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Abstract: The aim of this work was to elaborate a new methodology that can allow for the identifica-
tion of the topsoil homogeneous area (tSHA) distribution along land parcels, supporting farmers in
keeping low-cost, sustainable, and light logistic management of precision agriculture (PA) practices.
This paper shows the assessment of tSHA variability over two production units (PUs), considering
radiometric response (optical camera), physicochemical (texture, pH, electrical conductivity), and
statistical and geostatistical data analysis. By using unmanned aircraft systems (UASs) and laboratory
analysis, our results revealed that the integration between UAS-RGB and physicochemical data can
improve the estimation accuracy of tSHA distribution. Firstly, the UAS-RGB dataset was used to
isolate bare soil from the vegetative radiometric contribution. Secondly, starting from statistical
approaches (correlation matrices), the highest correlation with UAS-RGB and physicochemical data
was stated. Thirdly, by using a geostatistical approach (ordinary cokriging), the map representing the
tSHA variability was finally obtained.
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1. Introduction

Due to the demand increase in world’s food supply over the last thirty years, food
production has had considerable growth, reflected in the improvement of expanded irri-
gation and fertilization/pesticides use [1]. In the agri-food production chain, precision
agriculture (PA) practices are now required to allow the increase in knowledge about spatial
distribution of homogeneous soil areas within land parcels and the supply of innovative
approaches for resource and practice management in agricultural contexts [2,3]. As well as
on PA, this paper is focused on a new procedure for soil surface variability retrieval, being
the result of complex relations between biological (e.g., pests and microbes), geological (e.g.,
geochemical setting of the substrate and parent material), pedological (e.g., soil horizons
distribution, lisciviation processes, texture, and available water capacity), edaphic (e.g.,
salinity, nutrients, organic matter, and humification processes), agronomic (e.g., agricultural
practices, choice of rootstock, pre-planting, and cultivation management), climatic (e.g.,
temperature, rainfall, and humidity), topographic (e.g., slope, elevation, and exposition),
and anthropogenic factors.

Site-specific soil analysis can facilitate crop supervision on pre-planting and post-
planting sceneries by considering physicochemical local variability [4,5]. To understand
the soil-crop system, it is necessary to consider soil property effects for a given culture, first
through preliminary/non-invasive analysis and, consequently, through specific/invasive
investigations. According to this, preliminary/non-invasive measurements can provide
information by detecting soil texture, electrical conductivity (EC), pH, and remote sensing
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spectral response [5–8]. Conversely, specific/invasive techniques concern a pedological
survey along the soil profile (≈2 m-depth), followed by dry/wet-chemistry laboratory
analysis for each diagnostic soil horizon [5,9,10]. Concerning preliminary and non-invasive
methods, the utilization of remote sensing (e.g., satellite and UAS) imagery can make
available the obtaining of information on topsoil homogeneous area (tSHA) distribution
in relation to the physicochemical variability. For instance, tSHA detection can arise
through a combination of optical sensors with electrical, acoustic, and electrochemical
capabilities [11]. Furthermore, through statistical predictive models, many authors used
visible and/or near-infrared spectroscopy to determine textural classes or soil organic
matter (SOM) contents [12,13]. De facto, in recent years, PA has increasingly seen a spread
about the specific use of unmanned aircraft systems (UASs) and satellites for the study
of plant condition [14–17] and soil characteristics [18–22]. According to this, to feature
homogeneous areas on bare soil, pixel reflectance can be coupled with soil parameters and
values related to remote datasets (satellite and UAS) [23–25].

Nowadays, the use of UAS in agricultural applications is rising considerably, and the
constant demand of such kinds of tools is producing a significant economic influence [26].
Hence, such tendencies appear in the augmentation of research papers on the application
of sensors set on unmanned aircraft vectors (UAVs), especially in the PA context [27–32].
Such a trend is mainly supported by six principal factors: (i) camera and sensor equip-
ment is still low cost; (ii) easy application and employment of sensors and cameras on
vectors; (iii) non-destructive measures; (iv) effectiveness to recover the canopy volume
and pedological property; (v) utilization of structure from motion (SfM) techniques
by computer vision approach; and (vi) development of automatic-feature-matching
algorithms [23–37].

Datasets retrieved from UAS, through the combination of 2D/3D data analysis, are
also used for map degradation processes in vineyards, providing essential information
for replanting or redeveloping procedures; matching the canopy volume with soil proper-
ties; and pointing out parameters such as cultivar vigor, yields, irrigation design, canopy
volume, leaf area, plant height, vine row extraction, and yield estimation [38–41]. Hence,
the latest advances are showing an intensive growth of works related to dense point
cloud acquisition, extraction of traits derived from digital elevation models (DEMs),
and 3D model computations. According to this, to visualize morphometric features,
UAS-RGB data elaboration and map algebra operations from digital surface models
(DSMs) and digital terrain models (DTMs) can be used to obtain products such as digital
difference models (DDMs) [42,43]. Then, in PA contexts, soil characteristics retrieval can
occur through satellite, UAS, and laboratory analysis, obtaining spectral indices and
predicting pedological parameters such as the soil texture. Such a kind of analysis can
be helpful for better initial growth during the pre-planting stage, aiming to organize
agricultural practices. As well as in this paper, superficial soil radiometric parameters
can be useful for a preliminary discrimination of tSHAs along land parcels, retrieving
information on their spatial distribution. Then, such datasets are related to the distri-
bution of areas potentially affected by anomalies and lack. As performed in this paper,
topsoil heterogeneity, which could be related to anomalies and nutrient deficiencies, can
be spatialized through the proposed procedure by using UAS-RGB imagery and topsoil
physicochemical parameters’ estimation. Then, the data are analyzed with the aim of
obtaining a functional spatialization in relation to the UAS-RGB technology image acqui-
sition. According to this, the dataset used in this work concerns results and evaluations
obtained through the following activities:

