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Abstract: The gin stand power is measurable using common tools; however, such tools typically
do not detect active ginning. Detecting active ginning is important when trying to separate out the
energy going to the moving parts of the gin stand (i.e., the baseline energy) versus the active energy
doing work to remove the cotton fibers from the seed. Studies have shown that the gin stand is
the second largest consumer of electricity in the ginning operation, while electricity accounts for
nearly 17% of the average expense per bale. If active energy differences exist between cotton cultivars,
there may be room to optimize and lower these expenses. The goal of the current work is to provide
a method (and software tool) to analyze typical power logger data, and extract periods of active
ginning, along with the energy consumed and ginning times, in a semi-automated way. The new
method presented allows multiple periods of active ginning in a single file, and can separate the
total energy into the active and baseline components. Other metrics of interest that the software
calculates include the ginning time, and average power. Software validation using a simulated test
signal showed that a 2%-or-lower error is possible with a noisy signal.
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1. Introduction

Electricity consumption represents a business expense when ginning cotton. As such,
a body of research exists that considers gin stand energy consumption across many different
scales of equipment [1–3]. On the commercial scale, the gin stand itself has been shown to
be the second largest consumer of electricity, behind only material handling [3,4]. A survey
of ginners found that the average electricity cost was USD 4.18 per bale, out of a total cost
of USD 24.81 per bale [5].

Many variables may affect the energy consumption of a gin stand. Hand-feeding a
small gin stand, such as a 10-saw unit with 25.4 cm (10 inch) saws, may introduce some
operator effects. Some studies aim to limit operator effects, by limiting data collection to a
single operator [2]. Unlike small gin stands, commercial scale equipment uses mechanical
feeding to remove variability; one such example is an extractor feeder [6]. Extractor feeders
can single-lock the cotton while feeding [7]. Other variables found to affect the energy
include the cultivar [1], saw thickness [8], and seed cotton moisture at the feeder apron [9].
Best practices also exist, as a guideline for reducing energy consumption [10].

Energy consumption is a researchable topic in other areas of interest, including cotton
production and machine tools. The energy consumption of cotton production has been
successfully modeled [11]. Recent work has also compiled significant amounts of the
literature related to the energy consumption of machine tools [12]. Other work has focused
on the energy efficiency of machine tools that are used for cutting and shaping metals [13].
Additional research has explored the energy efficiency of machine tools in real time [14].

In the cotton ginning industry, there is a growing interest in energy measures, and the
isolation of variables effecting those energy measures. A software program to aid in the
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consistent extraction of energy values from power data would be a valuable tool. Energy
studies on gin stands typically involve recording the power, which requires interpretation
to extract key metrics: the ginning times, energy consumed, average power, and other
information. Furthermore, studies often report the energy as the total energy minus the
energy used by the equipment while idling (i.e., they report the net energy) [1,2,15].

Despite the interest in energy measures for cotton ginning, there are no published
methods for automatically extracting the energy data and ginning times from multiple runs
of cotton included in a single continuous run of the gin stand. The methods outlined in
previous works to extract the gin stand energy and ginning times have relied on human
actions. One work measured energy, and separated the components, by extracting energy
data from a single or discrete ginning session, where the operator powered off the motor
at the end of each session [2]. When testing larger-scale equipment designed to run
continuously, powering off the motor at the end is not ideal. Furthermore, for some types
of gin stands, it can also be hard to judge when to stop the motor, due to the limited view
of the seed roll. Other work has determined ginning times by observing the cotton, or by
tracking the time for which the gin stand was engaged [1]. Manually timing or observing
the cotton can lead to human-induced inconsistencies.

The new “Ginning Energy Extraction” method and software tool presented in this work
calculates key ginning metrics with minimal human interaction. Allowing the software
to calculate the ginning times removes the variation caused by human judgment. It is
anticipated that applying a consistent method to automatically extracting energy from
power will allow for better comparisons, by removing the differences caused by process
variation. This work aims to provide users with a semi-automated software tool that a user
can employ with their high-resolution (and high-sample-rate) power data. The ginning
metrics calculated via the software include the ginning time, total energy, and average
power. In addition, the software separates the total energy and the active energy (or net
energy). The method can handle power data files that contain multiple ginning sessions
with one continuous motor run. Furthermore, the software pipeline of the method can
track metadata for each run, allowing the user to easily keep track of external variables that
they find important, without the need for significant manual labor.

This new method will save significant effort and time, by automating processes. The
new method will also make it easier to compare results across studies, by ensuring that data
are treated in a consistent manner. The data output from the software tool is saved as a CSV
file that can then be used to support the objectives of the user. This may take the form of
studying the testing energy or ginning rate versus the cultivar (as others have done, using
other means [1,2,15]), checking the baseline energy of the equipment, and much more.

2. Materials and Methods
2.1. Example Data and Software Pipeline

Figure 1 provides an example of high-resolution power data taken from a 10-saw
gin stand with 25.4 cm (10 inch) saws. The vertical axis is the power recorded, and
the horizontal axis is the time in 0.2 s increments. An AEMC model PEL 105 power
logger (AEMC Instruments, Dover, NH, USA) captured the power data. The logger takes
128 samples per 60 Hz AC cycle, and saves an aggregate value to the user-accessible
memory every 200 milliseconds [16]. In this way, aliasing is not a concern, and the data
sample rate is high enough to work well for the example application. The gin stand took
power from a 3-phase 240 V 60 Hz source. The power logger had both a current sensor and
a voltage probe on each phase, which allowed it to calculate the wattage. The total run time
shown in Figure 1 is nearly seven minutes, and there are nine separate temporal slices of
higher power (approximately 700 watts) that represent periods of active ginning within the
single file. Periods of time where the equipment was idling separate the periods of active
ginning; these are the lower power states observed between the peaks. In this example,
the majority of the datapoints represent idling equipment that is consuming some baseline
level of energy. In addition, the baseline power level shifts with time. The baseline power
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level tends to decrease as the equipment warms up; this trend may not happen in all cases,
but the software should be able to account for this, especially as the run time increases.
This example dataset will serve to illustrate and validate the workings of the “Ginning
Energy Extraction” method in future sections.

AgriEngineering 2023, 5, FOR PEER REVIEW  3 
 

 

file. Periods of time where the equipment was idling separate the periods of active gin-
ning; these are the lower power states observed between the peaks. In this example, the 
majority of the datapoints represent idling equipment that is consuming some baseline 
level of energy. In addition, the baseline power level shifts with time. The baseline power 
level tends to decrease as the equipment warms up; this trend may not happen in all cases, 
but the software should be able to account for this, especially as the run time increases. 
This example dataset will serve to illustrate and validate the workings of the “Ginning 
Energy Extraction” method in future sections.  

 
Figure 1. Example raw power data, showing nine runs of cotton through the gin stand. 

Figure 2 provides a high-level view of the software pipeline for the “Ginning Energy 
Extraction” method. The main steps are in boxes A–F, including: (A) import data, (B) 
power data filtering, (C) main loop control, (D) model baseline power, (E) detect ginning 
and get energy, and (F) build output. The overall goal of this pipeline is to detect periods 
of active ginning, and then calculate the total energy, along with the active energy, ginning 
times, and average power values. The high-level design is such that block A allows a user 
to import multiple CSV files, each containing high-resolution power data recordings. 
Power data from a cotton gin stand are typically noisy; therefore, the next step (block B) 
filters all the power data, to reduce the noise that is present. After that, a main loop begins 
with block C. The main loop allows the software to independently process the data con-
tained in each CSV file loaded previously. Within the main loop, two major things happen. 
Firstly, block D models the baseline power consumed by the equipment. That is, it models 
the power consumed by the equipment while it is running but not actively ginning cotton. 
The software uses this result to determine when ginning is happening, and to separate the 
energy into active and baseline components. Secondly, block E detects periods of active 
ginning, and integrates these to obtain the active energy, total energy, baseline energy, 
ginning times, and average power levels. Finally, after the code has processed all the data, 
block E builds the outputs. In this way, the software can process all the datasets, and pro-
vide a single output file containing all the results.  

Figure 1. Example raw power data, showing nine runs of cotton through the gin stand.

