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Abstract: Durum wheat (Triticum durum Desf.) is one of the most widely cultivated cereal species in
the Mediterranean basin, supporting pasta, bread and other typical food productions. Considering its
importance for the nutrition of a large population and production of high economic value, its supply
is of strategic significance. Therefore, an early and accurate crop yield estimation may be fundamental
to planning the purchase, storage, and sale of this commodity on a large scale. Multispectral (MS)
remote sensing (RS) of crops using unpiloted aerial vehicles (UAVs) is a powerful tool to assess crop
status and productivity with a high spatial–temporal resolution and accuracy level. The object of this
study was to monitor the behaviour of thirty different durum wheat varieties commonly cultivated in
Italy, taking into account their spectral response to different vegetation indices (VIs) and assessing the
reliability of this information to estimate their yields by Pearson’s correlation and different machine
learning (ML) approaches. VIs allowed us to separate the tested wheat varieties into different groups,
especially when surveyed in April. Pearson’s correlations between VIs and grain yield were good
(R2 > 0.7) for a third of the varieties tested; the VIs that best correlated with grain yield were CVI,
GNDVI, MTVI, MTVI2, NDRE, and SR RE. Implementing ML approaches with VIs data highlighted
higher performance than Pearson’s correlations, with the best results observed by random forest (RF)
and support vector machine (SVM) models.

Keywords: remote sensing (RS); precision agriculture (PA); crops monitoring; cereals; smart agriculture

1. Introduction

Agriculture in the third millennium faces a number of different challenges, rang-
ing from increasing food production to the provision of new organic products to replace
petroleum derivatives, in a context dominated by the effects of global warming and cli-
mate change, with variations in seasonal weather patterns and an increase in extreme
catastrophic natural events [1–4]. Concerning these phenomena, agriculture must adapt
with appropriate adaptation and mitigation strategies, hence, resilience and sustainability
(i.e., carbon sequestration, GHG emission reductions, new soil and crop management
techniques). With this regard, the EU Commission in 2020, within the European Green
Deal, launched the farm-to-fork strategy to promote a “food systems fair, healthy and
environmentally-friendly”, setting a series of ambitious targets for EU agriculture by
2030 [5].

Among arable land crops, durum wheat (Triticum durum Desf.) represents an important
food crop in Southern Europe and Mediterranean basin countries with a production of
~20 Mt, representing the main production area of this species [6,7]. Durum wheat and the
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product derived from its milling, called semolina, is the basic raw material for preparing
typical foods of the area, such as pasta, traditional bread, couscous and burghul. Among
these products, semolina and pasta production, as well as raw grain, in Italy also play an
important role in commercial exports [8,9]. In recent years, the world durum wheat market
has shown considerable volatility compared to the past due to a series of conjunctural
events (e.g., the war in Ukraine, Canada and USA drought; cloudbursts in late spring in
Italy), the sudden increase in the international demand and a critical reduction in yields
by leading producing nations. This circumstance brought out potential risks related to the
supply of mills and pasta factories, promoting procurement strategies such as supply chain
conventions with local farmers or wheat future contracts [10]. Even greater are the risks for
the supply of ancient wheat varieties characterised by an important role in biodiversity and
promising nutritional aspects [11,12]. Therefore, accurately estimating the yield in a given
area is essential to adequately plan industry storage and make the appropriate purchases
in time.

Remote sensing (RS) techniques, within the precision agriculture (PA) approach, can
provide several solutions to collect data and estimate production [13,14]. Unpiloted aerial
vehicles (UAVs) equipped with multispectral (MS) sensors could offer several benefits,
such as greater efficiency and accuracy through increased spatial and temporal resolution,
providing images at very high resolution (VHR) on a daily basis [15–17]. Combining the
different MS bands, the obtained vegetation indices (VIs) allow monitoring, analysis and
mapping of vegetation temporal and spatial variations [18–20]. Numerous studies have
highlighted the potential of VIs to predict plant biomass and crop yields on several crops
like wheat [21,22], onion [18,23], oat [24,25], barley [26–28], tomato [29–31] etc. However,
the simple linear application of VIs does not always allow reliable yield estimation, espe-
cially when spatial and spectral differences are slight [32,33]. A more advanced approach
is the application of machine learning (ML) techniques to field and RS data, which allows
for better interpretation of patterns and more robust estimations [34,35]. Different ML
regression models have been successfully applied to agricultural data like linear, poly-
nomial and logistical regressions, random forest (RF), support vector machines (SVM),
neural networks (NN), k-nearest neighbours (k-NN), and stochastic gradient boosting [34].
Few studies have yet been conducted concerning durum wheat, especially in Italy, and
numerous aspects like cultivar response to VIs, the best time for UAV monitoring, and the
performance of ML approaches need to be fully investigated. Therefore, the objectives of
the present study were: (i) evaluate the different spectral responses of the most common
durum wheat cultivars grown in Italy; (ii) analyse the correlations between the observed
VIs and grain yield for each cultivar; (iii) evaluate the potentials of ML techniques for
durum wheat grain yield prediction; (iv) identify for the three previous objectives the best
crop survey time between the late tillering (April) and the earing phase (May). The main
novelty aspects of the proposed research mainly concern the simultaneous investigation
of numerous varieties (30 different durum wheat varieties investigated), the number of
indices considered (13 VIs) and their combined use to feed ML models.

2. Materials and Methods
2.1. Experimental Site

The field experiment was set up at the agricultural experimental centre “Casello” of
the regional agency ARSAC (Azienda Regionale per lo Sviluppo dell’Agricoltura Calabrese)
located in San Marco Argentano, Calabria, Italy (39◦38′ N, 16◦13′ E, 100 m a.s.l.) (Figure 1).
The soil of the experimental site is classified as Fluventic Haploxerepts [36] with a sandy-
clay-loam texture, neutral pH (7.7), total N 0.95 g kg–1 and organic matter 16.9 g kg–1. The
climate is Mediterranean with mild and rainy (70% of total) falls and winters and warm
and dry summers (Warm Mediterranean Climate, Csa); mean annual rainfall is 706 mm
while the mean yearly air temperature is 14.7 ◦C (30-year averages). Further information
regarding the experimental site characteristics is available in Badagliacca et al. [37].
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Figure 1. On the left is the location of the experimental site, while on the right is the list of the
thirty tested wheat cultivars and the orthomosaic with the field plots highlighted in yellow (RGB
composition of April 2022 UAV flight). Below, the crop cycle of the durum wheat.