(i) Ground sample campaign and laboratory analysis (EC, pH, and soil texture);
(ii) UAS-RGB survey and spectral indices’ calculation;
(iii) Statistics and geostatistics.
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2. Materials and Methods
2.1. Study Area and Geopedological Setting

The area of interest lies within the region of Calabria (Italy), in the municipal area of
Gerace, in the central-eastern part of the Reggio Calabria Province, between Novito and
Gerace streams, within a territory named Locride, at an altitude of 492 MASL (Figure 1).
Regarding the study area, it is situated between the mountain ranges of Serre and Asper-
mont, exactly on the southeastern segment of the Calabrian Apennine. Several production
units (PUs) are located at about 200 MASL, in a north/south region sheltered from sea
winds by east crests: Greco Bianco and the Greco Nero types of grapevines are present.
Referring to Csa class from the Koppen classification, climate condition concerns a hot
summer Mediterranean climate with hot and dry summers and moderately temperate
winters [44]. The yearly means of temperature, evapotranspiration, and precipitation are
18.4 ◦C, 87.3 mm, and 61.2 mm, respectively.
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Figure 1. This image represents the study area and the spatialization of the soil cartographic units
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The Calabrian geological setting derives from the tectonic structuring that occurred
with the continuous north-westward subduction of the Ionian oceanic lithosphere under-
neath the Calabrian–Peloritan arc [44–46] and the south-eastward roll-back of the Ionian
slab [47]. According to Sheet CARG 590 [48], the geological formations are related to
sedimentary lithotypes. These are denoted by (i) the Apennine–Maghrebid Orogenetic
Unit (Argille Variegate AV-Group), (ii) the Terrigenous Miocene Succession (Pier Niceto
Formation-PCT), and (iii) the Clastic-Evaporitic Messinian Succession (Vinco’s Calcarenite-
VNI). More precisely, the AV-Group belongs to a deep basin depositional environment
(Upper Cretaceous–Lower Miocene), the PCT-Formation (Serravallian–Tortonian) belongs
both to the continental slope and the base of slope, and the VNI from pelitic to shallow
marine calcarenite formations [49,50]. Thus, the previous formations are characterized
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by the subsequent lithotypes, respectively: pelite (quartzarenite and limestone); marine
pre-evaporitic pelite (limestone–gypsum); coarse-grained alluvial-fan to conglomerates;
and sandy shallow-marine to continental progradation lithotype [48–50]. According to the
previous geological classification, the substrate can influence the composition of the soils
above through pedogenetic processes. Hence, in the area of interest, tSHAs can inherit
their chemical and physical properties from the geological context. For instance, textural
properties, such as the abundance of sand, confer high hydraulic permeability to the soil,
as long as the presence of clay and silt can confer low permeability and high-capacity
water retention. Hence, the superficial hydrographic setting is highly influenced both
by lithological outcrop units (clay–sand sediments) and by local morphology (different
terrain slopes) [51]. Taking into account the soil map of Calabria (scale 1:250,000), in the
study area, soil region corresponds to unit 62.3 (Hills of Calabria and Sicily on Tertiary
calcareous rocks and sediments), which includes alluvial and coastal plains. The area of
interest pertains to Soil Subregion 8, associated with the hilly background of the Tyrrhenian
slope, where moderately steep to steep slopes (6–35%) occur at elevations below 300 MASL.
This last soil subregion concerns the following soil system units: (i) slopes with different
acclivity/substrate cropping zones, (ii) old terraces, and (iii) recent alluvial/colluvial de-
posits. In detail, according to the Soil Map of Calabria—1:250,000 scale, the pedological
soil sub-systems that characterize the study area are represented in Figure 1. So, in the
soil sub-system, units 6.3 and 6.6 occur in the study area, which correlate with landscapes
with hummocky hill morphology with Pliocene pelitic/silty-pelitic sediments and complex
slopes characterized by landslide phenomena with substrate consisting of chaotic Miocene
pelites, respectively. The parent materials are mostly constituted of Mio-Pliocene and
Quaternary sediments, on which the overlying soils exhibit the lack or occurrence of car-
bonates (pH: sub-acid to alkaline; texture: fine to coarse). In detail, the soil sub-system 6.3
is composed of the following soil typological units (STUs):

VIA_1: Ap-BCg-Cg, slight to moderately thick profile, no coarse fragments, fine
texture, alkaline, calcareous, medium/high water capacity, and poor drainage (Haplic–
Gleyic Regosols).

SAL_1: Ap-Bw-BCg-Cg, moderately deep profile, no coarse fragments, fine texture, al-
kaline, calcareous, high water capacity, and moderate drainage (Haplic Calcaric Cambisols).

