia distribution in a high-rise™ hog building during summer and winter conditions. Agric. Eng. Int. CIGR J. 2004, 6. [Google Scholar]
- Rong, L.; Aarnink, A. Development of ammonia mass transfer coefficient models for the atmosphere above two types of the slatted floors in a pig house using computational fluid dynamics. Biosyst. Eng. 2019, 183, 13–25. [Google Scholar] [CrossRef]
Content | Value |
---|---|
Number of meshes | about 4.5 million |
Mesh size | Minimum size 0.05 (cm) |
Mesh design | Tetrahedron |
Boundary conditions | Velocity inlet and pressure outlet |
Turbulence model | Realizable k-ε |
Input temperature | 291.8 (K) |
Output temperature | 289.5 (K) |
Inside initial temperature | 297.8 (K) |
Pig heat flux | 210.9 (W·m−1) |
Ventilation rate (air exchanges) | 0.55 (m−1) |
Velocity at the inlet vent | 3.71 (m·s−1) |
NH3 concentration at work height (1.5 m) | 38.7 (ppm) |
Case | Outlet | Inlet | Human Height (1.5 m) | Pig Height (0.5 m) | ||||
---|---|---|---|---|---|---|---|---|
Min. | Avg. | Max. | Min. | Avg. | Max. | |||
Standard | SF, RBD | LBD, SD, UW | 0.24 | 0.28 | 0.32 | 0.24 | 0.28 | 0.35 |
A-1 | SF, CF, RBD | LBD, SD, UW, DW | 0.25 | 0.35 | 0.45 | 0.25 | 0.35 | 0.47 |
A-2 | SF, CF, RBD | SD, UW, DW | 0.25 | 0.35 | 0.41 | 0.23 | 0.41 | 0.47 |
A-3 | SF, CF, RBD | UW, DW | 0.24 | 0.35 | 0.39 | 0.23 | 0.40 | 0.47 |
A-4 | SF, CF, RBD | UW | 0.26 | 0.31 | 0.34 | 0.26 | 0.28 | 0.34 |
A-5 | SF, CF, RBD | DW | 0.25 | 0.25 | 0.31 | 0.24 | 0.24 | 0.37 |
B-1 | SF, RBD | LBD, SD, UW, DW | 0.27 | 0.37 | 0.44 | 0.26 | 0.43 | 0.47 |
B-2 | SF, RBD | SD, UW, DW | 0.25 | 0.28 | 0.31 | 0.23 | 0.28 | 0.31 |
B-3 | SF, RBD | UW, DW | 0.25 | 0.34 | 0.36 | 0.25 | 0.39 | 0.43 |
B-4 | SF, RBD | UW | 0.23 | 0.29 | 0.32 | 0.23 | 0.31 | 0.32 |
B-5 | SF, RBD | DW | 0.23 | 0.28 | 0.31 | 0.22 | 0.29 | 0.38 |
C-1 | SF | LBD, SD, UW, DW | 0.28 | 0.36 | 0.43 | 0.26 | 0.41 | 0.46 |
C-2 | SF | SD, UW, DW | 0.26 | 0.35 | 0.42 | 0.26 | 0.40 | 0.47 |
C-3 | SF | UW, DW | 0.27 | 0.36 | 0.43 | 0.26 | 0.42 | 0.47 |
C-4 | SF | UW | 0.24 | 0.31 | 0.33 | 0.25 | 0.31 | 0.32 |
C-5 | SF | DW | 0.26 | 0.25 | 0.31 | 0.25 | 0.22 | 0.37 |
D-1 | CF, RBD | LBD, SD, UW, DW | 0.30 | 0.42 | 0.52 | 0.29 | 0.50 | 0.57 |
D-standard | CF, RBD | LBD, SD, UW | 0.25 | 0.28 | 0.33 | 0.24 | 0.28 | 0.37 |
D-2 | CF, RBD | SD, UW, DW | 0.25 | 0.37 | 0.42 | 0.24 | 0.42 | 0.47 |
D-3 | CF, RBD | UW, DW | 0.26 | 0.37 | 0.44 | 0.25 | 0.42 | 0.48 |
D-4 | CF, RBD | UW | 0.23 | 0.30 | 0.32 | 0.22 | 0.31 | 0.32 |
D-5 | CF, RBD | DW | 0.26 | 0.27 | 0.31 | 0.25 | 0.25 | 0.38 |
E-1 | CF | LBD, SD, UW, DW | 0.26 | 0.39 | 0.45 | 0.46 | 0.44 | 0.25 |
E-2 | CF | SD, UW, DW | 0.29 | 0.33 | 0.47 | 0.28 | 0.35 | 0.49 |
E-3 | CF | UW, DW | 0.27 | 0.37 | 0.43 | 0.25 | 0.42 | 0.48 |
E-4 | CF | UW | 0.24 | 0.30 | 0.33 | 0.23 | 0.32 | 0.33 |
E-5 | CF | DW | 0.26 | 0.28 | 0.32 | 0.26 | 0.25 | 0.38 |