2.2. Experimental Design and Crop Management

The field experiment was set up as a completely randomised block design (RCBD) with
three replications during the 2021–2022 cropping season. Thirty different wheat cultivars
were tested: Antalis, Aureo, Beltorax, Bering, Brigante, Claudio, Diogene, Federico II,
Fuego, Furio Camillo, Incanto, Iride, LG Fructis, Maciste, Mameli, Marakas, Marco Aurelio,
Monastir, Nuraghe, Panoramix, RGT Aventadur, RGT Jasdur, RGT Natur, RGT Voltadur,
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SY Leonardo, SY Prodigio, Tancredi, Telemaco, Tito Flavio, and Verace (Figure 1). The
soil was prepared by mouldboard ploughing to a depth of 30 cm in October, followed
by two shallow harrowing operations at 15 cm soil depth in November. Sowing was
performed with a plot seeder (Vignoli Tartaro) in the first half of December, in plots of
10 m2 (1.44 × 7.00 m) in rows (No. 8) 18 cm apart at 350 viable seeds m–2 density. The
field was fertilised at the sowing (BBCH-scale phase 00) and tillering (BBCH-scale phase
23) stages by broadcasting 200 kg ha–1 of di-ammonium phosphate (DAP, 18-46-0) at the
first stage and 130 kg ha–1 of urea (46-0-0), at the second stage. Durum wheat grain was
harvested at full maturity stage in mid-July 2022, using a plot combine (Wintersteiger
Nursery Master).

2.3. UAV Surveys and Image Processing

The adopted workflow is synthesised in Figure 2.
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Figure 2. The workflow of the adopted methodology. The first part shows the UAV survey and the
data pre-processing. The second part shows the image data processing and the selected vegetation
indices (VIs). The third part shows the statistics and machine learning (ML) analysis.

The multispectral images were acquired in two different wheat stages: late tillering
(25 BBCH-scale phase) and heading (55 BBCH-scale phase) on 4 April 2022 and 5 May 2022,
respectively. Surveys were performed using the UAV multirotor DJI Phantom 4 Multispec-
tral (DJI Ltd., Shenzhen, China) equipped with a camera generating 1600 × 1300 pixels
images at 2 MP resolution. The equipped camera shoots simultaneously six images, one in
RGB composition and five monochrome spectral images (i.e., Blue, Green, Red, Red Edge,
Near Infrared (NIR)—Table 1).

Table 1. Spectral characteristics of the multispectral sensors investigated bands.

Band Central Wavelength [nm] Bandwidth [nm]

Blue 450

±16
Green 560

Red 650

Red Edge 730

Near Infrared (NIR) 840 ±26

All flights were performed in a cloud-free condition at the constant speed of 2 ms−1

and 30 m a.g.l. altitude. An automated surveying mission was set using the DJI Ground
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Station Pro application, ensuring 80% overlap and sidelap. The same mission was used
for both flights. Moreover, a set of black and white square (50 cm × 50 cm) ground
control points (GCPs) were placed on the field to achieve a better geolocation of the output.
Their coordinates were acquired by means of the RTK (real-time kinematic) GNSS (global
navigation satellite system) Leica GS12 with a planimetric accuracy of ±2.5 cm and an
altimetric one of ±5 cm. The photogrammetric process, consisting of image alignment,
stack and radio-metric correction, was performed for both surveys (i.e., April and May
2022) using the Pix4D mapper Pro v.4.3 (Pix4D SA, Lausanne, Switzerland) software. At
the end of this process, a multispectral orthomosaic with a geometric resolution of 1 cm has
been obtained as output. In order to calibrate the orthomosaic, converting digital number
values in reflectance, we used a field spectroradiometer to acquire, in correspondence with
the surveyed spectral bands, reflectance values of a grey calibration panel put on the field
during the flights. More details about the photogrammetric process can be found in other
research previously published by this research group [18,19,38]. To test the correlation
between different VIs and crop production data for each analysed variety, a mask was
created to eliminate all parts of the images not covered by the crop, limiting the analysis to
the designed plots (Figures 1 and 2). A set of VIs (Table 2) was tested, and for each one, the
mean value for each plot was considered.

Table 2. The analysed vegetation indices (Vis) of this study.

Vegetation Index Acronym Formula Reference

Chlorophyll Vegetation Index CVI ρNIR
ρGreen ∗

ρRed
ρGreen [39]

Green Normalised Difference Red Edge Index GNDRE ρRed Edge−ρGreen
ρRed Edge+ρGreen

[40]

Green Normalised Difference Vegetation Index GNDVI ρNIR−ρGreen
ρNIR+ρGreen [41]

Modified Chlorophyll Absorption Ratio Index MCARI2 1.5∗[2.5 (ρNIR−ρRed)−1.3 (ρNIR−ρGreen)]√
(2ρNIR+1)2−(6ρNIR−5ρRed)−0.5

[42]Modified Triangular Vegetation Index MTVI 1.2 ∗ [1.2 (ρNIR − ρGreen)− 2.5 (ρRed − ρGreen)]

Modified Triangular Vegetation Index 2 MTVI2 1.5∗[1.2 (ρNIR−ρGreen)−2.5 (ρRed−ρGreen)]√
(2ρNIR+1)2−(6ρNIR−5ρRed)−0.5

Normalised Difference Red Edge Index NDRE ρNIR−ρRed Edge
ρNIR+ρRed Edge

[43]

Normalised Difference Vegetation Index NDVI ρNIR−ρRed
ρNIR+ρRed

[44]

Optimised Soil Adjusted Vegetation Index OSAVI 1.16 (ρNIR−ρRed)
ρNIR+ρRed+0.16

[45]

Renormalised Difference Vegetation Index RDVI ρNIR−ρRed√
ρNIR+ρRed

[46]

Red Edge Triangulated Vegetation Index RTVI 100 (ρNIR − ρRed Edge)− 10 (ρNIR − ρGreen)] [47]

Simple Ratio SR ρNIR
ρRed [48]

Simple Ratio Red Edge SRRE
ρNIR

ρRed Edge [49]

2.4. Statistics and Machine Learning (ML) Approaches

Field and VIs data were collected and organised in MS Excel(TM). VIs data and related
elaboration were performed separately for the two UAV flight times (April and May) to
assess the most useful flying epoch for cultivar separation and grain yield prediction.
Statistical and ML analyses were carried out in the RStudio environment. Differences in
VIs responses among wheat cultivars were evaluated by one-way analysis of variance
(ANOVA) followed by means comparisons using Tukey’s HSD test at the 5% probabil-
ity level (p-value < 0.05). In addition, a PCA was carried out from data of all calculated
VIs to highlight distances in spectral response among the varieties tested. For these two
analyses were used “agricolae” [50] and “FactoMineR v1.41” [51] packages. Relationships
between wheat yield and VIs were investigated by Pearson’s correlation and different
ML approaches. Pearson’s correlation was performed by using “cor()” function [52]. ML
approaches were implanted and evaluated by using “Caret” package [53]. Five different
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ML models, commonly used in agricultural studies, were tested: (1) linear model (LM),
(2) random forest (RF), (3) support vector machines (SVM), (4) k-nearest neighbours (k-NN),
and (5) neural networks (NN). ML approaches were tested only on the 10 cultivars that
showed significant Pearson’s correlation between grain yields and VIs, namely Antalis,
Aureo, Beltorax, Bering, Brigante, Federico II, LG Fructis, Marco Aurelio, Panoramix, and
RGT Aventadur. For each model, experimental data (i.e., yield and VIs values) were divided
into training (70%) and validation (30%) datasets to train and validate their performance.
This procedure was repeated 100 times (bootstrap sampling) in order to achieve a compre-
hensive and reliable model evaluation that can account for the widest variability in the data
used for training and validation. The model’s performances were evaluated, comparing
the calculated dataset with the validation dataset, using the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error (MAE) observed in 50% of
the repetitions performed (50th percentile).