GUA_1: Ap-Bk-Ckg, moderate to very deep profile, no coarse fragments, fine texture,
alkaline, high presence of cabronates, elevate water capacity, normal drainage, and slight
tendency to crack in dry seasons (Haplic Calcisols).

Regarding to the cartographic unit 6.6, the following STUs occur:
CAO_1: A-BC-Cg, shallow profile, frequent coarse fragments, fine textures, medium

to high alkalinity, moderately saline, low-water capacity, and poor drainage (Calcaric-
Hyposodic Regosols).

2.2. Data Processing and Workflow

In this paper, basic instruments were used for the tSHA variability retrieval to assess
low-cost and no-time-consuming analyses. In the selected areas, many soil variations corre-
sponding to texture, chemicals, and geodiversity changes were investigated. According to
the physicochemical contrasts, the correlation of data occurred through a multi-analytical
approach, matching different information obtained by various instruments.

As described in the following workflow (Figure 2), field and aerial surveys were
conducted to collect and elaborate soil samples and UAS-RGB images, respectively. After
the photogrammetry data collection, the data frame was computed by means of Agisoft
Metashape (Agisoft LLC, St. Petersbug, Russia, version 2.0.1) for orthophotos generation.
Orthophotos allow us to analyze soil characteristics and superficial variability by using
red, green, and blue spectral indices, which are useful to appreciate the topsoil variability.
The data frame is managed and analyzed by algorithms integrated into Quantum GIS
(QGIS, version 3.18.3) and ENVI (version 5.3.1). For the preprocessing steps, ENVI software
was used to normalize the image through a relative correction method by means of the
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flatfield correction tool, while QGIS was used for the data frame manipulation and geopro-
cessing. Moreover, statistical data were processed by R-programming code, wherein the
“ggcorrplot” and “Performance Analytics” packages were utilized, available in the CRAN
(Comprehensive R Archive Network) platform.
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Figure 2. As part of the study of the tSHA distribution, the elaboration of the UAS-RGB image dataset
started from image collection by UAS survey and topsoil ground data sampling. In the end, the final
product (tSHA map) concerned data matching and the spatialization of laboratory and radiometric data.

Moreover, the combination of DEM is fundamental for the extraction of traits derived
from the 3D model computations. According to this, by map algebra operations between
DSM and DTM, it is possible to obtain results, such as DDMs from the difference between
DSM and DTM. Hence, to isolate the soil matrix, DDM was converted into a vector file
and then transformed into a mask, which was used for row subtraction on orthophotos. To
ameliorate intra-row vegetation subtraction, the excess green (ExG) index was used.

Ground soil analysis, such as EC, pH, and textural classes, generally occur to support
UAS data analysis [52,53]. In this study, such physicochemical parameters were performed
in the laboratory through the appropriate methodologies, explained in detail in the follow-
ing sections. According to this, linear regression models for each parameter were helpful to
determine the most suitable analyte for the calibration of radiometric data. Hence, the best
model was used for tSHA geostatistical spatial distribution, wherein the principal variable
concerned the UAS-RGB radiometric data while the topographical layout was settled as
the second variable.

2.3. Unmanned Aircraft System

UAS data were collected in August 2019 on two Greco Bianco (Vitis vinifera “Greco”)
grapevine PUs. The horizontal and vertical flight accuracy corresponded to 0.5 m and 1.5 m,
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respectively. Overflights were acquired through a DJI Phantom 4 Pro V2.04 tuned with an
optical RGB camera (CMOS with 20 Megapixels of resolution, camera size: 59 × 41 × 28 mm
and weight of 72 g) (Figure 3). Image acquisition was scheduled with an 80% image overlap
ratio, a flying velocity of 5 m/s, and a 30 M.A.S.L., allowing a 10 cm pixel ground resolution
for all surveys. The RGB camera includes blue (B), green (G), and red (R), which are part of
the UAS acquisition system. Then, UAS-RGB images were processed to create 3D models
and orthophotos. Indeed, based on structure from motion (SfM) algorithms, images were
managed to create a 3D point cloud model of the study area [54]. Such techniques have
gained great popularity due to the advent of several user-friendly software programs that
allow for the management of spectral images datasets [55]. SfM works on the computer vision
domain and enables 3D modeling and orthophotos production through the acquisition of
a sequence of 2D overlapping images. SfM matches the same features in a compendium of
overlapped images and computes, from diverse positions, camera orientation and positioning.
As mentioned by Westoby et al. (2012) [55], this makes available the use of low-cost sensors
and platforms for several applications. The photographic camera parameters are used to
generate a densified point cloud model using multi-view stereo (MVS) algorithms [56]. The
generation of orthophotos can be attained by applying specific processing steps to aerial
surveys. In this research, the UAS-RGB dataset was used to generate specific maps related to
soil salinity. So, through the common procedures for image alignment and feature matching,
dense cloud point, mesh, and model texturization, it was possible to generate 3D models,
digital elevation models (DEMs), and orthophoto maps.
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2.4. Physicochemical Analysis