Figure 2 provides a high-level view of the software pipeline for the “Ginning Energy
Extraction” method. The main steps are in boxes A–F, including: (A) import data, (B) power
data filtering, (C) main loop control, (D) model baseline power, (E) detect ginning and get
energy, and (F) build output. The overall goal of this pipeline is to detect periods of active
ginning, and then calculate the total energy, along with the active energy, ginning times,
and average power values. The high-level design is such that block A allows a user to
import multiple CSV files, each containing high-resolution power data recordings. Power
data from a cotton gin stand are typically noisy; therefore, the next step (block B) filters
all the power data, to reduce the noise that is present. After that, a main loop begins with
block C. The main loop allows the software to independently process the data contained in
each CSV file loaded previously. Within the main loop, two major things happen. Firstly,
block D models the baseline power consumed by the equipment. That is, it models the
power consumed by the equipment while it is running but not actively ginning cotton.
The software uses this result to determine when ginning is happening, and to separate the
energy into active and baseline components. Secondly, block E detects periods of active
ginning, and integrates these to obtain the active energy, total energy, baseline energy,
ginning times, and average power levels. Finally, after the code has processed all the data,
block E builds the outputs. In this way, the software can process all the datasets, and
provide a single output file containing all the results.

The rest of Section 2 of this work will illustrate each of these steps, while working
through an example. The title of each subsection is the same as the name shown in the
flowchart. After this, Section 3 provides the results of the example, and details of the
software validation performed. Several stages of the pipeline have user-tunable hyperpa-
rameters. These parameters are constant values that fine-tune how the algorithm works.
A user may achieve a better result for their dataset by adjusting these values. Some ex-
amples that may warrant adjustment include user data that are noisier than the examples
provided, or a power rise much larger or smaller than in the example data. The hyper-
parameters are pointed out, where appropriate, along with their default values used for
the example data. Appendix A provides a list of the hyperparameters, along with default
values for, and descriptions of, each. Appendix B.1 through B.3 provide the source code



AgriEngineering 2023, 5 1501

that will be discussed. All code written for this method is in the Python language [17]
version 3.7.6, and it relies on pandas [18] version 1.2.0, numpy [19] version 1.19.2, and
SciPy [20] version 1.5.2, as well as several others, as shown in the code.
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2.2. Import Data

The main purpose of the import data stage is to move the data into the software in
a format that is usable for completing the calculations. This stage operates as shown in
the chart in Figure 3. At this point, the user provides the path to the folder containing the
power data CSV files, and the name of the column containing the power data within the
CSV file (this name will be ‘PT (W) (200 ms)’ in the example data provided). This folder
can contain multiple files. Next, the user provides a “user input” file that contains three
columns with one entry (row) for each power data CSV file that the user provided. The
first column of the “user input” identifies the name of the CSV power file that the “user
input” applies to. The second and third columns are the start and stop index for a user-
identified continuous region, representing “typical idling”. Block A01 uses a pandas [18]
DataFrame to hold these data, and Table 1 provides an example for a single CSV file.
A discussion of how the code uses the user input comes later. Finally, the user can optionally
provide a file containing any metadata, which the code reads into a DataFrame in block A02.
A discussion of the metadata, and their format, comes later. Once the user has provided
all the paths and files, block A03 checks the input folder, and acquires a list of all the files
in the folder, after which block A04 imports any CSV files into a DataFrame. Appendix C
provides the typical file structure used by the code.



AgriEngineering 2023, 5 1502

AgriEngineering 2023, 5, FOR PEER REVIEW  5 
 

 

first column of the “user input” identifies the name of the CSV power file that the “user 
input” applies to. The second and third columns are the start and stop index for a user-
identified continuous region, representing “typical idling”. Block A01 uses a pandas [18] 
DataFrame to hold these data, and Table 1 provides an example for a single CSV file. A 
discussion of how the code uses the user input comes later. Finally, the user can optionally 
provide a file containing any metadata, which the code reads into a DataFrame in block 
A02. A discussion of the metadata, and their format, comes later. Once the user has pro-
vided all the paths and files, block A03 checks the input folder, and acquires a list of all 
the files in the folder, after which block A04 imports any CSV files into a DataFrame. Ap-
pendix C provides the typical file structure used by the code. 

 
Figure 3. Import data software pipeline (Blocks A01–A04 are the pipeline steps). 

Table 1. Example of a required user-inputted file. 

File UserStart UserEnd 
data001 8200 8800 

The optional metadata that a user may elect to include can be very helpful if there are 
some important external variables, beyond the metrics that come from the power data. 
These types of variables may be important in subsequent analysis, such as statistical mod-
eling. The metadata may include a wide variety of items, such as weather data, blocking 
factors, machine information, or any other variables that a user wants to track with each 
run of cotton. The metadata link to the power data through the filename. If a user provides 
metadata, they must contain a column for the filename, and the entries must match the 
names of the CSV files that contain the power data. There must also be 1 row in the 
metadata file for every period of active ginning in the power data file, and they must have 
the same order (i.e., for each file name, row 1 in the metadata must be power run 1, row 2 
must be power run 2, and so on). The total number of points does not matter. Table 2 

Raw Power 
Data List: List of 

DataFrames

Metadata:
 DataFrame

Read Metadata 
File into 

DataFrame

Read user_input 
File into 

DataFrame

User Input: 
DataFrame

Get all Filenames 
From Dataset 

Folder

Import each CSV 
file into list of 
DataFrame

End

A01 A02

A04

A03

Start

Figure 3. Import data software pipeline (Blocks A01–A04 are the pipeline steps).

Table 1. Example of a required user-inputted file.

File UserStart UserEnd

data001 8200 8800

The optional metadata that a user may elect to include can be very helpful if there
are some important external variables, beyond the metrics that come from the power
data. These types of variables may be important in subsequent analysis, such as statistical
modeling. The metadata may include a wide variety of items, such as weather data,
blocking factors, machine information, or any other variables that a user wants to track
with each run of cotton. The metadata link to the power data through the filename. If a
user provides metadata, they must contain a column for the filename, and the entries must
match the names of the CSV files that contain the power data. There must also be 1 row in
the metadata file for every period of active ginning in the power data file, and they must
have the same order (i.e., for each file name, row 1 in the metadata must be power run 1,
row 2 must be power run 2, and so on). The total number of points does not matter. Table 2
provides a minimal example; the first column is the file name the data refer to, and the
second column is the run numbering (which must be in the same order as it is in the power
file). A user can add any additional columns, as desired.

Table 2. Optional metadata minimal example.

File Run

data001 1
data001 2

--- . . .
data001 9
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2.3. Power Data Filtering

The goal at this stage in the pipeline is to reduce the noise found in the raw power data,
to aid in the calculations performed later. Figure 4 shows the steps involved in this process.
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The input to this stage is the raw power data in the form of a list, where each list entry
is a DataFrame that contains the data from the CSV file that the user inputted. The length
of the input list is the number of CSV files that the user inputs. The first step in this stage
of the pipeline is block B01, where the software constructs the filter coefficients. A finite
impulse response (FIR) filter [21] is generated using SciPy [20], specifically through the
“firwin” method, with the “Kaiser” window. The beta value is 4.53, and the filter is set up to
be a low-pass filter, with 31 taps, and a cutoff frequency of 0.5 Hz. The “kaiserord” method
in SciPy calculated the beta value and the number of taps, such that the transition window
is 0.5 Hz, and the ripple is 50 dB (ensuring a less-than-1% ripple variation in the pass band).
The transition window and ripple are hyperparameters that the user can adjust, depending
on their data. The cutoff frequency (0.5 Hz) was well below the data aggregation period
of the example data (5 Hz), and was chosen as there was not a lot of useful information
beyond 0.5 Hz. For the example data, each period of active ginning had at least 150 samples;
this is significantly more than the length of the filter, with 31 taps. Figure 5 provides the
frequency response of the filter.
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After crafting the filter coefficients, the software goes into a loop in block B02. The
purpose of this is to iterate through all the entries of the raw power data list one at a time.
Each pass of the loop operates on the contents of a single CSV file, which the system loaded
earlier (each file may contain multiple runs). Within the loop, block B03 uses the SciPy [20]
“lfilter” method to apply the digital filter to the data column identified by the user as power
data. Next, block B04 left-shifts the result, to compensate for the lag introduced by the
filtering process, using knowledge of the number of taps in the filter. The lag correction
is an optional step, but it does make it easier to plot any comparisons with the unfiltered
data. The last step in the loop is block B05, where the software appends the data to a list of
filtered power arrays. By the last run of the loop, the list of filtered power arrays has as
many entries as there were CSV files in the user-supplied folder. All remaining calculations
rely on the filtered data. Figure 6a shows the raw data before filtering, while Figure 6b
provides the result after filtering.
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2.4. Main Loop Control

The goal of the main loop stage is to allow the code the flexibility of working on
multiple datasets loaded at a single time. The reason for the loop is that the main processing
stage (i.e., blocks D and E from Figure 2) are only designed to operate on a single dataset that
may contain multiple runs. The main loop allows the code to process multiple datasets, by
iterating through all the datasets, and presenting them one-by-one to the main processing
stage, independently. The code appends the output of each loop to a list that holds the
values until all the datasets finish processing. After this, the list passes on to the build
output stage in block F from Figure 2. In this way, the results from all the datasets populate
a single output file.