3. Results and Discussion
3.1. Indices (VIs) Responses of Durum Wheat Cultivars

The data and the results of the ANOVA analysis performed on the VIs surveyed in
April on the 30 wheat varieties studied are presented below in Table 3. Among the different
VIs, Aureo, Furio Camillo, Panoramix (only for MCARI2), and RGT Aventadur cultivars
showed the highest while Beltorax and Panoramix (for most of the indices) showed the
lowest values; intermediate values were retrieved in the other cultivars. The differences
among cultivars were always significant for all VIs investigated (p < 0.05). The most notable
differences among wheat varieties’ VIs responses were observed for SR, RTVI, CVI, SRRE,
MCARI 2, GNDVI, and NDRE.

Table 3. Vegetation indices (VIs) data observed among the 30 wheat cultivars investigated in April,
related statistics (minimum, maximum, difference and mean values) and results of the ANOVA
analysis. Different letters indicate significant differences between cultivars (Tukey’s HSD test at
p < 0.05). For each VI in bold, the highest value is highlighted, while in italics, the lowest value.

Vegetation Indices—April

CVI GNDRE GNDVI MCARI2 MTVI MTVI2 NDRE NDVI OSAVI RDVI RTVI SR SR RE

C
ul

ti
va

rs

Antalis 2.04 c 0.47 b 0.69 b 0.38 b 0.19 c 0.18 b 0.33 c 0.88 a 0.46 c 0.32 b 5.34 a 16.46 d 2.02 e
Aureo 1.94 e 0.46 c 0.68 b 0.35 c 0.21 a 0.20 a 0.33 c 0.87 a 0.49 a 0.34 a 5.85 a 15.74 d 2.01 e
Beltorax 1.84 g 0.45 d 0.66 c 0.43 b 0.19 d 0.17 b 0.30 d 0.85 b 0.44 c 0.31 b 4.74 b 14.13 f 1.89 g
Bering 1.87 f 0.45 c 0.66 c 0.43 b 0.19 d 0.18 b 0.31 d 0.86 b 0.45 c 0.31 b 4.78 b 14.25 f 1.90 g
Brigante 1.96 e 0.47 b 0.69 b 0.36 c 0.20 b 0.19 a 0.33 c 0.88 a 0.48 c 0.33 a 5.56 a 16.43 d 2.00 e
Claudio 1.87 f 0.46 c 0.67 b 0.40 b 0.19 c 0.18 b 0.31 c 0.86 a 0.46 c 0.32 b 5.00 b 15.01 e 1.92 g
Diogene 1.86 f 0.46 b 0.67 b 0.41 b 0.19 c 0.18 b 0.30 d 0.86 b 0.45 c 0.31 b 4.78 b 15.05 e 1.88 g
Federico II 2.05 c 0.48 b 0.70 a 0.39 b 0.18 e 0.17 b 0.34 c 0.88 a 0.45 c 0.31 b 5.12 b 16.83 d 2.03 d
Fuego 1.99 d 0.47 b 0.69 b 0.37 c 0.20 c 0.19 b 0.33 c 0.88 a 0.47 c 0.32 b 5.37 a 16.55 d 2.01 e
Furio Camillo 2.27 a 0.48 a 0.72 a 0.35 c 0.19 c 0.18 b 0.36 a 0.89 a 0.47 c 0.32 b 5.77 a 18.40 a 2.18 a
Incanto 1.80 h 0.45 d 0.66 c 0.41 b 0.20 b 0.19 b 0.3 d 0.86 b 0.46 c 0.32 b 4.94 b 13.97 f 1.86 h
Iride 2.00 d 0.46 b 0.69 b 0.39 b 0.19 c 0.18 b 0.33 c 0.87 a 0.46 c 0.32 b 5.30 a 16.03 d 2.01 e
LG Fructis 1.93 e 0.47 b 0.68 b 0.36 c 0.21 b 0.19 a 0.32 c 0.87 a 0.48 c 0.33 a 5.44 a 15.79 d 1.96 f
Maciste 2.10 b 0.48 a 0.71 a 0.37 c 0.19 d 0.18 b 0.34 c 0.88 a 0.46 c 0.32 b 5.32 a 17.93 b 2.07 c
Mameli 1.94 e 0.46 c 0.68 b 0.41 b 0.18 e 0.17 c 0.33 c 0.87 a 0.45 c 0.31 b 4.99 b 15.75 d 1.99 e
Marakas 1.87 f 0.45 c 0.67 b 0.40 b 0.19 c 0.18 b 0.32 c 0.86 a 0.45 c 0.32 b 5.02 b 15.09 e 1.94 f
Marco Aurelio 2.00 d 0.47 b 0.69 b 0.38 b 0.20 c 0.18 b 0.33 c 0.87 a 0.46 c 0.32 b 5.30 a 16.17 d 2.00 e
Monastir 1.97 d 0.46 b 0.68 b 0.38 b 0.20 b 0.19 b 0.32 c 0.87 a 0.47 c 0.33 b 5.38 a 15.18 e 1.96 f
Nuraghe 1.73 i 0.44 d 0.64 c 0.42 b 0.20 b 0.19 b 0.28 d 0.85 c 0.46 c 0.32 b 4.77 b 13.30 g 1.80 i
Panoramix 1.59 j 0.42 e 0.61 d 0.48 a 0.18 e 0.17 c 0.25 e 0.83 d 0.43 d 0.30 c 3.97 c 11.86 g 1.70 j
RGT Aventadur 2.03 c 0.48 a 0.71 a 0.36 c 0.19 c 0.18 b 0.35 c 0.89 a 0.47 c 0.32 b 5.49 a 18.17 a 2.08 c
RGT Jasdur 1.79 h 0.46 b 0.67 b 0.37 c 0.21 b 0.19 a 0.30 d 0.87 a 0.47 c 0.33 b 5.14 b 15.61 e 1.89 g
RGT Natur 1.93 e 0.45 d 0.66 b 0.42 b 0.19 d 0.18 b 0.31 c 0.86 b 0.45 c 0.31 b 4.93 b 14.02 f 1.93 f
RGT Voltadur 1.82 g 0.45 d 0.66 c 0.40 b 0.20 b 0.19 b 0.30 d 0.86 b 0.46 c 0.32 b 5.11 b 14.26 f 1.89 g
SY Leonardo 1.88 f 0.46 b 0.67 b 0.39 b 0.20 c 0.18 b 0.31 c 0.87 a 0.46 c 0.32 b 5.03 b 15.35 e 1.91 g
SY Prodigio 1.95 e 0.48 b 0.70 a 0.35 c 0.21 b 0.19 a 0.33 c 0.88 a 0.48 b 0.33 a 5.57 a 17.17 c 2.01 e
Tancredi 2.25 a 0.48 b 0.71 a 0.37 c 0.19 c 0.18 b 0.36 b 0.88 a 0.46 c 0.32 b 5.58 a 17.22 c 2.14 b
Telemaco 1.86 f 0.46 c 0.67 b 0.41 b 0.19 d 0.18 b 0.31 c 0.86 b 0.45 c 0.31 b 4.81 b 15.00 e 1.91 g
Tito Flavio 1.92 e 0.46 b 0.68 b 0.39 b 0.20 c 0.18 b 0.32 c 0.87 a 0.46 c 0.32 b 5.12 b 15.56 e 1.95 f
Verace 2.02 c 0.46 b 0.69 b 0.39 b 0.19 d 0.18 b 0.34 c 0.87 a 0.45 c 0.32 b 5.25 a 16.20 d 2.05 d