F-1 | SF | CF, RBD, SD | 0.24 | 0.26 | 0.34 | 0.26 | 0.26 | 0.38 |
F-2 | SF | CF, RBD, UW, DW | 0.23 | 0.32 | 0.44 | 0.24 | 0.36 | 0.46 |
F-3 | SF | CF, RBD, LBD, SD, UW, DW | 0.24 | 0.29 | 0.44 | 0.24 | 0.38 | 0.47 |
F-4 | SF | CF, SD | 0.25 | 0.28 | 0.35 | 0.25 | 0.23 | 0.36 |
F-5 | SF | CF, UW, DW | 0.21 | 0.33 | 0.55 | 0.22 | 0.49 | 0.60 |
F-6 | SF | CF, LBD, SD, UW, DW | 0.22 | 0.31 | 0.46 | 0.21 | 0.37 | 0.47 |
G-1 | SF, RBD–LBD | SD, UW, DW | 0.23 | 0.34 | 0.41 | 0.23 | 0.41 | 0.47 |
G-3 | SF, RBD–LBD | UW, DW | 0.24 | 0.31 | 0.38 | 0.24 | 0.32 | 0.43 |
G-4 | SF, RBD–LBD | UW | 0.22 | 0.29 | 0.33 | 0.21 | 0.29 | 0.31 |
G-5 | SF, RBD–LBD | DW | 0.25 | 0.26 | 0.31 | 0.25 | 0.24 | 0.38 |
H-1 | SF | RBD, LBD, SD, UW, DW | 0.26 | 0.35 | 0.43 | 0.24 | 0.41 | 0.45 |
H-3 | SF | RBD, LBD, UW, DW | 0.27 | 0.35 | 0.42 | 0.26 | 0.40 | 0.45 |
H-4 | SF | RBD, LBD, UW | 0.23 | 0.27 | 0.32 | 0.21 | 0.26 | 0.35 |
H-5 | SF | RBD, LBD, DW | 0.25 | 0.29 | 0.35 | 0.23 | 0.30 | 0.40 |
Case | Vent. R. (AER−1) | 0.55 | 0.75 | 1.0 | |||
---|---|---|---|---|---|---|---|
Vent. T. (°C) | x < 3 | 3 ≤ x < 5 | x < 3 | 3 ≤ x < 5 | x < 3 | 3 ≤ x < 5 | |
Basic (Standard) | 60 s | 82.9 | 16.5 | 73.3 | 26.3 | 69 | 31 |
180 s | 75.9 | 23.7 | 64.6 | 33 | 59.2 | 38.4 | |
300 s | 84.6 | 15.4 | 61 | 34.9 | 49.5 | 45.9 | |
Upgrade-1 (B, LW) | 60 s | 66.3 | 31.6 | 44.1 | 49.8 | 67.8 | 32.2 |
180 s | 60.8 | 32.2 | 39.7 | 53 | 41.6 | 56 | |
300 s | 66 | 30 | 33.0 | 56.2 | 39.4 | 58.1 | |
Upgrade-2 (B, CF) | 60 s | 80.2 | 17.3 | 73.8 | 25.9 | 69.8 | 30.2 |
180 s | 81 | 18.9 | 64.9 | 33.7 | 56.2 | 41 | |
300 s | 82.7 | 14.6 | 67 | 29.2 | 44.9 | 50.5 | |
Upgrade-3 (B, LW, CF) | 60 s | 65.2 | 32.1 | 65.7 | 33.3 | 68.7 | 31.3 |
180 s | 67.1 | 29.4 | 71.4 | 26.7 | 40.5 | 55.7 | |
300 s | 63.5 | 32.5 | 60.6 | 38.7 | 39.4 | 55.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, B.-W.; Seo, H.-J.; Seo, I.-H. Ventilation Operating Standard for Improving Internal Environment in Pig House Grafting Working Conditions Using CFD. AgriEngineering 2023, 5, 1378-1394. https://doi.org/10.3390/agriengineering5030086
Oh B-W, Seo H-J, Seo I-H. Ventilation Operating Standard for Improving Internal Environment in Pig House Grafting Working Conditions Using CFD. AgriEngineering. 2023; 5(3):1378-1394. https://doi.org/10.3390/agriengineering5030086
Chicago/Turabian StyleOh, Byung-Wook, Hyo-Jae Seo, and Il-Hwan Seo. 2023. "Ventilation Operating Standard for Improving Internal Environment in Pig House Grafting Working Conditions Using CFD" AgriEngineering 5, no. 3: 1378-1394. https://doi.org/10.3390/agriengineering5030086
APA StyleOh, B. -W., Seo, H. -J., & Seo, I. -H. (2023). Ventilation Operating Standard for Improving Internal Environment in Pig House Grafting Working Conditions Using CFD. AgriEngineering, 5(3), 1378-1394. https://doi.org/10.3390/agriengineering5030086