2.5. Model Baseline Power

The goal at this stage is to model the baseline power of an individual dataset. At this
point, the control loop from block C has passed in the filtered power data that represent a
single CSV file imported by the user. In addition to the specific filtered power data, this
stage has access to the metadata DataFrame discussed during the import stage, and the user
input DataFrame previously discussed. Figure 7 provides the steps involved at this stage.
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Figure 7. The software steps (Blocks D01–D05) involved in modeling the baseline power.
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The first step of this stage is block D01. This step starts by retrieving the filename
of the data that the main loop passed in. The code then uses the filename to look up the
relevant metadata (if the user provided them), along with the UserStart and UserEnd values
from the user-inputted file. Table 1 provided an example of the UserStart and UserEnd
values. The metadata are not part of any calculations. The software only tracks them to
ensure the ordering, and then inserts them into the final output compiled in block F, from
Figure 2. We have mentioned that the UserStart and UserEnd terms define a range that the
user considers to be “typical idling.” How the software uses the “typical idling” range will
be explained later.

Next, block D02 calculates the approximate magnitude of the second derivative of the
filtered power data, to get a sense of how quickly the slopes of the power data are changing
(i.e., how jumpy the data are). The assumption made is that a gin stand will show less
variation in the power signal when idling than while actively ginning. The approximate
second derivative is calculated using numpy [19], through taking the absolute value of the
second discrete difference using the “numpy.diff” method. After this, block D02 calculates
the estimated maximum value of the second derivative expected for idling. This calculation
is based on the user-supplied “typical idling” range. The code calculates the estimate using
the pseudocode of Equation (1):

β = µ[UserStart : UserEnd] + STDEV ∗ SD[UserStart : UserEnd] (1)

where µ is the mean of the approximated second derivative from index UserStart to UserEnd,
SD is the standard deviation over the same range, and STDEV is a hyperparameter with a
default value of 3. For the example data, UserStart is 8200, while UserEnd is 8800, as shown
in Table 1.

Now that the system has the estimated maximum value of the approximated second
derivative (i.e., β), block D03 compares β against the whole approximated second derivative
array. In this way, the code identifies the indices where the value of the array is less
than β (i.e., points beyond the user “typical idling” range that may also represent idling
equipment). In other words, applying the above-stated assumption that an idling gin stand
will show less variation in the power, this block is looking for the low-variation points. The
output is a binary array where a value of one means that the code has estimated that the
filtered power data at the same index location represents idling. The result obtained can be
noisy, with rapid state changes. A hysteresis function applied to the binary array reduces
this unwanted noise.

Block D04 applies the hysteresis function, which has three tunable hyperparameters:
Window (W), Set (S), and Reset (R). The W term controls the size of the rolling window
in counts; each count is 0.2 s for the example data. The size of each count may change
for a user’s dataset, depending on the sample rate of the source data. The output of the
hysteresis only goes high when the sum of the window data is at least equal to S counts.
Once the output is high, the input must go low for enough counts to cause the sum of the
window to be less than R, for the hysteresis output to go low. In any case, the R term must
be equal to, or smaller than, the S term. In addition to smoothing, this introduces a lag that
can remove startup effects by rejecting the first portion of the signal. The software code
provides more details on the hysteresis function. Figure 8 shows the hysteresis function
working on example data, using W = 50, S = 50, and R = 45. In Figure 8a, the raw data
include some rapid state transitions before and after a more stable period, while Figure 8b
provides the sum of the window data, and Figure 8c shows the final output.
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Figure 8. Example hysteresis function workings: (a) the raw data input, (b) the sum of a 50-count
window, (c) the binary output.

Once the estimated idling points are all found, block D05 fits a linear curve to these
points. Figure 9 shows the user selection (i.e., the user-selected “typical idling” region)
as the horizontal dotted line, the filtered power data as a solid red line, the datapoints
included in the fit (blue dots), and the curve fit (yellow line), which models the baseline
power. In cases where users determine that curves other than a linear fit are a better
choice for their data, the code can be modified accordingly. In this example, the modeled
baseline power decreases with time. This decrease matches the trend discussed when
describing the raw data in Figure 1. In essence, as the gin stand warms up, the baseline
power decreases. Potentially many factors contribute to the decrease (the properties of the
lubrication, the dimensional stability of mechanical parts, friction, heat in the electronics
and motors, etc.). Ideally, all equipment would have time to warm up before use. However,
baseline modeling allows the software to handle the warmup effects if a warmup period is
not feasible. The final output of this stage is an array-like object that contains the modeled
baseline power curve.
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2.6. Detect Ginning and Obtain Energy

The goal of this stage in the pipeline is to detect periods where ginning is actively
happening, and then extract useful energy and power metrics from it. This stage generates
the results that the user ultimately reads. At this point, the code has access to the modeled
baseline power array (the output from Figure 2, block D) as well as the filtered power array
provided by the main control loop from block C, in Figure 2. Figure 10 provides the steps
involved at this stage of the processing.

AgriEngineering 2023, 5, FOR PEER REVIEW  12 
 

 

 
Figure 10. The pipeline steps (Blocks E01–E04) used to determine active ginning and metrics. 

The first step in this stage is to find periods where ginning is actively happening, as 
shown in block E01 of Figure 10. The code does this by comparing the filtered power data 
(from Figure 2, block C) with the modeled baseline power (from Figure 2, block D), to find 
points in the power that have a magnitude lower than some percentage over the baseline. 
The pseudocode of Equation 2 serves this purpose: 𝑡𝑒𝑠𝑡 = [𝑝ௗ < (𝑟𝑖𝑠𝑒 ∗ 𝑏)] (2) 

where 𝑝ௗ is the filtered power data array that represents all the power data from a single 
CSV file the user inputs, 𝑏 is the modeled baseline power array that corresponds to the 
power data array, rise is a constant, and the output test is a binary array or True/False 
values. The default value of rise is 1.1, a hyperparameter. In the special case where there 
is some null value in the array, the code treats that point as if idling, for calculation pur-
poses. The active ginning intervals are then simply the inverse of test. The inverse comes 
from flipping all the elements of test, such that every 0 (or False) turns to a 1 (or True), and 
every 1 (or True) becomes a 0 (or False).  

The result from block E01 is noisy. As before, a hysteresis function reduces the noise, 
as shown in block E02. The hysteresis function is the same as was described in Figure 7 
block, D04, except that the parameters (W, S, R) have different values. The exact values 
are hyperparameters that may require tuning for application. The result of this step pro-
vides the periods of active ginning. Figure 11 shows the filtered power data, along with 
the baseline power curve fit, and the active ginning periods just discussed. 

Start

Modeled 
Baseline Array

Filtered Power 
Data Array

Calculated Value 
Lists

End

Add Results to List (Energy, Avg 
Power, Ginning Times)

Integrate Active Ginning Intervals

Apply Hysteresis

Determine Active GinningE01

E02

E03

E04

Figure 10. The pipeline steps (Blocks E01–E04) used to determine active ginning and metrics.

The first step in this stage is to find periods where ginning is actively happening, as
shown in block E01 of Figure 10. The code does this by comparing the filtered power data
(from Figure 2, block C) with the modeled baseline power (from Figure 2, block D), to find
points in the power that have a magnitude lower than some percentage over the baseline.
The pseudocode of Equation (2) serves this purpose:

test = [pd < (rise ∗ b)] (2)

where pd is the filtered power data array that represents all the power data from a single
CSV file the user inputs, b is the modeled baseline power array that corresponds to the
power data array, rise is a constant, and the output test is a binary array or True/False
values. The default value of rise is 1.1, a hyperparameter. In the special case where there is
some null value in the array, the code treats that point as if idling, for calculation purposes.
The active ginning intervals are then simply the inverse of test. The inverse comes from
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flipping all the elements of test, such that every 0 (or False) turns to a 1 (or True), and every
1 (or True) becomes a 0 (or False).

The result from block E01 is noisy. As before, a hysteresis function reduces the noise,
as shown in block E02. The hysteresis function is the same as was described in Figure 7
block, D04, except that the parameters (W, S, R) have different values. The exact values are
hyperparameters that may require tuning for application. The result of this step provides
the periods of active ginning. Figure 11 shows the filtered power data, along with the
baseline power curve fit, and the active ginning periods just discussed.
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Figure 11. The filtered power data, showing the baseline and active ginning periods.