Min 1.59 0.42 0.61 0.35 0.18 0.17 0.25 0.83 0.43 0.30 3.97 11.86 1.70
Max 2.27 0.48 0.72 0.48 0.21 0.20 0.36 0.89 0.49 0.34 5.85 18.40 2.18
Mean 1.94 0.46 0.68 0.39 0.19 0.18 0.32 0.87 0.46 0.32 5.16 15.62 1.96
∆ VI 0.68 0.06 0.11 0.13 0.03 0.03 0.11 0.06 0.06 0.04 1.88 6.54 0.48
p-value <0.001 <0.001 <0.001 0.003 0.003 0.009 <0.001 <0.001 0.019 0.017 0.001 <0.001 <0.001
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Table 4 shows the VIs responses of the 30 wheat cultivars tested and the ANOVA
results related to the survey carried out in May. The highest values were recorded in
SY Prodigio, Maciste, Federico II, Furio Camillo, Mameli, Tancredi, and Verace, while
the lowest were observed in RGT Jasdur, RGT Natur, Panoramix, and Marco Aurelio;
intermediate values were retrieved in the other cultivars. Differing from what was noted in
April, in May, not all VIs showed statistically significant differences (p < 0.05) among the
cultivars. In particular, significant differences were observed for CVI, GNDRE, GNDVI,
NDRE, NDVI, SR, and SRRE, whereas not substantial were the differences for MCARI2,
MTVI, MTVI2, OSAVI, RDVI, and RTVI. Among the wheat cultivars, the highest differences
in VI responses were observed for SR, RTVI, CVI, and SRRE.

Table 4. Vegetation Indices (VIs) data observed among the 30 wheat cultivars investigated in May,
related statistics (minimum, maximum, difference and mean values) and results of ANOVA analysis.
Different letters indicate significant differences between cultivars (Tukey’s HSD test at p < 0.05). For
each VI in bold, the highest value is highlighted, while in italics, the lowest value.

Vegetation Indices—May

CVI GNDRE GNDVI MCARI2 MTVI MTVI2 NDRE NDVI OSAVI RDVI RTVI SR SR RE

C
ul

ti
va

rs

Antalis 2.89 d 0.48 c 0.74 b 0.17 a 0.19 a 0.18 a 0.41 b 0.81 c 0.32 a 0.47 a 6.37 a 17.25 c 2.41 c
Aureo 2.35 l 0.45 f 0.70 e 0.18 a 0.21 a 0.20 a 0.37 f 0.79 f 0.33 a 0.48 a 6.35 a 14.87 f 2.20 h
Beltorax 2.34 l 0.45 f 0.68 f 0.16 a 0.19 a 0.18 a 0.36 g 0.77 g 0.31 a 0.45 a 5.66 a 14.89 f 2.15 i
Bering 2.67 g 0.47 d 0.72 c 0.16 a 0.18 a 0.17 a 0.39 d 0.80 e 0.31 a 0.45 a 5.78 a 16.02 d 2.29 f
Brigante 2.76 e 0.49 a 0.73 b 0.17 a 0.19 a 0.18 a 0.39 c 0.81 c 0.32 a 0.46 a 6.13 a 17.79 c 2.33 d
Claudio 2.49 j 0.46 e 0.71 e 0.18 a 0.2 a 0.19 a 0.37 f 0.79 e 0.33 a 0.47 a 6.13 a 15.25 e 2.19 h
Diogene 2.73 e 0.48 b 0.73 b 0.17 a 0.19 a 0.18 a 0.40 c 0.81 c 0.32 a 0.46 a 6.03 a 17.73 c 2.34 d
Federico II 3.07 c 0.49 a 0.74 a 0.15 a 0.17 a 0.16 a 0.41 b 0.81 c 0.31 a 0.44 a 5.76 a 17.16 c 2.42 c
Fuego 2.52 i 0.47 c 0.72 c 0.18 a 0.20 a 0.19 a 0.39 c 0.81 d 0.33 a 0.48 a 6.36 a 17.74 c 2.32 e
Furio Camillo 3.14 b 0.48 b 0.75 a 0.16 a 0.18 a 0.17 a 0.43 a 0.82 b 0.32 a 0.46 a 6.36 a 18.47 b 2.56 a
Incanto 2.55 h 0.46 e 0.70 e 0.16 a 0.18 a 0.17 a 0.37 f 0.79 f 0.31 a 0.45 a 5.69 a 15.06 e 2.21 g
Iride 2.67 g 0.47 c 0.73 c 0.17 a 0.19 a 0.18 a 0.40 c 0.81 d 0.32 a 0.46 a 6.11 a 16.96 d 2.34 d
LG Fructis 2.68 g 0.46 e 0.72 d 0.16 a 0.18 a 0.17 a 0.39 c 0.79 e 0.31 a 0.44 a 5.77 a 15.72 e 2.31 e
Maciste 3.06 c 0.49 a 0.76 a 0.17 a 0.19 a 0.18 a 0.43 a 0.83 a 0.33 a 0.47 a 6.47 a 19.30 a 2.52 a
Mameli 2.63 g 0.48 b 0.74 a 0.18 a 0.20 a 0.19 a 0.41 b 0.82 b 0.34 a 0.48 a 6.66 a 19.47 a 2.43 c
Marakas 2.56 h 0.47 d 0.72 c 0.18 a 0.20 a 0.19 a 0.39 c 0.80 d 0.33 a 0.47 a 6.30 a 16.53 d 2.30 e
Marco Aurelio 2.77 e 0.47 c 0.72 d 0.15 a 0.18 a 0.17 a 0.39 d 0.79 e 0.31 a 0.44 a 5.67 a 16.41 d 2.30 e
Monastir 2.70 f 0.47 c 0.73 c 0.17 a 0.20 a 0.18 a 0.40 c 0.81 d 0.33 a 0.47 a 6.33 a 16.54 d 2.34 d
Nuraghe 2.37 k 0.44 f 0.68 f 0.16 a 0.19 a 0.17 a 0.35 h 0.77 h 0.31 a 0.44 a 5.44 a 13.42 h 2.09 j
Panoramix 2.18 m 0.44 g 0.68 f 0.16 a 0.19 a 0.17 a 0.34 i 0.77 g 0.31 a 0.45 a 5.30 a 13.95 h 2.06 k
RGT Aventadur 2.88 d 0.48 b 0.75 a 0.17 a 0.19 a 0.18 a 0.42 a 0.82 b 0.33 a 0.47 a 6.57 a 18.59 b 2.48 c
RGT Jasdur 2.41 j 0.44 f 0.67 f 0.14 a 0.17 a 0.16 a 0.34 i 0.76 i 0.30 a 0.42 a 5.01 a 13.08 i 2.07 k
RGT Natur 2.64 g 0.45 f 0.71 e 0.16 a 0.19 a 0.18 a 0.39 d 0.79 e 0.32 a 0.46 a 6.02 a 14.60 g 2.28 f
RGT Voltadur 2.47 j 0.46 e 0.71 e 0.18 a 0.20 a 0.19 a 0.38 e 0.80 e 0.33 a 0.47 a 6.31 a 15.85 e 2.25 g
SY Leonardo 2.54 h 0.46 e 0.71 e 0.16 a 0.19 a 0.18 a 0.38 e 0.79 e 0.32 a 0.45 a 5.87 a 15.82 e 2.25 g
SY Prodigio 2.44 j 0.46 d 0.72 d 0.19 a 0.21 a 0.20 a 0.38 d 0.80 d 0.34 a 0.48 a 6.48 a 16.75 d 2.27 f
Tancredi 3.19 a 0.49 a 0.75 a 0.17 a 0.19 a 0.18 a 0.43 a 0.82 b 0.32 a 0.46 a 6.50 a 17.98 c 2.54 a
Telemaco 2.65 g 0.48 c 0.73 c 0.17 a 0.2 a 0.18 a 0.39 c 0.81 d 0.33 a 0.47 a 6.21 a 16.79 d 2.31 e
Tito Flavio 2.46 j 0.46 e 0.71 e 0.16 a 0.18 a 0.17 a 0.37 f 0.79 e 0.31 a 0.45 a 5.62 a 15.49 e 2.20 h
Verace 2.69 f 0.48 c 0.74 a 0.18 a 0.20 a 0.19 a 0.42 b 0.82 b 0.34 a 0.48 a 6.73 a 18.54 b 2.44 c