Ground soil points were selected according to the radiometric and spectroradiometrical
measurements acquired previously by Mei et al., 2020 [7]. Ground data were carried
out during August 2019 (Figure 4) with bare soil evidence. Preparation and analysis
were carried out at the CNR-IIA laboratories, investigating physicochemical parameters
such as EC, pH, and topsoil texture. Soil samples were extracted in correspondence
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with the pedological horizon Ap (≈0–40 cm) and were prepared by drying at 25 ◦C and
by 2 mm sieve sifting. EC and pH were performed by the multiparameter instrument
HANNA® HI9813-6, a portable measurer equipped with a unique probe that is in turn
issued with the CAL Check HANNA® calibration functionality. The latter allows us to
obtain more accurate measurements and report when the probe needs to be calibrated,
cleaned, or replaced. For such analysis, mixtures of soil and purified water (MilliQ) were
obtained, in a ratio of 1:2.5 by weight. Furthermore, to ensure the uniformity of sample
solutions, a mechanical stirrer was used to obtain a homogeneous solution. Regarding the
determination of topsoil texture, the field method involves an initial clod of soil of about
3/4 cm in diameter. Previously, the sample was moistened, successively held between the
fingers, and manipulated. Such manipulation occurs following a guideline called “handling
by touch”, which can determine the soil texture, plasticity, and adhesiveness of the soil
samples [5].
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2.5. Remote Sensing Indices and Spectral Elaboration

A mathematical combination of spectral bands can provide an evaluation of sev-
eral physicochemical properties of the soil. This information can be used to monitor
vegetation, soil moisture, water quality, and other environmental parameters. In the
RGB spectral range, there are several spectral indices that can be obtained to provide
information about soil properties. Many studies have obtained information on land use
and land use change, vegetation, and soil conditions [57,58]. Instead, the spectral indices
were extracted, starting with an orthophoto representing two PUs. Spectral indices,
based on RGB imagery (Table 1), concern the excess green (ExG), salinity index (SI),
and brightness index (BI). The latter is fundamental in establishing a classification layer
able to distinguish the vegetative contribution from the soil matrix and, furthermore, to
detect the soil surface anomalies’ distribution.
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Table 1. Spectral indices used in this paper (blue band: B1; green band: B2; red band: B3).

Indices Equation Ref.

Excess green index (ExG) ExG = 2×
(

B2
B3+B2+B1

)
−
(

B3
B3+B2+B1

)
−
(

B1
B3+B2+B1

)
[59,60]

Salinity index (SI) SI =
√

B22 × B32 [22]

Brightness index (BI) BI =
√(

B22 × B32)/2 [26]

De facto, due to the high absorption in correspondence to the blue and red bands
due to chlorophyll presence, the ExG index has been proven to be a useful tool for the
discrimination of vegetational contribution [59,60]. The ExG index is calculated from the
true color orthomosaic, using the raster calculator function on QGIS. The identification and
separation of vegetation from soil, due to the development of the ExG index, is useful in
terms of obtaining an exclusive soil radiometric discrimination closer to reality for each
pixel. Consequently, a threshold layer is obtained from the ExG index, with the aim of
isolating the soil matrix through binary values (0–1). Regarding the papers concerning
the Otsu threshold value for vegetation classification [61,62], the soil’s threshold layer is
achieved by the raster calculation function, imposing values < 0.025 as characteristics of
the soil matrix. In the end, the ExG raster is used as a threshold-based image classification
to optimally distinguish vegetation from bare soil as a refinement of what was previously
obtained by DDM acquisition (see Section 2.2). Hence, in the below picture (Figure 5), it
is evident how the DDM’s (green pattern) acquisition methodology combined with the
ExG threshold-based (black pattern) raster image methodology had high efficiency in the
subtraction of the vegetative contribution from soil pixels.
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Figure 5. ExG threshold-based raster image (black) and DDM acquisition (green) for vegetation masking.

The correlation between radiometric (BI and SI) and physicochemical (soil texture,
EC, pH) parameters is a key point for obtaining an accurate tSHA final map. Figure 6
shows a sampling grid with 3 m radius circle buffers used to extract radiometric data from
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a soil image (without vegetation). Such a data frame (Equation (1)) is joined (by means of
intersection and dissolving QGIS tools) with the laboratory data for statistical analysis.

zµ
∗(x0) = µij(xn) (1)

where zµ*(x0) represents the matrix resulting from the buffering operations in correspon-
dence of the point x0, comprehending the mean (µ) values to each j-indexed constraint
EC (j = 1), pH (j = 2), clay content (j = 3), and R/G/B bands (j = 4) for each point (xn) and
i statistical component.

Figure 6. On the left, sampling grid and buffer creation (3 m radius) to extract pixel values from
UAS and field topsoil data (not to scale). On the right, a smart workflow graphic (circular bending
process), useful in showing the task’s steps regarding the radiometric and physicochemical data
extraction processes.

Consequently, according to Douaoui et al., 2006 [22], a simple regression (SR) method
is applied concerning the spectral index (SI and BI) more closely related to one of the
ground topsoil parameters (texture, pH, and EC). The best parameters are obtained by
statistical analysis and correlation matrices. The SR method is employed (Equation (2)) to
provide a new expected index value obtained from the ground topsoil and the spectral
index correlation, both extracted from the corresponding pixel by using Equation (1).

z∗SR(s0) = f [RSIndex(s0)] (2)

where z∗SR represents the simple regression value for the point (s0), f corresponds to the
regression function, and RSIndex is the spectral index value for the point (s0).