Once active ginning periods have been established, these active regions are separated
out in block E03. At this point, the code generates the ginning times for each active period,
based on the sample rate and the number of points contained in the active regions. The
software then integrates the individual active regions, to obtain the energy. In this case,
SciPy [20] provides the “trapz” integration method. The software integrates both the total
power and the baseline power for each period of active ginning. This results in the total
energy and the baseline energy for each period of active ginning.

Using the total energy and the baseline energy, the software calculates the active
ginning energy (i.e., the portion of the energy doing work on the cotton, plus any additional
losses). To illustrate, Figure 12 shows the process using only the first run of the example
data from Figure 1. The software subtracts the calculated baseline energy, as shown in
Figure 12b, from the calculated total energy, as shown in Figure 12a, to acquire the active
energy, as shown in Figure 12c. When the data include multiple runs, the software simply
subtracts the first baseline energy value from the first total energy value, the second baseline
energy value from the second total energy value, and so on.

Block E03 also provides the average power levels for each period of active ginning.
To obtain the average total power for each period of active ginning, the code divides the
total energy of each active ginning period by its associated ginning time. To get the average
baseline power for each period of active ginning, the code divides the baseline energy for
each active ginning period by its associated ginning time. The total energy, active energy,
average baseline power, average ginning power, and ginning times are all saved to lists, for
use in the next step of the pipeline.
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Figure 12. The energy from power: (a) the total energy is the area under the power curve; (b) the
baseline energy is the area under the modeled baseline power curve; (c) the active energy is the
energy due to the power rise above the baseline, when actively ginning.

2.7. Build Output

The goal of this stage is to build the output, and save it into a format that is useful to
the user. This step begins after the main control loop from Figure 2, block C determines that
there are no more filtered power data to process. Figure 13 provides the steps involved.
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Figure 13. The pipeline steps to build the output.

Block F01 transfers the calculated values from the lists that stored them into a DataFrame.
Next, the software appends the metadata (if provided) to the DataFrame. Finally, the code
saves the DataFrame to a CSV file. It should be noted that combining the metadata with
the calculated metrics works only if the number of rows in the calculated values matches
the number of rows in the metadata.

3. Results and Discussion

Up to this point, an example dataset that was introduced in Figure 1 has served to
illustrate the steps involved in the new method presented. Now that all the processing is
complete, and the software has created the output CSV file, the results can be inspected
through opening the CSV file.
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Table 3 provides the first five rows of the CSV file (i.e., the header plus the first four
runs in the data). The first six columns of the output are the calculated parameters (i.e., the
base energy, total energy, and active energy in watt-hours, followed by the ginning time in
seconds and, finally, the base average power, and the total average power in watts). The
remaining columns of the output data are the optional metadata that were included. In
this case, the metadata shown comprise the minimum example in Table 2, along with the
ambient temperature information for each run.

Table 3. Example output results, as saved to the final CSV file.

B_Energy_Whr. T_Energy_Whr. Act_Energy Time Base_Avg._W T_Avg._W File Run Temp [f]

6.14 8.13 2.00 50.6 436.57 578.52 data001 55 66.7

4.83 6.23 1.40 40.0 434.43 560.32 data001 56 66.6

3.72 4.68 0.96 31.0 432.47 543.58 data001 57 66.7

4.76 6.17 1.41 39.8 430.49 558.16 data001 58 66.8

The results found in the CSV file can now be used for scientific purposes, depending
on the needs of the user. A common scientific purpose to which this method could be
applied is in testing for correlations between cultivar and energy or ginning time, as seen
in other studies using older methods [1,2,15]. Applying the new method presented in the
current study would require simply providing the cultivars being tested and the sample
sizes as metadata, along with the power files recorded at a high-enough sample rate. The
newly presented method would eliminate the need for the operator to power off the motor,
or for anyone to time the ginning periods. Allowing the software code to detect the start
and stop times for periods of active ginning reduces the variation introduced by humans
having to take action.

Software Validation

The previous sections focused on example data taken from a real-world test, to illus-
trate the method and the software pipeline. This section now focuses on a known simulated
test signal, to validate the software. The validation works by feeding a test signal (of a
known power, energy, and period) to the software, while comparing the calculated outputs
to the known values. Figure 14a shows the clean test signal: a square wave with a baseline
power of 300 watts, and a peak power of 700 watts. The overall length of the signal was
900 points, with a point generated every 0.2 s, and a high signal for 300 points. Figure 14b
shows the signal after the addition of noise to the test signal. The test signal includes the
random noise having a mean value of zero, with a larger standard deviation in the 700-watt
region of the signal.

Figure 15 provides the results of running the noisey signal through the pipeline as
described. The plots include the detected ginning period, the ideal power fit, and the user
input (i.e., the data available after Figure 10, block E02). Figure 15a is the result when the
hysteresis window in Figure 10, block E02 is set to 50 counts, and Figure 15b is the result
when the window is set to 10 counts. Reducing the window size reduces the lag between
the end of the test signal pulse and the end of the detected active ginning time. Unlike
the sharp drop in the test signal, some lag may be beneficial when measuring real ginning
data, because the power level slowly drops, as the cotton works through the gin stand. The
window is a hyperparameter, which allows the user to fine-tune as necessary to the specific
data in use.

Table 4 shows the calculated outputs from the code pipeline, along with the theoretical
values that come from the known test signal (i.e., the row titled ‘Real’). Looking at the
window 50 and window 10 rows versus the “Real” row, we can see that the code is working,
with the error decreasing for the square wave test input as the lag reduces. This result
illustrates the effect of the window on the results, and the flexibility of the pipeline that
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allows user adjustments based on the type of data. The validation study confirms that the
software functions as designed, and can produce accurate results that can fit the data, while
factoring in user inputs.
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Table 4. The test signal validation test results.

B_Energy_Whr. T_Energy_Whr. Act_Energy Time Base_Avg._W T_Avg._W

Real 5.00 11.67 6.67 60.0 300.00 700.00

Window 50 5.72 12.23 6.51 68.8 299.08 639.98

Window 10 5.05 11.56 6.51 60.8 299.01 684.22

% Error 50 * −14% −5% 2% −15% 0% 9%

% Error 10 * −1% 1% 2% −1% 0% 2%

* %Error 50 and %Error 10 calculated as (Real − Calc)/Real.
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4. Conclusions

Common tools can measure the gin stand power; however, such tools typically do
not detect active ginning. Active ginning detection is important when separating the total
energy calculated into the energy going to the moving parts of the machine, versus the
active energy doing work on the cotton (plus any losses). Separating out the energy allows
energy optimization work to target the machine design, or target the cotton cultivars. An
automated tool to detect active ginning, and calculate common metrics, would be of value
to the community, as it could ensure the consistent treatment of data across studies.

The goal of this work was to provide a semi-automated tool to analyze typical power
data recorded using common tools that can detect ginning, and separate out the components
of the energy. To that end, a software program was created to analyze power data utilizing
open-source packages. The software takes in the raw power data, filters them, models
the baseline energy consumption of the equipment under test, detects active ginning, and
calculates the ginning metrics: the ginning times, energy consumed, and average power.
The new method works on files containing multiple runs of cotton in a single file. The
output from the software can be used to support the objectives of the user. This may take
the form of testing energy or ginning rate versus cultivar, checking the baseline energy of
the equipment, etc.

Software validation tests found that, using a simulated noisy signal, it is possible to
control the error in the calculated energy, ginning time, and average power to 2% or less,
versus the theoretical values for the signal with no noise. The new semi-automated method
presented herein will save time, while also making it easier to compare results across
studies, by ensuring the consistent treatment of data. It is anticipated that, by allowing
the software to automatically extract ginning intervals, and calculate important metrics,
human-induced variation can be reduced. This may also make it easier to compare results
obtained by different groups, through applying common calculations across studies.
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Appendix A

As discussed, there are several hyperparameters in the code that a user can modify,
depending on the application. Table A1 summarizes the hyperparameters, along with their
default values, and descriptions of what they do.
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Table A1. Hyperparameters to modify, depending on the application.

Parameter Default Value Description

WINDOW_01 50

The rolling window size used for the first application
of the hysteresis function. A larger window size may
have a stronger effect, but it will cause more lag in the

filtering function.

SET_01 50

The setpoint for the first application of the hysteresis
function. The sum of the window values must be

equal to, or greater than, this before the output goes
high. Larger values typically work better for

noisy data.

RESET_01 45

The reset point for the first application of the
hysteresis function; if the window value falls below

this, the output goes low. Must be less than, or equal
to, set.

WINDOW_02 50

The rolling window size used for the second
application of the hysteresis function. A larger

window size may have a stronger effect, but it will
cause more lag in the filtering function.