Min 2.18 0.44 0.67 0.14 0.17 0.16 0.34 0.76 0.30 0.42 5.01 13.08 2.06
Max 3.19 0.49 0.76 0.19 0.21 0.20 0.43 0.83 0.34 0.48 6.73 19.47 2.56
Mean 2.65 0.47 0.72 0.17 0.19 0.18 0.39 0.80 0.32 0.46 6.07 16.47 2.31
∆ VI 1.01 0.05 0.09 0.05 0.04 0.04 0.09 0.07 0.04 0.06 1.72 6.39 0.50
p-value <0.001 <0.001 <0.001 0.310 0.120 0.220 <0.001 <0.001 0.471 0.416 0.525 <0.001 <0.001

The PCA analysis carried out with the VI response data of the 30 wheat cultivars
separately for the April and May surveys are presented in Figures 3 and 4, respectively.
With regard to the first survey (April), PC1 accounted for 78.0% of the total variance, while
PC2 accounted for 19.3%. In particular, PC 1 discriminated Panoramix, Nuraghe, Beltorax,
Bering from Aureo, SY Prodigio, RGT Aventadur, Maciste, Tancredi, and Furio Camillo.
These cultivar groups were separated from the others located in the central part of the
chart. Conversely, PC2 separated Panoramix, Monastir, SY Prodigio, Brigante, LG Fructis,
Incanto, RGT Voltadur, RGT Jasdur, Nuraghe, and Aureo from RGT Aventadur, Verace,
Mameli, Federico II, Maciste, Tancredi, and Furio Camillo and both of these groups from
the other varieties sited in the middle of the graph.
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Figure 3. Principal component analysis (PCA) of the 30 wheat cultivars calculated from their vegeta-
tion indices (VIs) responses on the April survey. PC1 is the first principal component, and PC2 is the
second principal component.

The PCA developed from the VIs data of May highlighted that PC1 accounted for 78.0%
and PC2 for 19.3%, respectively. Compared with the PCA of April, the differences between
cultivars were limited; PC1 separated RGT Jasdur, Beltorax, Nuraghe and Panoramix from
Verace, Mameli, RGT Aventadur, Tancredi and Maciste, and both from the other cultivar
situated in the middle of the chart. PC2 has discriminated against Marakas, Beltorax, Fuego,
Nuraghe, Panoramix, Claudio, RGT Voltadur, SY Prodigio, and Aureo from Marco Aurelo,
Maciste, Tancredi, Furio Camillo, and Federico II; both these groups were separated from
other cultivars, the most numerous, that were sited in the middle part of the chart.

Overall, the information retrieved highlighted a significantly different VIs response
of most of the tested cultivars, especially at the first survey epoch, at late tillering. This
evidence agrees with Hassan et al. [54], who compared the NDVI response of 32 different
wheat varieties in China, and Marino and Alvino [55], who compared the response of three
indices on 10 different varieties of durum wheat in Italy. Therefore, it is crucial to consider
the different spectral responses of each cultivar [55] before RS and PA implementation
and in the translation of these technologies from one field to another. The reduction in
the differences among cultivars from April to May could be ascribed to a different and
contrasting phenomenon affecting plant response, such as saturation [56], decline in plant
vigour and awn presence [57].
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3.2. Pearson’s Correlations Analysis between Grain Yield Data and Vegetation Indices
(VIs) Responses

Pearson’s correlations analysis between grain yield data and VIs showed different
behaviours of the 30 wheat varieties at the different VIs and a specific sensitivity to the
survey epoch (Table 5).