Indeed, following a statistical approach (such as SR), a line of the best fit provides the
expected value through the obtainment of a new calibrated index (z*

CL). So, the correlation
analysis between soil texture and radiometric data is employed in this study (as seen in
Section 2.2) to raise the accuracy of data attained by UAS technologies. Consequently, the
correlation coefficient and statistical significance coefficient (p-value) are obtained. Then, by
means of ST method, the result (Equation (2)) is represented by the new retrieved spectral
index (z*

CL). Through Equation (3), a novel spectral index (z*
CL) is achieved through the

calibration operation among radiometric and physicochemical data.

z∗CL(s0) = 0.001ST + 0.069 (3)

where z∗CL is the new calibrated index, based on the previous SR approach, and ST is the
soil texture parameter, selected to calibrate the new index by the good results obtained
from the correlation matrices shown in Figures 7 and 8.
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Figure 7. (a) Correlation matrix by using the package ggcorrplot. The parameters considered in this data
frame are the following: clay, silt, sand, EC, pH, BI, and SI. (b) Visualization of a correlation matrix using
the package PerformanceAnalytics. The parameters considered in this data frame are the following:
clay, silt, sand, EC, pH, BI, and SI (diagonally: distribution of each variable). Instead, on the left side
of the diagonal line, with a fitted line, the bivariate scatter plots are shown. On the right part of the
diagonal line, the value of the correlation and the significance level are displayed as stars, wherein each
significance level is related to one symbol: p-values (0, 0.001, 0.01, 0.05, 0.1) = symbols (***, **, *, “blank”).
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Figure 8. On the left, graphical visualization of the linear correlation between silt and salinity index
(SI) and statistical information of the line equation, such as the Pearson and R2 coefficients. On the
right, table representation of the dataset obtained from the calibration of spectral data through the
line equation (y = 0.001x + 0.069), obtained following the SR method (Equation (2)) applied to the silt
and SI spectral index.
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2.6. Geostatistical Analysis

Validation radiometric and soil ground data are elaborated through the ordinary
cokriging (OCK) method, which calculates parameters through statistical simulations.
Hence, this work used the z*

CL index as a target variable (obtained from calibration of
UAS and ground data) and DTM values as an auxiliary variable for the geostatistical
interpolation. The OCK method was used due to the presence of an auxiliary variable
as topography (extracted from DTM), measured at the same point as the target [63–73].
The OCK method is a variation of the ordinary kriging, adopted when relationships
between the spatial distributions of various known parameters occur. This methodology
outfits the determination of an empirical semivariogram, correlated with the spatial
relationships and dependencies among data autocorrelation and cross-correlation. Then,
in relation to the degree of spatial dependence of variables as a half-averaged squared
difference between two known points, a semivariogram is modeled. Therefore, the OCK
model involves the removal of each sample point from the dataset and the re-estimation
of the values. The OCK map and semivariogram were performed using the R software
and their gstat geostatistical, sp statistical, and lattice graphic packages. According
to this, the R and QGIS environments were useful for statistical data manipulation,
computing, and visualization. Being that the co-variable (DTM) is more densely sampled
than the target variable (z*

CL), both variables were sampled uniformly in the QGIS
environment by using buffering (3 m circle buffer, as performed above for spectral
indices’ extraction), intersection, and raster sample value algorithms. Consequently, the
evaluation of kriging interpolation is shown by statistical accuracy measurements from
the sample data set.

2.7. Validation

Validation process methodologies are used to indicate the quality of data obtained
through statistical stochastic and deterministic approaches. Indeed, validation occurs to
confirm the procedures employed for certain tests with the aim of judging the precision,
accuracy, representativity, and significance of the results [74]. Due to several factors, such
as the different density and distribution of samples along the study area, the performance
of spatial interpolations needs to be evaluated with the aim of ensuring the reliability,
precision, and accuracy of results [75]. The cross-validation (CV) method is a statistical
approach that concerns the sequential omission of each measure to predict the value
through the utilization of the rest of the dataset. Hence, error values are used to evaluate
the accuracy of the model thanks to the comparison of statistical data, where pi is the
predicted value and mi is the measured value at position “i”. The root mean square error
(RMSE), indicated below, is used as an indicator of accuracy and is regarded as the result
of squaring the errors under the square root. It is considered the root mean square error
that could be made during the model’s construction. One of its advantages is that it
concerns the same unit as the starting value, where overestimation reflects positive bias
values and underestimation considers negative bias values.

RMSE =

√
1
n

n

∑
i=1

(pi −mi)
2

The Pearson coefficient (r) and its squared named coefficient of determination (R2)
are often utilized to determine the performance of the spatial interpolation method. Both
coefficients, shown in the next equations, lie in the range of −1 to +1.

r =
σmp

σmσp

R2 = (r)2
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where σmp indicates the covariance between the two variables and σmσp is the product of
these latter two variables.

