Effects of Silicon Application on Yield, Spectral Index, and Fall Armyworm (Spodoptera frugiperda) Infestation on Maize (Zea mays) Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments of Si Source Used
2.2. Method for Pest Quantification and Grain Yield
2.3. Principal Component Analysis (PCA)—Remote Sensing Method
2.4. Selection and Calculation of Spectral Indices
2.5. Statistical Design and Analysis of Variance (ANOVA)
3. Results and Discussion
3.1. Incidence of Si on Fall Armyworm (Spodoptera frugiperda) Infestation
3.2. Incidence of Silicon on Grain Yield
3.3. Analysis of Vegetation Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villalobos, E. Fisiología de La Producción de Los Cultivos Tropicales—Procesos Fisiológicos Básicos. Fascículo I, 1st ed.; Editorial Universidad de Costa Rica, Ed.; Editorial Universidad de Costa Rica: San José, Costa Rica, 2001; ISBN 9977-67-676-3. [Google Scholar]
- Galindo, F.S.; Pagliari, P.H.; Rodrigues, W.L.; de Azambuja Pereira, M.R.; Buzetti, S.; Teixeira Filho, M.C.M. Investigation of Azospirillum Brasilense Inoculation and Silicon Application on Corn Yield Responses. J. Soil Sci. Plant Nutr. 2020, 20, 2406–2418. [Google Scholar] [CrossRef]
- Kim, Y.H.; Khan, A.L.; Shinwari, Z.K.; Kim, D.H.; Waqas, M.; Kamran, M.; Lee, I.J. Silicon Treatment to Rice (Oryza sativa L. Cv. ’Gopumbyeo’) Plants during Different Growth Periods and Its Effects on Growth and Grain Yield. Pak. J. Bot. 2012, 44, 891–897. [Google Scholar]
- Liang, Y. Effects of Silicon on Enzyme Activity and Sodium, Potassium and Calcium Concentration in Barley under Salt Stress. Plant Soil 1999, 209, 217–224. [Google Scholar] [CrossRef]
- Rodas, Á.; García, Á.M. Seminario de Campo “Suelo Ecológico, Pasto Verde, Carne Verde, Leche Verde”; Tierra Pastos y Ganado: Medellin, Colombia, 2014. [Google Scholar]
- Gao, X.; Zou, C.; Wang, L.; Zhang, F. Silicon Improves Water Use Efficiency in Maize Plants. J. Plant Nutr. 2004, 27, 1457–1470. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Shaaban, A.; Abd El-Mageed, S.A.; Semida, W.M.; Rady, M.O.A. Silicon Defensive Role in Maize (Zea mays L.) against Drought Stress and Metals-Contaminated Irrigation Water. Silicon 2021, 13, 2165–2176. [Google Scholar] [CrossRef]
- Graham, R.D. Effects of Nutrient Stress on Susceptibility of Plants to Disease with Particular Reference to the Trace Elements. Adv. Bot. Res. 1983, 10, 221–276. [Google Scholar] [CrossRef]
- Menzies, J.G.; Ehret, D.L.; Glass, A.D.M.; Samuels, A.L. The Influence of Silicon on Cytological Interactions between Sphaerotheca Fuliginea and Cucumis Sativus. Physiol. Mol. Plant Pathol. 1991, 39, 403–414. [Google Scholar] [CrossRef]
- Giovanni, J.; Herrera, A.; Constanza, M.; Torres, D.; Forero, C.M. Application of an Enriched Fertilizer with Silicon and Organic Matter in the Yield of Rice (Oryza sativa L.) Sowed in Ibagué and el Guamo (Tolima, Colombia). Rev. Fac. Nac. Agron. Medellín 2008, 61, 4605–4617. [Google Scholar]
- Taylor, P.; Mitsui, S.; Takatoh, H. Nutritional Study of Silicon in Graminaceous Crops (Part 2). Soil Sci. Plant Nutr. 2012, 9, 12–16. [Google Scholar] [CrossRef]
- Borda, O.A.; Barón, F.H.; Gómez, M.I. Silicon as a Beneficial Element in Forage Oat (Avena sativa L.): Physiological Responses of Growth and Management. Agron. Colomb. 2007, 25, 273–279. [Google Scholar]
- Ritchie, S.; Hanway, J.; Benson, G. How a Corn Plant Develops; Iowa State University of Science and Technology: Ames, IA, USA, 1989. [Google Scholar]
- Amado, T.J.C.; Villalba, E.O.H.; Bortolotto, R.P.; Nora, D.D.; Bragagnolo, J.; León, E.A.B. Yield and Nutritional Efficiency of Corn in Response to Rates and Splits of Nitrogen Fertilization. Rev. Ceres 2017, 64, 351–359. [Google Scholar] [CrossRef]