In particular, with regard to the April survey (Table 5), indices that showed the greatest
number of significant correlations (R2 > 0.7) with grain yield were CVI (11), GNDVI (10),
MTVI (10), MTVI2 (9), NDRE (10), and SR RE (10). In contrast, the index that showed
the worst performance was MCARI2. Among the different cultivars, those that showed
more good correlations with VIs were Antalis, Aureo, Bering, Diogenes, Federico II, Fuego,
LG Fructis, Panoramix, RGT Aventadur, RGT Jasdur, RGT Voltadur, SY Prodigio, Tito
Flavio, and Verace (Table 5). With regard to the May survey, the most significant number of
relevant correlations (R2 > 0.7) were observed for CVI (9), GNDRE (10), NDRE (9), NDVI (9),
OSAVI (9), RDVI (9), RTVI (9), SR (10), and SERE (9) (Table 6). Also, for the survey of May,
the worst performance was observed for the correlations with MCARI2. Among the tested
cultivars, those that showed more relevant correlations between their yield variations and
VIs were Beltorax, Brigante, Furio Camillo, Iride, LG Fructis, Mameli, Marakas, Marco
Aurelio, Nuraghe, Panoramix, RGT Aventadur, RGT Voltadur, SY Prodigio, Tancredi, and
Verace (Table 6).
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Table 5. Pearson’s correlation coefficients calculated between the grain yield of each wheat cultivar
and its vegetation indices (VIs) response surveyed in April. For each VI in bold, the highest value is
highlighted, while in italics, the lowest value.

Vegetation Indices—April

CVI GNDRE GNDVI MCARI2 MTVI MTVI2 NDRE NDVI OSAVI RDVI RTVI SR SR RE

C
ul

ti
va

rs

Antalis 0.74 0.97 0.94 0.63 0.15 0.23 0.82 0.98 0.51 0.51 0.41 0.90 0.76
Aureo 0.98 0.62 0.80 0.74 0.75 0.74 0.93 0.56 0.74 0.74 0.87 0.69 0.94
Beltorax 0.19 0.49 0.36 0.56 0.80 0.76 0.08 0.38 0.66 0.67 0.45 0.19 0.02
Bering 0.99 0.99 0.99 0.99 0.92 0.95 0.99 0.98 0.98 0.98 0.98 0.99 0.99
Brigante 0.98 0.38 0.39 0.01 0.03 0.02 0.34 0.15 0.02 0.23 0.02 0.05 0.31
Claudio 0.19 0.14 0.49 0.28 0.19 0.20 0.99 0.42 0.22 0.23 0.39 0.39 0.99
Diogene 0.85 0.97 0.96 0.96 0.82 0.88 0.96 0.98 0.90 0.91 0.92 0.99 0.97
Federico II 0.97 0.91 0.91 0.95 0.99 0.99 0.92 0.87 0.98 0.98 0.98 0.89 0.93
Fuego 0.25 0.21 0.74 0.77 0.01 0.05 0.88 0.83 0.23 0.25 0.67 0.76 0.88
Furio Camillo 0.61 0.26 0.31 0.33 0.88 0.70 0.35 0.15 0.53 0.50 0.54 0.17 0.35
Incanto 0.76 0.96 0.95 0.57 0.20 0.26 0.95 0.66 0.35 0.37 0.60 0.82 0.95
Iride 0.38 0.08 0.11 0.03 0.14 0.07 0.18 0.03 0.10 0.01 0.01 0.09 0.19
LG Fructis 0.91 0.96 0.90 0.99 0.98 0.99 0.83 0.84 0.99 0.99 0.99 0.93 0.83
Maciste 0.87 0.03 0.15 0.54 0.63 0.62 0.22 0.42 0.58 0.58 0.53 0.23 0.15
Mameli 0.72 0.56 0.49 0.34 0.29 0.30 0.42 0.39 0.35 0.34 0.35 0.36 0.39
Marakas 0.99 0.06 0.67 0.29 0.13 0.15 0.93 0.49 0.27 0.26 0.62 0.44 0.94
Marco Aurelio 0.88 0.24 0.54 0.02 0.47 0.33 0.73 0.39 0.04 0.03 0.15 0.38 0.77
Monastir 0.03 0.19 0.11 0.08 0.09 0.08 0.02 0.22 0.12 0.11 0.02 0.06 0.01
Nuraghe 0.70 0.57 0.54 0.63 0.68 0.68 0.57 0.48 0.64 0.64 0.68 0.64 0.62
Panoramix 0.27 0.98 0.76 0.92 0.99 0.99 0.58 0.92 0.98 0.97 0.73 0.81 0.57
RGT Aventadur 0.72 0.99 0.99 0.99 0.98 0.98 0.99 0.91 0.99 0.99 0.97 0.99 0.97
RGT Jasdur 0.21 0.84 0.75 0.77 0.77 0.76 0.43 0.98 0.78 0.78 0.62 0.66 0.34
RGT Natur 0.02 0.03 0.04 0.24 0.83 0.76 0.02 0.05 0.53 0.51 0.14 0.02 0.01
RGT Voltadur 0.30 0.88 0.78 0.80 0.80 0.80 0.58 0.89 0.81 0.81 0.66 0.80 0.53
SY Leonardo 0.73 0.61 0.69 0.45 0.15 0.19 0.73 0.67 0.28 0.30 0.49 0.65 0.73
SY Prodigio 0.92 0.81 0.99 0.89 0.05 0.05 0.95 0.97 0.33 0.37 0.71 0.99 0.92
Tancredi 0.04 0.07 0.04 0.43 0.88 0.79 0.02 0.19 0.59 0.60 0.27 0.15 0.01
Telemaco 0.03 0.05 0.13 0.06 0.01 0.02 0.25 0.18 0.04 0.04 0.08 0.17 0.23
Tito Flavio 0.99 0.23 0.87 0.03 0.41 0.29 0.96 0.42 0.08 0.07 0.56 0.67 0.96
Verace 0.93 0.92 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99

Min 0.02 0.03 0.04 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.01
Max 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Mean 0.61 0.53 0.61 0.54 0.53 0.52 0.62 0.58 0.52 0.53 0.55 0.56 0.61

Some wheat varieties showed a contrasting Pearson correlation trend between the
two survey epochs. Indeed, Aureo, Bering, Diogene, Federico II, Fuego, RGT Jasdur, and
Verace highlighted an increased number of relevant correlations with VIs measured in
April, whereas Beltorax, Brigante, Furio Camillo, Iride, Mameli, Marakas, Marco Aure-
lio, Nuraghe, Tancredi, and Telemaco have highlighted good correlations with the May
data. LG Fructis, Panoramix, and RGT Aventadur showed a high number of significant
correlations in April and May.

The VIs are used as sensitive and reliable indicators to assess crop status like many
plants’ growth, health and productivity. Relationships between VIs and crop grain yield
based on linear regression are widely used because their easy computational implemen-
tation provides a simple and efficient tool for obtaining good predictions within certain
limits. Moreover, although hyperspectral sensors are more used today, they have a high
cost that is not always affordable for medium and small farms (the most diffused in the
Mediterranean area) and provide data that are often redundant [58,59], and which gen-
erally require very high hardware resources and computation times that are not always
compatible with obtaining timely and reliable information, which is crucial in PA.