3. Results
3.1. Summary Statistics

In this paper, prediction maps came about from the spatial correlation of the soil texture
and variables such as EC, pH, and spectral indexes. Therefore, regarding Equation (1),
an interpolation of the nearest pixels via 3 m radius circle buffer allowed us to obtain
the dataset shown in Table 2. Starting from ground sampling products, EC concentration
ranged from 0.26 to 5.15 mS/cm, showing a mean value of around 1.20 and a median value
of around 0.74. Instead, pH values varied from 7.1 to 8.1, with a mean value around 7.8 and
a median value around 7.90. Furthermore, clay content reached percentage values from
14 to 60, showing a mean value of around 41 and a median value of around 47. The latter
data and their statistical indicators, such as the mean, median, minimum value, maximum
value, first quantile, third quantile, and deviation standard, are shown below in Table 2.

Table 2. This table represents the statistical summaries of the following parameters: Cl/Sa, silt,
clay, EC, pH, BI (normalized), and SI (normalized). According to Equation (1), the nearest pixel
interpolation through a 3 m radius circle buffer occurred, obtaining the following matrix of data. For
each parameter, statistical indexes such as the mean, median, minimum value, maximum value, first
quantile, third quantile, and deviation standard are also shown.

ID CL/SA 1 SILT CLAY EC pH BI_norm 2 SI_norm 2

1 0.935 11 43 0.55 8.01 0.4614 0.2166

2 0.840 8 42 1.25 7.90 0.2169 0.0843

3 0.808 6 42 1.86 7.80 0.2682 0.1118

4 0.250 10 18 0.96 7.90 0.3600 0.1567

5 0.741 6 40 5.15 7.40 0.2157 0.0717

6 0.272 11 19 2.11 7.70 0.5202 0.2433

7 1.205 14 47 1.47 7.80 0.3472 0.1865

8 3.000 20 60 1.99 7.90 0.5495 0.3313

9 1.000 4 48 0.65 7.90 0.2923 0.1120

10 1.667 20 50 0.74 8.00 0.4292 0.1896

11 0.308 15 20 0.48 7.30 0.4291 0.2355

12 0.192 14 13 0.26 8.00 0.3996 0.1650

13 6.000 30 60 0.78 7.10 0.5694 0.3266

14 1.250 10 50 0.69 8.10 0.4198 0.2137

15 1.250 10 50 0.48 8.10 0.3191 0.1277

16 1.667 20 50 0.72 7.60 0.5388 0.2861

17 1.000 4 48 0.26 8.00 0.3522 0.1364

Min 0.1918 4 14 0.26 7.10 0.2157 0.0717

Max 6 30 60 5.15 8.10 0.5694 0.3313

Mean 1.316 12 41 1.20 7.80 0.3935 0.1879

Median 1 11 47 0.74 7.90 0.3996 0.1865

First Qu 0.7407 8 40 0.55 7.70 0.3191 0.1277

Third Qu 1.25 15 50 1.47 8 0.4614 0.2356

σ 3 1.344 6.7 14 1.14 0.3 0.1084 0.0767
1 Clay/sand ratio; 2 radiometric data normalized through flatfield correction tool on ENVI; 3 standard deviation.
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The best fitting between soil and radiometric data occurred from the assessment of
descriptive and inferential statistic indexes as the linear correlation degree (r) and the
significance degree (p-value). Then, through the R-packages ggcorrplot and Performance-
Analytics, two correlation matrix plots of the previous dataset were obtained. The resulting
plots were a heatmap, with the color and size of the squares indicating the strength of the
linear correlation degree between variables, as well as a correlation matrix showing the
distribution of each parameter and statistical indices (Figure 7a,b). In this study case, it
was noticeable that soil textural parameters were more relatable to the radiometric ones,
showing correlation degree (r) values around 0.6 for the Cl/Sa and values around 0.8 for
the silt. Instead, regarding the sample’ significance degree (p-value), a value <0.001 was
found for silt and radiometric data, while it was for Cl/Sa < 0.01 (Figure 7b).

According to the previous statistical analysis, the SI spectral index, by means of
Equation (3) (see Section 2.5), was calibrated with the topsoil texture (silt) parameter.
Indeed, by using the SR method (Equation (2)), it was possible to gain a new spectral index
obtained first by the derived function and secondly by the line of best fit that provides the
z*

CL expected index (Figure 8).

3.2. Salinity Map by Means of Ordinary Cokriging (OCK)

A salinity map was obtained by applying a geostatistical approach to identify the
tSHAs’ distribution along two PUs. De facto, this type of approach can allow the operators
to better handle their agronomic procedures. For this purpose, two forms of open-source
software were used: RStudio for the obtaining of graph and result design, and QGIS for the
final map edition.