SET_02 8

The setpoint for the second application of the
hysteresis function. The sum of the window values

must be equal to, or greater than, this before the
output goes high. Larger values typically work better

for noisy data. Larger values also help to exclude
startup effects.

RESET_02 5

The reset point for the second application of the
hysteresis function; if the window value falls below

this, the output goes low. Must be less than, or equal
to, set.

MYFS 5 The sampling rate of the power data imported, in the
number of samples per second.

NTAP 50 The number of taps used in the FIR filter; this controls
the order of the filter.

WITDH 0.5/2.5 The FIR filter transition width in Hz over the
Nyquist frequency.

RIPPLE 50 The FIR filter ripple specification.

E_RISE 1.1 The percentage power rise above the modeled baseline
needed to count as active ginning.

INI [0, 450] The initial value used to fit the baseline power curve.

STDEV 3
The number of standard deviations to use when

estimating the upper limit of the approximate second
derivative magnitude from the user slice.

Appendix B

Appendix B.1

“““
@author: Sean.Donohoe
This is the main code used to extract ginning energy data and times from
high resolution power data. Tested using power data that had a 5hz data
aggregation rate.
rate.

“““
import pandas as pd
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import main_functions as mf #module containing needed functions
import viz_func as vf #module containing needed functions

#Including Metadata Flag
META_D = 1

#Hyperparamaters for algorithm (reset must be <= set)
WINDOW_01 = 50 #Each count is one time step for meter used
WINDOW_02 = 50 #Each count is one time step for meter used
SET_01, RESET_01 = 50, 45 #num counts of window for start and end
SET_02, RESET_02 = 8, 5 #num counts of window start and end (D: 8, 5)
MYFS = 5 #sample rate
E_RISE, INI = 1.1, [0, 450] #power rise over base, initial fit conditions (D: 1.1)
STDEV = 3
WIDTH, RIPPLE = 0.5/2.5, 50 #Filter parameters

#Folders containing data
INPUT_FOLDER = ‘./dataset/’
POW_COL = ‘PT (W) (200 ms)’ #name of power column in dataset
USER = pd.read_csv(‘./other/user_input.csv’) #(Figure 3: Block A01)
RUN_SHEET = pd.read_csv(‘./other/metadata.csv’) #(Figure 3: Block A02)
meta_dataFrame = pd.DataFrame() #dataframe to store metadata

#Lists used for temp storage
base_average_List, total_average_List = [], []
BaseEnergy_List, TotalEnergy_List = [], []
times_list, RMSE_list = [], []

#Import Data: CSV files in input_folder into pandas, return filenames (Figure 2: Block A)
filesList, raw_data = mf.import_data(INPUT_FOLDER)

#Power Data Filtering (Noise Removal): my_data is list of DataFrames (Figure 2: Block B)
filtered_power_data, coef = mf.filter_data(raw_data, my_fs = MYFS,
name = POW_COL, width =
WIDTH, ripple = RIPPLE)
vf.plot_filter_response(coef, MYFS) #visualize response
vf.filt_comp(raw_data[0][POW_COL], filtered_power_data[0], ‘test_0’) #filter effect [0] entry

#Main control loop
for i, data in enumerate(filtered_power_data): #(Figure 2: Block C)
#Get filename, relavant metadata, and user start/end (Figure 7: Block D01)
name = filesList[i].split(‘/’)[−1]
if META_D == 1:
test_meta_data = RUN_SHEET[RUN_SHEET[‘File’] = =name[:−4]]
meta_dataFrame = pd.concat([meta_dataFrame, test_meta_data])
ustart, uend = mf.get_user_start_end(USER, name[0:−4])

#Approximate 2nd Derivative & Get Upper Limit for User Slice (Figure 7: Block D02)
delta2_Sigma, ABS_Delta_Delta = mf.usr_calc(data, ustart[0], uend[0], STDEV)

#Estimate Idle Members: 2nd Derivative Below Upper Limit (Figure 7: Block D03)
LowVal = mf.low_val_test(ABS_Delta_Delta, delta2_Sigma)

#Apply hysteresis (Figure 7: Block D04)
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w, intervals = mf.hyster_fun(WINDOW_01, SET_01, RESET_01, LowVal, start = 1)

#Model Baseline Power: Fit Idle Members (Figure 7: Block D05)
Base, me, se, myRMSE = mf.fit_base(data, intervals, INI)

#Determine Active Ginning (Figure 10: Block E01)
Ginpossible = mf.idel_or_gin(data, Base, E_RISE)

#Apply hysteresis: results form bounds of integration (Figure 10: Block E02)
w, Ginning = mf.hyster_fun(WINDOW_02, SET_02, RESET_02, Ginpossible)

#Integrate Active Ginning Intervals (seperate out regions first) (Figure 10: Block E03)
total_pow_lists = mf.breakout(Ginning, data)
base_lists = mf.breakout(Ginning, Base)
BEnergy_Whr, Times, base_avg = mf.integrate2(base_lists, 1/MYFS)
TEnergy_Whr, Times_02, total_avg = mf.integrate2(total_pow_lists, 1/MYFS)

#For DEBUG purposes display various plots
vf.fit_plot(data, intervals, Base, [0,len(data)],
[ustart[0], uend[0]], name[0:−4]) #Visualize the fit
vf.processed(data, Base, Ginning,
[ustart[0], uend[0]], name[0:−4], 000) #Power and Baseline
r_pow = raw_data[i][‘PT (W) (200 ms)’] #Unfiltered power data
#vf.compare_plot(data, r_pow, Base, Ginning, name[0:−4],[0, len(data)])
vf.single_plot(r_pow, name[0:−4], Ginning, [0,len(r_pow)], y_lim = [250,850]) #raw data
#The limits here are for plotting example data, other data may not work
#vf.visualizerC(data, name[0:−4], Ginning, [1100,2000]) #total energy fill
#vf.visualizerD(data, Base, name[0:−4], Ginning, [1100,2000]) #AE fill
#vf.base_E_plot(data, Base, name[0:−4], Ginning, [1100,2000]) #BE fill
#Print names and number of runs
print(‘File: ‘+name)
print(‘Runs Found: ‘+str(len(base_lists)))

#Add Results to List (Energy, Avg Power, Ginning Times) (Figure 10: Block E04)
RMSE_list.append(myRMSE)
BaseEnergy_List = BaseEnergy_List + BEnergy_Whr
TotalEnergy_List = TotalEnergy_List + TEnergy_Whr
times_list = times_list + Times
base_average_List = base_average_List + base_avg
total_average_List = total_average_List + total_avg

#Save RMSE to DataFrame
pd.DataFrame(RMSE_list, columns = [“RMSE”]).to_csv(‘RMSE_data.csv’)

#Build Output: Save energy data to DataFrame (Figure 13: Block F01)
energyDF = pd.DataFrame(BaseEnergy_List, columns = [“B_Energy_Whr”])
energyDF[“T_Energy_Whr”] = TotalEnergy_List
energyDF[“Act_Energy”] = energyDF[“T_Energy_Whr”]-energyDF[“B_Energy_Whr”]
energyDF[“Time”] = times_list
energyDF[“Base_Avg_W”] = base_average_List
energyDF[“Total_Avg_W”] = total_average_List
if META_D == 1:
#Concat with the metadata
if len(test_meta_data) != len(base_lists):
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print(‘CAUTION: Possible Run Mismatch’)
meta_dataFrameA = meta_dataFrame.reset_index(drop = True) #reset index
energyDF = pd.concat([energyDF,meta_dataFrameA], axis = 1, sort = False)
energyDF.to_csv(‘./output/processed_results.csv’) #save

Appendix B.2

“““
@author: Sean.Donohoe
Contains methods needed to filter data, detect ginning, and seperate
total energy used vs. active energy going to ginning (plus losses).
This should be named main_functions
“““
import math
import statistics
from os import listdir
from scipy import optimize, signal, integrate
from sklearn.metrics import mean_squared_error
import numpy as np
import pandas as pd

def import_data(input_folder):
“‘
Method to read in data from folder return list of filenames.
and a list where each element is a DataFrame of the CSV contents
input_folder = string of folder path