Concerning the present experiment, if in April better correlations were observed
between VIs and grain yield, in May, a better predictive ability among the different VIs
and wheat varieties was retrieved. Therefore, this evidence confirms that the best period
of wheat survey for yield prediction begins around two months before presumed harvest
time [54,55,60,61] when the yield predictions are stabilised, and the leaves have not started
the ageing process, which alters their reflectivity and makes them unsuitable for providing
information about the status of the plant [62]. The different correlation performances among
the tested wheat varieties confirm, as also observed in VIs responses, their differential
spectral behaviour and responsiveness to yield variations. In particular, as reported by
several authors, not all varieties responded equally to the different VIs and not always to
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both survey times [55,63,64]. Therefore, a careful choice of varieties and VIs is needed for a
proficient application of PA techniques, considering the varieties’ different responses and
the indices’ sensitivities [55,65].

Table 6. Pearson’s correlation coefficients calculated between the grain yield of each wheat cultivar
and its vegetation indices (VIs) response surveyed in May. For each VI in bold, the highest value is
highlighted, while in italics, the lowest value.

Vegetation Indices—May

CVI GNDRE GNDVI MCARI2 MTVI MTVI2 NDRE NDVI OSAVI RDVI RTVI SR SR RE

C
ul

ti
va

rs

Antalis 0.59 0.66 0.73 0.01 0.05 0.04 0.58 0.79 0.02 0.02 0.02 0.10 0.45
Aureo 0.03 0.81 0.22 0.39 0.48 0.45 0.04 0.32 0.46 0.45 0.45 0.08 0.07
Beltorax 0.93 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.99 0.99
Bering 0.76 0.09 0.62 0.12 0.06 0.08 0.84 0.39 0.11 0.12 0.12 0.44 0.87
Brigante 0.99 0.75 0.63 0.97 0.95 0.97 0.02 0.59 0.99 0.99 0.99 0.02 0.21
Claudio 0.38 0.01 0.02 0.03 0.04 0.01 0.03 0.04 0.02 0.01 0.04 0.05 0.03
Diogene 0.52 0.49 0.62 0.26 0.12 0.18 0.79 0.64 0.21 0.24 0.24 0.92 0.84
Federico II 0.99 0.98 0.12 0.34 0.37 0.37 0.24 0.69 0.37 0.38 0.38 0.13 0.34
Fuego 0.02 0.89 0.58 0.45 0.37 0.41 0.33 0.53 0.43 0.42 0.42 0.93 0.33
Furio Camillo 0.85 0.16 0.31 0.58 0.48 0.56 0.76 0.21 0.84 0.89 0.89 0.96 0.97
Incanto 0.27 0.71 0.80 0.15 0.18 0.18 0.73 0.77 0.33 0.34 0.34 0.23 0.21
Iride 0.90 0.68 0.99 0.50 0.48 0.55 0.45 0.96 0.89 0.92 0.92 0.11 0.35
LG Fructis 0.99 0.91 0.88 0.90 0.85 0.88 0.80 0.86 0.92 0.92 0.92 0.80 0.79
Maciste 0.57 0.87 0.64 0.01 0.03 0.02 0.29 0.68 0.18 0.02 0.04 0.02 0.45
Mameli 0.56 0.48 0.64 0.97 0.99 0.98 0.78 0.63 0.92 0.92 0.92 0.65 0.78
Marakas 0.99 0.90 0.99 0.67 0.60 0.65 0.95 0.99 0.77 0.77 0.77 0.98 0.94
Marco Aurelio 0.61 0.56 0.77 0.99 0.99 0.99 0.97 0.75 0.99 0.98 0.98 0.98 0.99
Monastir 0.34 0.10 0.69 0.62 0.58 0.59 0.98 0.97 0.55 0.55 0.55 0.96 0.71
Nuraghe 0.04 0.89 0.99 0.99 0.99 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.93
Panoramix 0.28 0.88 0.78 0.60 0.61 0.62 0.57 0.82 0.67 0.67 0.67 0.71 0.49
RGT Aventadur 0.94 0.57 0.97 0.86 0.81 0.83 0.69 0.97 0.89 0.91 0.91 0.96 0.69
RGT Jasdur 0.01 0.18 0.20 0.16 0.20 0.19 0.17 0.23 0.21 0.22 0.22 0.10 0.15
RGT Natur 0.54 0.35 0.02 0.01 0.02 0.02 0.03 0.05 0.02 0.02 0.02 0.05 0.02
RGT Voltadur 0.33 0.32 0.28 0.96 0.98 0.97 0.28 0.24 0.88 0.89 0.89 0.33 0.31
SY Leonardo 0.02 0.37 0.02 0.17 0.01 0.03 0.02 0.14 0.01 0.02 0.01 0.90 0.02
SY Prodigio 0.08 0.49 0.45 0.99 0.98 0.98 0.33 0.70 0.98 0.99 0.99 0.84 0.23
Tancredi 0.03 0.92 0.35 0.66 0.73 0.72 0.21 0.56 0.72 0.72 0.72 0.49 0.25
Telemaco 0.99 0.97 0.95 0.13 0.48 0.28 0.85 0.97 0.11 0.15 0.15 0.87 0.87
Tito Flavio 0.97 0.66 0.45 0.46 0.42 0.42 0.44 0.35 0.40 0.40 0.40 0.52 0.51
Verace 0.99 0.98 0.92 0.32 0.63 0.58 0.03 0.73 0.45 0.37 0.37 0.96 0.01

Min 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.04 0.01 0.01 0.01 0.02 0.01
Max 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Mean 0.55 0.62 0.59 0.51 0.52 0.52 0.51 0.62 0.54 0.54 0.54 0.57 0.49

Among VIs, globally on all varieties, CVI, GNDVI, NDRE, and SRRE highlighted the
best correlations (R2 > 0.6) in April, while GNDRE and NDVI had the best in May. That is in
disagreement with the experiment conducted by Gonzalez-Dugo et al. [33] that reported a
non-significant correlation between VIs and wheat grain yield in Mediterranean conditions.
In addition, the specific condition of the present experiment, where the in-field variability
was minimised (homogeneity of soil characteristics and equal management system) and a
limited difference in grain yield between plots (~0.6 t ha−1, on average), highlighted a high
sensitivity of responsive indices.

Typically, NDVI correlates with the fraction of photosynthetically active radiation [66]
and its ability to assess plant vigour and yield is widely recognised in wheat
(i.e., [54,56,62,63,67,68]). In our study, its potential to predict yields emerged in May, but not
in April, on a significant number of varieties, highlighting the best performance among all
VIs equal to 0.62. GNDVI is another widely used VI for wheat yield estimation correlated
with chlorophyll content [41]. In our study, GNDVI, across all 30 cultivars, achieved a fairly
good performance of 0.61 in April, while just one month later (May survey), its performance
significantly decreased (for both overall R2 value and number of varieties with R2 > 0.7).
This observation agrees with Yang et al. [69], who observed a better correlation with wheat
biomass at an early survey than at the grain filling stage due to an improved ability of this
index to predict crop water stress. Other good correlations were observed from NDRE,
GNDRE, and SRRE, which use red edge and green bands, permitting good discrimination
among cultivars as well as grain yield productivity estimation, especially at an early survey,
detecting water stress and chlorophyll content in plant tissue thus well-characterising crop



AgriEngineering 2023, 5 2043

canopy status [69,70]. These bands allow an improved assessment of vegetation status
overcoming saturation and showing higher performance, according to Fu et al. [62]. Among
the various VIs tested, the CVI showed good correlation performance in April, being able to
assess the chlorophyll content on the canopy [71], which in turn correlated well with grain
yield. On the contrary, the correlations observed for OSAVI and RDVI were particularly
poor, especially if compared with what has been observed by other authors [55,56].