Before the map edition, the spatial analysis methodology concerned, firstly, a step
for exploratory data analysis by using trend maps and summary statistics; secondly, the
creation of an experimental semivariogram and model fitting; thirdly, cross-validation op-
erations; and fourthly, kriging interpolation. So, exploratory analysis was applied to obtain
good knowledge of the data distribution (Figure 9). Thus, to achieve a normal distribution
of data, a log10 transformation of the SICL spectral index data set occurred. Therein, a first
graphical representation of the data was ensued through the continuous density function.
According to this, the density curve and the SICL spectral index data appeared to have
very close mean and median values and showed that many samples lay around −0.10.
Furthermore, a normal QQ plot was used to find the type of distribution for the SICL
spectral index. Indeed, from this scatter plot, the data appeared uniformly distributed,
forming a roughly straight line and showing a skewness value around 0.5 (Figure 9). A
bubble map is represented, displaying SICL data values within the spatial setting. Indeed,
the bubble map is a useful tool for visualizing the spatial distribution of the target variable,
suggesting that the SICL spectral index values were distributed from NE to SW, showing
an increasing trend. In the end, regarding the exploratory analysis, a Voronoi map was
represented, showing polygons around each sample point. This type of diagram consists of
a cell’s boundaries based on the distance to the points around it and the respective values
filling each polygon with the Voronoi map. From this graphical output, it is evident how
the distribution of SICL spectral index values followed a NE-SW trend, wherein the highest
values characterized the left-lowest part of the study area (Figure 9).
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Figure 9. In the upper left part is a representation of the SICL (log10 transformed) continuous density
curve. In blue, the mean; in green, the median. In the upper right part, the SICL spectral index’s bubble
map is represented, characterized by an increasing trend of values from NE to SW. In the lower left
part, there is a representation of the QQ plot that compares the ordered values of the SICL index with
quantiles of the normal distribution. In the lower right part, a representation of the SICL spectral index’s
Voronoi map shows the highest values of concentration in the portion SW of the study area.

In Figure 10, the experimental OCK semivariogram is represented. The NE-SW search
direction that constitutes the semivariogram concerns pairs of points falling within a sector
defined by an aperture angle (tolerance) of ±22.5◦. The green arrow corresponds to the
range (about 67 m), the orange arrow to the sill (1.0), and the yellow dot to the nugget
(0.18). The semivariogram confirms a correlation between pairs of points ranging from 1 to
67 m (range on lag), while the semivariance suggests a nugget value around 0.18 and a sill
value at 1 (normalized). Furthermore, as shown in Figure 11, there was a division of the
area resulting from the relations between radiometric (UAS) and textural soil data (silt). So,
the obtained spectral index SICL (z*

CL) confirmed patches with elevated estimates in the
south-western study area section. Medium levels appeared within the middle part of the
area as an N-S oriented configuration, whereas the lowest values lay in the east-northern
portion of the study’s parcel.
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trend value of the SICL spectral index from NE to SW. 

The SICL prediction map obtained through the OCK geostatistical method is reported 
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fundamental to determine the measurement error in relation to the multiple measures per 
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Figure 10. In blue, the OCK experimental semivariogram model. On the x-axis, distance is measured
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green line corresponds to the range (about 67 m), the orange line to the sill (1.0), and the yellow dot
to the nugget (0.18).
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Figure 11. An OCK prediction salinity map signifying the spatialization between the spectral index
SICL (z*

CL) as the target variable and topography values extracted from the DTM as the auxiliary
variable. The land parcel subdivision in the three main tSHAs was evident, suggesting an increasing
trend value of the SICL spectral index from NE to SW.

The SICL prediction map obtained through the OCK geostatistical method is reported
by the summary descriptive statistics shown in Figure 12. In geostatistical analysis, it is
fundamental to determine the measurement error in relation to the multiple measures per
location. At locations where data were collected, the predicted values were not the same as
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the measured values, differing from each other. According to this, MSE and RMSE values
were determined, showing values around 0.398 and 0.013, respectively, and suggesting a
moderate accuracy of the model (Figure 12).
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4. Discussion

Farmers’ needs are increasingly related to managing specific interventions over which
to operate accurate agricultural practices (e.g., irrigation design, yield estimation). For
instance, to optimize the management of land resources, agricultural operators need to
manage water; tillage; and the usage of synthetic chemical fertilizers, herbicides, and
other phytosanitary products [1,2,76]. According to this, many technologies can afford
the knowledge of soil surface parameters’ spatial distribution, where, albeit with less
accuracy of results, the lowest time consumption and lowest cost instrumentation align
with the usage of unmanned aircraft systems (UASs) and very high resolution (VHR)
satellite imagery [7,13,22,28–32,77].

In PA and pedological contexts, it is fundamental to separate PUs into homogeneous
soil areas [4,5,7,13,22]. This paper points out a methodology useful for the discrimina-
tion of topsoil homogeneous areas (tSHAs) along land parcels. This work obtained a
good understanding of how tSHAs are distributed along land parcels by using a sta-
tistical/geostatistical approach. Results were achieved using low-cost and low-logistic
instrumentation such as a UAS-RGB camera and topsoil (0–40 cm) texture, pH, and EC
ground analysis. According to this, further information can be retrieved by using different
resolutions of remote sensing instrumentation, following a downscaling approach starting
with satellite, UAS, and a weighted/piloted pedological sampling campaign.

Again, this research aims to show how a preliminary low-cost UAS-RGB survey can
be helpful in soil analysis by determining tSHAs over which to operate specific agricultural
practices (e.g., irrigation design, yield estimation). Most of the recent papers focus on the
use of drones for canopy parameter retrieval [38,40,41]. Instead, this work suggests how
UAS-RGB can be used to compute architecture metrics to remove vegetation contributions
along the study areas, providing only information for the soil matrix. Such issues, presented
in this paper, are innovative and can represent a good low-cost approach for farmers. In
fact, in PA and food supply chain contexts, good use of large-scale management on targeted
interventions can feed an important contribution in reducing costs, waste, soil amendments,
and agrochemicals utilization [1,2,4].
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According to the previous discussion, by using low-cost analysis, such as UAS-RGB,
soil texture, pH, and EC measurements, it can be possible for agricultural operators to
determine tSHAs distribution along land parcels. Similarly, to minimize as much as
possible the use of costly (e.g., hyperspectral camera) and highly logistic instrumentation
(e.g., electromagnetometer), this work provides opportunities for small farms by using
tools that can facilitate the organization of agricultural practices. Furthermore, knowing the
distribution of tSHAs along wide land parcels allows, for instance, for the reduction of the
extraction of samples during a pedological survey, minimizing costs related to laboratory
activities. According to this, statistics can allow us to collect, organize, and interpret data,
as well as support policy decisions. Moreover, one of the branches of applied statistics is
geostatistics, useful in spatializing data for agronomy, geology, pedology, climate research,
and atmospheric science. Finally, the information retrieved from these methodologies can
be used for a decision-making support system.