“‘
files_list = []
my_data = []
for filename in listdir(input_folder): #Get all Filename (Block A03)
#Import each CSV file into list of DataFrame (Block A04)
if filename[−4:] == ‘.csv’:
name = input_folder + filename
files_list.append(name)
my_data.append(pd.read_csv(name))
return (files_list, my_data)

def filter_data(my_data, my_fs, name, width = 0.5/2.5, ripple = 50):
“‘

Method to filter each element of a list.
my_data = list of DataFrames where
my_fs = sampling frequency used by equipment
name = name of power column in dataset
width = Desired transition width (Hz) over nyquest freq
Ripple = ripple used in kaiserord: default 50
--> Returns filter coefficients and filtered data
See: https://scipy-cookbook.readthedocs.io/ items/FIRFilter.html#
“‘
#Generate Filter Coefficients (Block B01)
ntaps, beta = signal.kaiserord(ripple, width) #window paramters
coef = signal.firwin(ntaps, 0.5, fs = my_fs, window = (‘kaiser’, beta))
print(‘ntaps: ‘+str(ntaps))
print(‘beta: ‘+str(beta))

https://scipy-cookbook.readthedocs.io/items/FIRFilter.html#
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#Control Loop (Block B02)
filtered_power_data = []
for f in my_data:
#Apply Filter to Power Column (Block B03)
filter_output2 = lowpass_alt2(f[name], coef)
#Left Shift Result: Removes FIR delay (Block B04)
shift_ammount = int(0.5*(ntaps − 1)) #total FIR delay
filter_output2list = filter_output2.tolist() #convert array to list
del filter_output2list[0:shift_ammount] #remove first elements
filter_output2_array = np.array(filter_output2list) #convert to array
#Add Filtered Data Array to List (Block B05)
filtered_power_data.append(filter_output2_array)
return (filtered_power_data, coef)

def lowpass_alt2(data, coef):
“‘
Method to apply filter using the initial steady state value.
data = data to filter
coef = filter coefficients

“‘
#Generate filter
yini = signal.lfilter_zi(coef, 1) #get initial steady state
y_vals, _ = signal.lfilter(coef, 1, data, zi = yini*data[0]) #apply filter
return y_vals

def get_user_start_end(data, name):
“‘
Method to get user stand and end values from the dataframe
data = the datafame that contains the values
name = name of the file

“‘
ustart = data[data[‘File’]==name][‘UserStart’].values
uend = data[data[‘File’]==name][‘UserEnd’].values
return (ustart, uend)

def usr_calc(data, my_start, my_end, num_sd = 3):
“‘
Method takes data and user slice (start/end), applies np.diff twice to
get difference of differences (i.e., approx 2nd derivative), and
calculate cutoff based on user slice.
my_data = input data
my_start = start point
my_end = ending point
num_sd = number of standard deviations

“‘
#Double apply np.diff, adding zeros so lenth does not change
abs_dif2 = abs(np.diff(np.hstack(([data[0],data[0]], data)), n = 2))
testvals = abs_dif2[my_start:my_end] #User slice
delta2_mean = statistics.mean(testvals) #User slice mean
delta2_stdev = statistics.stdev(testvals) #User slice stdev
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#Cutoff based on user slice
beta = delta2_mean + num_sd*delta2_stdev
return (beta, abs_dif2)

def low_val_test(myinput, cutoff):
“‘
Method to test if myinput data is less than cuttoff value.
myinput = data_ABS_Delta_Delta [array]
cutoff = delta2_PlusN_Sigma
Determine if the ABS_Delta_Delta values are below cutoff value
“‘
return 1*(myinput < cutoff)

def hyster_fun(test_window, setpoint, reset, mydata, start = 0):
“‘
Method to apply hysteresis to the given data.
testwindow = size of test window
setpoint = setpoint where value goes high
reset = value of rolling window that resets value low
mydata = list like item containing the data
start = if equals 1 will pad with NaN
--> Return tuple of window sums and data with hysteresis applied
“‘
#convert list to pandas so can use rolling window
data = pd.DataFrame()
data[‘lowval’] = mydata
was_in_zone = 0 #Initial value
my_window = data[‘lowval’].rolling(test_window).sum() #Sum rolling window
the_zone = [] #List to hold outputs
for i, value in enumerate(my_window):
#In startup condition dont apply logic, buffer with NaN
if start == 1 and i < test_window:
the_zone.append(np.NaN)
else:
#Not currently in zone, but thrshold meet for start
if (value >= setpoint and was_in_zone == 0):
the_zone.append(1)
was_in_zone = 1
#Currently in zone, value not yet fallen below threshold
elif (value >= reset and was_in_zone == 1):
the_zone.append(1)
was_in_zone = 1
#Value below threshold, fell out of the zone
else:
was_in_zone = 0
the_zone.append(0)
return (my_window, the_zone)

def fit_base(inputdata, interval, ini):
“‘
Method to fit curve to given datapoints. Typically used to fit low value
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intervals such that it can model the baseline power.
inputdata = power data [array]
interval = array of intervals where “smooth” [list]
ini = initial parameters used by the fit
-->Return baseline fit, RMSE, mean error, stdev of error
“‘
#Get index locations where “my_data[‘LowValue_Interval’]” == 1
#Get power data matching index locations
interval = np.array(interval)
condition = interval == 1 #condtion to find
index_to_fit = condition.nonzero()[0] #indicies of interval elements == 1
y_to_fit = inputdata[index_to_fit] #data @ indicies
#Fit the data
p_opt, *e = optimize.curve_fit(linear_curve, index_to_fit, y_to_fit, ini)
#Using fit paramaters, generate values for curve
x_base = np.linspace(0, len(inputdata−1), len(inputdata))
#Get baseline curve (use unpacked p_opt)
baseline = linear_curve(x_base, *p_opt)
#Get model evaluated @ indexes where fit was done
modeled_values = linear_curve(index_to_fit, *p_opt)
#Get error information
errors = modeled_values − y_to_fit
errors_mean = statistics.mean(errors)
stdev_errors = statistics.stdev(errors)
my_rmse = math.sqrt(mean_squared_error(y_to_fit, modeled_values)) #RMSE
return (baseline, errors_mean, stdev_errors, my_rmse)

def linear_curve(x_val, k_1, k_2):
“‘
Method to define linear curve.
x_val = x-axis inputs, possibly list
k_1 = slope
k_2 = offset

“‘
return k_1*np.array(x_val) + k_2

def idel_or_gin(power_data, baseline, rise = 1.1):
“‘
Method to determine if idle or ginning based on power rise above baseline.
powerData = data to check, usually filtered power data [array]
baseline = baseline power data [array]
rise = % over baseline to count as ginning, default = 1.1 (i.e., 10% over)

“‘
#Find all locations where idle (less than estimate OR null)
test1 = power_data < (rise*baseline)
test2 = pd.isnull(power_data)
check_power = test1 | test2
#Get ginning locations (i.e., where not idle)
return 1*np.invert(check_power)

def breakout(intervals, power_data):
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“‘
Method separates the active ginning intervals from the single long array.
Intervals = array like containing ginning intervals where 1 = ginning
PowerData = array like containing power data to break up
--> Returns each interval as a list entry. Typically, this is power data,
this will be integrated to get energy.

“‘
output = []
lastval = 0 #used to track last state
count = −1 #count of total intervals found
for i,val in enumerate(intervals):
#starting new interval
if val == 1 and lastval == 0:
count = count + 1 #new interval, add to total count
output.append([]) #add new entry into list of lists
#add power data to interval
output[count].append(power_data[i])
lastval = 1 #update last state
#continuing interval
elif val == 1 and lastval == 1:
#add power data to interval
output[count].append(power_data[i])
lastval = 1 #update last state
else:
lastval = 0 #not in interval
return output

def integrate2(data_list, sample_rate, decimals = 5):
“‘
Method to integrate the data and also calculate the average value.
dataList = list containing lists such that dataList[0]
is the first item to integrate, dataList[1] is the second
and so forth.
decimals = how to round result
sample_rate = sample rate of data in seconds per sample
--> Returns energy values in watt-hours and average values in watts.
“‘
energy_result = []
run_time = []
average_power = []
for data in data_list:
#Endpoint of Integral (also gin time in seconds)
endpoint = len(data)*sample_rate
run_time.append(endpoint)
#X index is in seconds... linespace(Start, Stop, Number To Use)
seconds_index = np.linspace(0, endpoint, len(data))
#Integrate data to get Watt-Seconds (since x axis is in seconds)
integral_result = integrate.trapz(data,seconds_index)
#Divide by 3600 and round to get Watt-Hours
energy_result.append(round(integral_result/3600,decimals))
#Average of power based on Average Value Theorem of Calculus
average_power.append(round(integral_result/endpoint,decimals))
return (energy_result, run_time, average_power)
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Appendix B.3