3.3. Machine Learning (ML) Approaches for Grain Yield Estimation

The validation results, observed in 50% of the 100 repetitions performed of the five
models tested, are presented below in Table 7. In general, all tested models showed a good
predictive ability, evidenced by the observed coefficient of determination never below 0.68.
Among the survey epochs, better performance was observed when models were calibrated
with April’s VIs data. Regardless of the epoch of VIs monitoring (the models’ trend was
the same among them), lower performance was highlighted by NN. In contrast, the best
prediction was achieved by applying the RF model. RF, SVM, and k-NN showed high
performances very close to each other, especially when calibrated with spectral response
data recorded in April. Moreover, analysing the values of RMSE and MAE, a good level of
error was observed for RF, with an RMSE of 0.18 t ha−1 and k-NN (RSME = 0.27 t ha−1),
confirming the goodness of predictions by these two models. In contrast, the predictions of
the NN model were inaccurate (Table 7).

Table 7. Machine learning (ML) algorithms validation performance-related data of the two sur-
vey periods: coefficient of determination (R2), root mean square error (RMSE) and mean absolute
error (MAE).

April May
R2 RMSE MAE R2 RMSE MAE

M
od

el
s

Linear model (LM) 0.82 0.37 0.31 0.82 0.49 0.39
Random forest (RF) 0.88 0.18 0.16 0.84 0.36 0.27
Support Vector Machine (SVM) 0.87 0.35 0.27 0.81 0.40 0.34
K-nearest neighbors (k-NN) 0.86 0.27 0.23 0.85 0.44 0.36
Neural network (NN) 0.71 1.00 1.90 0.68 1.94 1.90

In general, the performance achieved by the different ML approaches was always
higher than Pearson’s correlations between VIs and grain yield, confirming their reliability
on crop yield prediction by capturing non-linear relationships and showing robustness
against spurious data, according to several authors [35,62,67,72–74]. In particular, ML
results across the different models showed R2 values never below 0.68, while the best
Pearson’s correlations R2 values have never exceeded a value of 0.62. Considering that ML
algorithms were validated in a different dataset (different training and validation datasets),
compared to Pearson’s correlations that were tested on the whole dataset, further highlights
the predictive capabilities of this approach. The RF at both survey epochs showed the
best predictive performance in terms of all the statistics calculated (R2, RMSE and MAE),
in accordance with several authors [34,75–77]. Following was the performance of k-NN.
Our results are in accordance with Bebie et al. [78] and Chergui [79], who observed the
best performance by RF and k-NN models for the durum wheat grain yield prediction
cultivated in a Mediterranean environment, and Yue et al. [73] and Zhou et al. [67], who
observed better performance from the RF and SVM models for wheat biomass prediction.

In particular, the potential of RF lies in its structure as an ensemble learning method
where many decision trees are trained, validated and mediated to achieve the best predic-
tion by minimising variance [77]. k-NN uses another approach by finding relationships
between independent variables and the predicted outcome by averaging the observations
in the same neighbourhood [80]. The SVM model is an approach similar to linear regression
where the trained function is a straight line, referred to as a hyperplane, that best fits the
data points while minimising the errors that stand on key points, called support vectors,
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that determine the position and orientation of the hyperplane [81]. Based on the results
achieved in the present study, all three methods have well interpreted the data with a
non-linear correlation by overcoming issues such as data noise (affected by saturation
and or soil reflectance interference), collinearity and overfitting handling numerous input
variables providing good prediction of durum wheat yields across different cultivars. This
can enable more accessible and more direct use of information obtained from drone MS
surveys without needing to select the best indices. Surprisingly, although widely used
in different predictive approaches in agriculture and other sectors, the NN showed the
worst performance, even lower than LM, typically chosen as the reference algorithm. A
similar trend was observed by Wang et al. [82] that highlighted the lower wheat biomass
prediction ability of ANN compared with RF and SVM. This finding can be ascribed to the
power of RF, k-NN and SVM to elaborate a small amount of data instead of the NN model
that works with a large amount of data. In addition, the constructed NN with only three
layers was probably not the best to analyse the many (even affected by collinearity) and
different pieces of information from the VIs. Also, in the case of the ML approaches, using
early VIs data from the April survey provides a better grain yield prediction than the May
survey, as postulated above and according to Fu et al. [62] and Zhu et al. [83].

4. Conclusions

Reliable techniques and methods to discriminate plant reflectance responses and
assess their status and productivity are of fundamental importance for implementing PA.
This approach can be very important to improve crop productivity and sustainability
by enabling reliable estimation of yields to plan storage, sales, and purchases and, thus,
food security. This study aimed to compare the spectral response of thirty durum wheat
varieties and to predict their grain yields based directly on VIs or using different ML
approaches fed with VIs data. In particular, this study involved the largest number of
durum varieties commonly grown in Italy (i.e., thirty), analysing their response at two
different and specific phenological stages. Spectral VIs have allowed us to separate the
tested wheat varieties into groups, and differently if surveyed in April or May. Although
the VIs showed, for most cases, significant differences among the tested varieties, especially
in April, CVI, NDRE, RTVI, and SR showed the most remarkable differences between
the cultivars. The performance of correlations between grain yield and VIs showed a
significant variability among the tested varieties. Correlations were good (R2 > 0.7) for ten
varieties, while lower performances were observed for others. The VIs that best correlated
with grain yield were CVI, GNDVI, MTVI, MTVI2, NDRE, and SRSR. The ML approaches
permitted the improvement of the yield prediction from VIs data, especially when RF
and SVM models were used. For both yield prediction approaches, VIs correlations and
ML, the April survey allowed us to estimate better than the May survey. The present
study involved thirty different cultivars grown in a fairly homogeneous soil with an
unique management system, studied during a single crop cycle and monitored at only
two points in the crop cycle. Results could be affected by many variables, like different
soil properties, management choices, climate conditions, surveying dates and spatial and
spectral resolution of multispectral sensor. Therefore, based on this consideration, further
study should be carried out to include soil and management variability and implementing
different soil types and climate conditions with a more intense UAV monitoring campaign
to fully assess the potentiality of VIs and ML approaches to predict durum wheat grain
yield under different conditions.
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