Regarding the results, the SICL (z*
CL) map retrieval from UAS-RGB and soil ground

data, obtained through statistical and geostatistical analysis, allow us to identify the distri-
bution of tSHA along the study area. Firstly, image processing occurs by using photogram-
metry techniques to extrapolate information. According to this, by using map algebra
operations, the following products are obtained: (i) digital difference models (DDMs) and
(ii) vegetation threshold raster retrieved by spectral index information (excess green). In
this case, the discrimination of the soil bare matrix from the surrounding contribution
of vegetation results in the successful management of high-quality data concerning only
the soil pixel matrix. Secondly, a good statistical correlation between UAS-RGB indices
and soil texture parameters (clay/sand ratio and silt contents) was achieved. Indeed, BI
and SI indices matched better with physical parameters (Cl/Sa and Silt) than chemical
ones (EC and pH). So, by using the UAS-RGB camera, pH, EC, and soil texture, tSHA
discrimination allowed us to obtain good results in a low-cost environment. Hence, point-
ing out a sustainable methodology in the PA background is one of the main aims of this
research, pondering quantitative final geostatistical spatialization on topsoil parameters.
As concerning this paper, tSHA distribution can be spatialized also through the knowledge
of auxiliary variables such as topographic information, allowing us to understand soil
parameters that can influence, compared to others, mostly the PA context. Finally, by using
a geostatistical methodology, a final thematic map was provided concerning the new SICL
(salinity index calibrated) response, showing three main tSHAs over which farmers and
agronomists can dispose of PA practices with more ease.

Furthermore, results from this research could be helpful for managing estimates of
environmental parameters related to emissions of greenhouse gases (GHGs) and pollutants
resulting from agricultural practices. Hence, 2018′s world total GHGs emissions, due
to agriculture and related land use/land use change, amounted to around 9.3 billion
tons of carbon dioxide equivalent (Gt CO2eq). According to this, a rise of anthropogenic
GHGs (e.g., CH4, NOX, CO2) emissions is expected due to the difficulties in agriculture
management systems [78]. So, good management practices in agronomic policy can reduce
a negative impact on the environment, helping to quantify parameters regarding air and
soil pollutants [79,80].

Future research may point toward the preliminary detection of soil physicochemical
variability distribution through the combination of technologies such as ground data
(topsoil/subsoil), UAS (e.g., multispectral imagery), and VHR satellite imagery, considering
other parameters such as soil organic matter (SOM), nutrient contents, available water
capacity, pollutant/pesticide presence, or compaction degree.

5. Conclusions

This study deals with topsoil heterogeneity mapping in a precision agriculture (PA)
context, based on ground data and UAS-RGB data. The results of this paper reinforce that
different approaches, such as UAS and ground data, can be effective for the identification
of topsoil homogeneous areas (tSHAs) in a determined pedo-climate context. Thus, the
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UAS-RGB pixel matrix was calibrated with the physicochemical laboratory data. Therefore,
through data correlation and calibration operations, a more precise salinity index (z*

CL)
was obtained.

Furthermore, good UAS-RGB data handling appeared to be fundamental in the way
of piloting future site-specific pedological sampling campaigns. Accordingly, a preliminary
analysis along land parcels was found to be fundamental both for the detection of tSHA
variability and soil typological unit (STU) mapping [5,7,13–17]. This study highlighted
that salinity index (SI) and topsoil texture (silt content) may be adopted to improve the
saline zones’ detection along PUs, since they have the most reliable coefficient of correlation
(R2 = 0.70). Thus, the calibration model and geostatistical spatialization (ordinary cokriging)
of the salinity index resulted in being useful for the PUs’ categorization into homogenous
areas (e.g., tSHAs) where agricultural practice can be better administered. So, it was
concluded that UAS-RGB data can support an extent of spatial topsoil recognition along
land lots, aiming to constitute a dataset, for instance, of soil salinity distribution, helpful
for pedologists, agronomists, and farmers.

In conclusion, three main tSHAs were identified, suggesting a variation in salinity
content from low–medium to high–medium values. According to this, the improvement
of the knowledge of topsoil parameters can occur through spatial heterogeneity detection
along two PUs. Some positive effects retrieved from this work are the following: (i) planning
agricultural practices in a PA context; (ii) substitution of proximal sensing techniques (high
cost and heavy logistics) with low-cost and light logistic instrumentation (e.g., UAS-RGB);
and (iii) advancements on site-specific crop management (SSCM) policies and local-based
decision support systems (DSSs).
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