“““
@author: Sean.Donohoe
Contains methods to visualize various various parts of the data
This should be named viz_func
“““
import matplotlib.pyplot as plt
import matplotlib.ticker as smf
import numpy as np
from scipy.signal import freqz

def string_formatted_10k(x, pos):
“‘
Used to format large values with commas
“‘
if (x >= 10,000):
out = f”{x:,.0f}”
else:
out = f”{x:.0f}”
return out

def processed(data, baseline, ginning, u_val, filename, sample_size):
“‘
Method to plot data along with fitted baseline and ginning detection.
data = filtered power data
baseline = fitted baseline power
ginning = True/False active ginning
u_val = list[0] is user sleected start, list[1] is end
filename = data_file_name[0:−4] (i.e., no file extension)
sample_size = size of sample that the data represents

“‘
fig0 = plt.figure(figsize = (5.5, 4)) #(3, 3.25) #(5.5,4)
ax_1 = fig0.add_subplot(111)
ax_2 = ax_1.twinx()
ax_1.plot(data, color = ‘r’, label = ‘Power’)
xmin, xmax = ax_1.get_xlim()
span = xmax − xmin
ax_1.plot(baseline, color = ‘b’, linestyle = ‘dotted’, label = ‘Baseline’)
ax_2.plot(ginning, color = ‘y’, linestyle = ‘dashdot’, label = ‘Ginning T/F’)
plt.yticks([1.0, 0.0], [“True”, “False”]) #Set ticks on seconday axis
#show user selection
ax_2.axhline(0.5, (u_val[0]-xmin)/span, (u_val[1]-xmin)/span, color = ‘m’,
label = ‘User’)
#plt.title(‘Filtered Data + Baseline: ‘+filename+’:’+str(sample_size) + ‘g’)
ax_1.set_ylim([250, 850]) #[400, 700] good fit for example data
ax_1.set_xlabel(‘Aquisition Sample Point’)
ax_1.set_ylabel(‘Source Power [W]’)
ax_2.set_ylabel(‘Ginning True/False’)
#ax_1.set_title(‘b’, x = 0.9, y = 0.8, size = 12,
# bbox = dict(facecolo none’, edgecolor = ‘black’))
#format
ax_1.xaxis.set_major_formatter(smf.FuncFormatter(string_formatted_10k))
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fig0.legend(loc = ‘upper center’, bbox_to_anchor = (0.5, 0.95), ncol = 4)
fig0.savefig(‘./output/’ + filename + ‘_processed.svg’, bbox_inches = ‘tight’,
format = ‘svg’)

def filt_comp(data1, data2, filename):
“‘
Used to comapre fiiltered and unfiltered data
“‘
font = {‘family’: ‘Arial’, ‘weight’: ‘normal’, ‘size’: 8}
plt.rc(‘font’, **font)
fig0 = plt.figure(figsize = (4.5,4))
#Source data upper
ax_3 = fig0.add_subplot(211)
ax_3.plot(data1, color = ‘r’)
ax_3.set_ylim([350,800])
ax_3.set_ylabel(‘Power [W]’)
ax_3.set_title(‘a’, x = 0.96, y = 0.72, size = 12,
bbox = dict(facecolor = ‘none’, edgecolor = ‘black’))
#plt.title(‘Filtered Data + Baseline: ‘+filename)
#Processed data lower
ax_1 = fig0.add_subplot(212)
ax_1.plot(data2, color = ‘r’)
ax_1.set_ylim([350,800])
ax_1.set_ylabel(‘Power [W]’)
ax_1.set_xlabel(‘Aquisition Sample Point’)
ax_1.set_title(‘b’, x = 0.96, y = 0.72, size = 12,
bbox = dict(facecolor = ‘none’, edgecolor = ‘black’))
#Format
ax_3.xaxis.set_major_formatter(smf.FuncFormatter(string_formatted_10k))
ax_1.xaxis.set_major_formatter(smf.FuncFormatter(string_formatted_10k))
fig0.savefig(‘./output/’ + filename + ‘_filter_comp.svg’, format = ‘svg’,
bbox_inches = ‘tight’, transparent = True)

def compare_plot(data1, data2, base, ginning, filename, limits):
“‘
Does the same as “processed” method but also plots raw data to compare.
data1 = filtered power data
data2 = unfiltered power data
base = fitted baseline power
ginning = True/False active ginning
filename = data_file_name[0:−4] (i.e., no file extension)

“‘
font = {‘family’: ‘Arial’, ‘weight’: ‘normal’, ‘size’: 8}
plt.rc(‘font’, **font)
lower_lim = limits[0]
upper_lim = limits[1]
span = upper_lim − lower_lim
index = np.linspace(lower_lim, upper_lim, span, endpoint = False)
fig0 = plt.figure(figsize = (4,2))
#Source data upper
ax_3 = fig0.add_subplot(121)
ax_3.plot(index, data2[lower_lim:upper_lim], color = ‘r’)
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ax_3.set_ylim([400,800])
ax_3.set_ylabel(‘Source Power [W]’)
#plt.title(‘Filtered Data + Baseline: ‘ + filename)
#Processed data lower
ax_1 = fig0.add_subplot(122)
ax_2 = ax_1.twinx()
ax_1.plot(index, data1[lower_lim:upper_lim], color = ‘r’)
ax_1.plot(index, base[lower_lim:upper_lim], color = ‘b’, linestyle = ‘dotted’,
linewidth = 5, label = ‘Baseline’)
ax_1.yaxis.set_tick_params(labelbottom = False)
ax_2.plot(index, ginning[lower_lim:upper_lim], color = ‘y’,
linestyle = ‘dashdot’, label = ‘GinInt’)
plt.yticks([1.0, 0.0], [“True”, “False”]) #Set ticks on seconday axis
#ax_1.set_ylabel(‘Source Power [W]’)
ax_1.set_ylim([400,800])
#ax_2.set_ylabel(‘Ginning True/False’)
#ax_1.set_xlabel(‘Aquisition Sample Point’)
fig0.savefig(‘./output/’ + filename + ‘.svg’, format = ‘svg’,
bbox_inches = ‘tight’, transparent = True)

def single_plot(data1, filename, ginning, limits, y_lim = [300,800]):
“‘
Used to plot single input
r_pow = my_data [8][‘PT (W) (200 ms)’]
visualizerB(r_pow, ‘name’, [0,len(r_pow)])

“‘
font = {‘family’: ‘Arial’, ‘weight’: ‘normal’, ‘size’: 8}
plt.rc(‘font’, **font)
lower_lim = limits[0]
upper_lim = limits[1]
span = upper_lim − lower_lim
index = np.linspace(lower_lim, upper_lim, span, endpoint = False)
fig0 = plt.figure(figsize = (5.5,4)) #(5.5,4) #(3.2,3)
ax_3 = fig0.add_subplot(111)
ax_3.plot(index, data1[lower_lim:upper_lim], color = ‘r’, label = ‘Raw’)
ax_3.set_ylim([y_lim[0],y_lim[1]])
ax_3.set_ylabel(‘Source Power [W]’)
ax_3.set_xlabel(‘Aquisition Sample Point’)
#ax_3.set_title(‘b’, x = 0.9, y = 0.8, size = 12,
# bbox = dict(facecolor = ‘none’, edgecolor = ‘black’))
fig0.legend(loc = ‘upper center’, bbox_to_anchor = (0.5, 0.95), ncol = 4)
#format
ax_3.xaxis.set_major_formatter(smf.FuncFormatter(string_formatted_10k))
fig0.savefig(‘./output/’ + filename + ‘.svg’, format = ‘svg’,
bbox_inches = ‘tight’, transparent = True)

def visualizerC(data1, filename, ginning, plt_limits, y_lim = [300,800]):
“‘
Used to plot a single input while also shading the area under the curve
based on the ginning regions detected (total energy).

“‘
#limits of interest
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lower_lim = plt_limits[0]
upper_lim = plt_limits[1]
span = upper_lim − lower_lim

#get index where ginning starts/stops
c_index, crossing_count = zero_crossing(ginning[lower_lim:upper_lim])

#Start plotting
font = {‘family’: ‘Arial’, ‘weight’: ‘normal’, ‘size’: 8}
plt.rc(‘font’, **font)
index = np.linspace(lower_lim, upper_lim, span, endpoint = False)
fig0 = plt.figure(figsize = (2,3))
ax_3 = fig0.add_subplot(111)
ax_3.plot(index, data1[lower_lim:upper_lim], color = ‘r’, label = ‘Power’)
ax_3.set_ylim([y_lim[0],y_lim[1]])
ax_3.set_ylabel(‘Source Power [W]’)
ax_3.set_xlabel(‘Aquisition Sample Point’)
ax_3.set_title(‘a’, x = 0.8, y = 0.8, size = 12,
bbox = dict(facecolor = ‘none’, edgecolor = ‘black’))

#Setup fill under for energy
for i in range(0, crossing_count, 2):
span = c_index[i + 1] − c_index[i]
#offset by the lower limit since cross_index referenced to original data
index = np.linspace(c_index[i] + lower_lim + 1, c_index[i + 1] + lower_lim, span)
ax_3.fill_between(index, data1[c_index[i] + lower_lim:c_index[i + 1] + lower_lim]
, color = “none”, hatch=‘X’*4, edgecolor=“b”, label=‘Energy’)
fig0.legend(loc=‘upper center’, bbox_to_anchor=(0.5, 0.98), ncol=2)
fig0.savefig(‘./output/’ + filename + ‘_viz_totalE.svg’, format = ‘svg’,
bbox_inches = ‘tight’, transparent = True)

def visualizerD(data1, data2, filename, ginning, plt_limits, y_lim = [300,800]):
“‘
Used to plot a single input while also shading the area between data1
and data2 based on the ginning regions detected (active energy).

“‘
#limits of interest
lower_lim = plt_limits[0]
upper_lim = plt_limits[1]
span = upper_lim − lower_lim

#get index where ginning starts/stops
c_index, crossing_count = zero_crossing(ginning[lower_lim:upper_lim])

#Start plotting
font = {‘family’: ‘Arial’, ‘weight’: ‘normal’, ‘size’: 8}
plt.rc(‘font’, **font)
index = np.linspace(lower_lim, upper_lim, span, endpoint = False)
fig0 = plt.figure(figsize = (2,3))
ax_3 = fig0.add_subplot(111)
ax_3.plot(index, data1[lower_lim:upper_lim], color = ‘r’, label = ‘Power’)
ax_3.set_ylim([y_lim[0],y_lim[1]])
ax_3.set_ylabel(‘Source Power [W]’)
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ax_3.set_xlabel(‘Aquisition Sample Point’)
ax_3.set_title(‘c’, x = 0.8, y = 0.8, size = 12,
bbox = dict(facecolor = ‘none’, edgecolor = ‘black’))

#Setup fill under for energy
for i in range(0, crossing_count, 2):
span = c_index[i + 1] − c_index[i]
#offset by the lower limit since cross_index referenced to original data
index = np.linspace(c_index[i] + lower_lim + 1, c_index[i + 1] + lower_lim, span)
ax_3.fill_between(index, data1[c_index[i] + lower_lim:c_index[i + 1] + lower_lim],
data2[c_index[i] + lower_lim:c_index[i + 1] + lower_lim],
color = “none”, hatch=‘X’*4, edgecolor=“b”, label=“Energy”)
fig0.legend(loc=‘upper center’, bbox_to_anchor=(0.5, 0.98), ncol=2)
fig0.savefig(‘./output/’ + filename + ‘_viz_activeE.svg’, format = ‘svg’,
bbox_inches = ‘tight’, transparent = True)

def fit_plot(data, interval, baseline, my_range, u_val, filename):
“‘
Used to visualize the fitment of the baseline power
“‘
l_lim = my_range[0]
u_lim = my_range[1]
u_span = u_lim-l_lim

#X-values
index = np.linspace(l_lim, u_lim, u_span, endpoint = False)

#Plot data
fig0 = plt.figure(figsize = (5,3))
ax_3 = fig0.add_subplot(111)
ax_3.plot(index, data[l_lim:u_lim], color = ‘r’, label = ‘Power Data’)

#Plot points used in fit and the fit itself
interval = np.array(interval)
condition = interval[l_lim:u_lim] == 1 #condtion to find
index_to_fit = condition.nonzero()[0] #indicies of interval elements == 1
y_to_fit = data[index_to_fit + l_lim] #data @ indicies
ax_3.scatter(index_to_fit + l_lim,y_to_fit, color = ‘b’, label = ‘Fitted Points’)
ax_3.plot(index, baseline[l_lim:u_lim], color = ‘y’, linewidth = ‘5’, label = ‘Model’)

#show user selection
xmin, xmax = ax_3.get_xlim()
span = xmax − xmin
ax_3.axhline(500, (u_val[0]-xmin)/span, (u_val[1]-xmin)/span,
linestyle = ‘dotted’, color = ‘m’, label = ‘User’)

#Add labels
ax_3.set_ylabel(‘Source Power [W]’)
ax_3.set_xlabel(‘Aquisition Sample Point’)
ax_3.legend(loc = ‘upper center’, bbox_to_anchor = (0.5, 1.00), ncol = 4)
#Format
ax_3.xaxis.set_major_formatter(smf.FuncFormatter(string_formatted_10k))
#Save output
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fig0.savefig(‘./output/’ + filename + ‘_fitment.svg’, format = ‘svg’,
bbox_inches = ‘tight’, transparent = True)

def base_E_plot(data1, data2, filename, ginning, plt_limits, y_lim = [300,800]):
“‘
Used to plot base energy
“‘
#limits of interest
lower_lim = plt_limits[0]
upper_lim = plt_limits[1]
span = upper_lim − lower_lim

#get index where ginning starts/stops
c_index, crossing_count = zero_crossing(ginning[lower_lim:upper_lim])

#Start plotting
font = {‘family’: ‘Arial’, ‘weight’: ‘normal’, ‘size’: 8}
plt.rc(‘font’, **font)
index = np.linspace(lower_lim, upper_lim, span, endpoint = False)
fig0 = plt.figure(figsize = (2,3))
ax_3 = fig0.add_subplot(111)
ax_3.plot(index, data1[lower_lim:upper_lim], color = ‘r’, label = ‘Power’)
ax_3.set_ylim([y_lim[0],y_lim[1]])
ax_3.set_ylabel(‘Source Power [W]’)
ax_3.set_xlabel(‘Aquisition Sample Point’)
ax_3.set_title(‘b’, x = 0.8, y = 0.8, size = 12,
bbox = dict(facecolor = ‘none’, edgecolor = ‘black’))

#Setup fill under for energy
for i in range(0, crossing_count, 2):
span = c_index[i + 1] − c_index[i]
#offset by the lower limit since cross_index referenced to original data
index = np.linspace(c_index[i] + lower_lim + 1, c_index[i + 1] + lower_lim, span)
ax_3.fill_between(index, data2[c_index[i] + lower_lim:c_index[i + 1] + lower_lim],
color = “none”, hatch = ‘X’*4, edgecolor = “b”, label = “Energy”)
fig0.legend(loc = ‘upper center’, bbox_to_anchor = (0.5, 0.98), ncol = 2)
fig0.savefig(‘./output/’ + filename + ‘_viz_baseE.svg’, format = ‘svg’,
bbox_inches = ‘tight’, transparent = True)

def zero_crossing(data):
“‘
Function to calculate change in state for digital data (i.e., going from
0 to 1) or a zero crossing for analog data.
See this:
https://stackoverflow.com/questions/2936834/python-counting-sign-changes

“‘
#Convert data to array
my_data = np.array(data)
#Get boolean values for what is positive and what is 0 or less
pos = my_data > 0
#Logically compare current value with next value, use XOR
test = np.logical_xor(pos[1:],pos[:−1])
crossing_index = np.nonzero(test)[0]

https://stackoverflow.com/questions/2936834/python-counting-sign-changes
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crossing_count = int(test.sum())
return (crossing_index, crossing_count)

def plot_filter_response(coeff2, my_fs):
“‘
Used to plot the response of the filter for testing purposes
“‘
w, h = freqz(coeff2, fs = my_fs, worN = 512) #frequency response of digital filter
#Start plotting
font = {‘family’: ‘Arial’, ‘weight’: ‘normal’, ‘size’: 8}
plt.rc(‘font’, **font)
fig = plt.figure(figsize = (5,3))
ax1 = fig.add_subplot(111)
ax1.set_xlabel(‘Frequency [Hz]’)
ax1.plot(w, 20*np.log10(np.abs(h)), color = ‘b’, label = ‘Magnitude’) #Magnitude data
ax1.set_ylabel(‘Magnitude [dB]’, color = ‘b’)
ax2 = ax1.twinx()
angles = np.unwrap(np.angle(h))
ax2.plot(w, angles, ‘g’, linestyle = ‘dotted’, label = ‘Angle’) #Phase data
ax2.set_ylabel(‘Angle’, color = ‘g’)
fig.legend()
#Save Output
fig.savefig(‘./output/bode.svg’, format = ‘svg’, bbox_inches = ‘tight’,
transparent = True)

Appendix C

The code provided, and the example worked through, uses the file structure shown in
Figure A1. The program as written does not create new folders when run, so it is important
to make sure the folders already exist. For example, the output folder should exist so that
the main outputs can be saved to it (items such as figures, and the final output CSV file with
all the processed results). Other structures are possible to set up, if desired, with proper
modifications to the file structure in the code.
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