- Da Silva, E.S.; de Mello Prado, R.; Soares, A.d.A.V.L.; de Almeida, H.J.; dos Santos, D.M.M. Response of Corn Seedlings (Zea mays L.) to Different Concentrations of Nitrogen in Absence and Presence of Silicon. Silicon 2021, 13, 813–818. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Tyler, A.N. Estimation of Maize Properties and Differentiating Moisture and Nitrogen Deficiency Stress via Ground-Based Remotely Sensed Data. Agric. Water Manag. 2020, 242, 106413. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A Review of Remote Sensing Applications in Agriculture for Food Security: Crop Growth and Yield, Irrigation, and Crop Losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Li, D.; Li, C.; Yao, Y.; Li, M.; Liu, L. Modern Imaging Techniques in Plant Nutrition Analysis: A Review. Comput. Electron. Agric. 2020, 174, 105459. [Google Scholar] [CrossRef]
- García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.; Vázquez-Peña, M.A. Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and Rgb Images Acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Monsalve Camacho, O.I.; Henao Toro, M.C.; Gutiérrez Díaz, J.S. Characterizing Potential Substrate Materials in Soilless Culture Systems. Cienc. Tecnol. Agropecu. 2021, 22, e1977. [Google Scholar] [CrossRef]
- Patiño, J.E. Emilio Chuvieco, Fundamentals of Satellite Remote Sensing: An Environmental Approach. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 1171–1173. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Alvino, F.C.G.; Aleman, C.C.; Filgueiras, R.; Althoff, D.; Cunha, F.F. Vegetation indices for irrigated corn monitoring. Eng. Agrícola 2020, 44, 322–333. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special Publication; NASA: Washington, DC, USA, 1974; Volume 24.
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Corrales, A.; Acevedo, O.; Vanegas, H.; Polanía, F. Maíz En La Zona Cafetera; Instructivo Técnico; Ministerio de Agricultura, Federación Nacional de Cafeteros de Colombia, Fondo Nacional de Cerealistas: Bogotá, Colombia, 2004.
- Usluntas, T.; Aydın, C.; Kayahan, N. Determination of the Relationship between NDVI and Yield by Using Remote Sensing for Silage Corn in Konya Region. Selcuk J. Agric. Food Sci. 2020, 34, 84–90. [Google Scholar] [CrossRef]
- Shrestha, R.; Di, L.; Yu, E.G.; Kang, L.; Shao, Y.Z.; Bai, Y.Q. Regression Model to Estimate Flood Impact on Corn Yield Using MODIS NDVI and USDA Cropland Data Layer. J. Integr. Agric. 2017, 16, 398–407. [Google Scholar] [CrossRef]
- Venancio, L.P.; Filgueiras, R.; da Cunha, F.F.; dos Santos Silva, F.C.; dos Santos, R.A.; Mantovani, E.C. Mapping of Corn Phenological Stages Using NDVI from OLI and MODIS Sensors. Semin. Cienc. Agrar. 2020, 41, 1517–1534. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bu, H.; Denton, A.; Franzen, D.W. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A. Sensors 2015, 15, 27832–27853. [Google Scholar] [CrossRef] [PubMed]
Index | Equation | Reference |
---|---|---|
NDVI | [24] | |
NDWI | [25] |
Cases | Sum of Squares | df | Mean Square | F | p | η² |
---|---|---|---|---|---|---|
Treatment | 2.301 | 2 | 1.150 | 0.328 | 0.722 | 0.008 |
Residuals | 288.005 | 82 | 3.512 |
F | df1 | df2 | p |
---|---|---|---|
2.507 | 2.000 | 82.000 | 0.088 |
95% CI for Mean Difference | |||||||
---|---|---|---|---|---|---|---|
Mean Difference | Lower | Upper | SE | t | ptukey | ||
Control | Edaphic Si | 23.725 | 1.810 | 45.640 | 9.232 | 2.570 | 0.030 * |
Foliar Si | −11.250 | −33.165 | 10.665 | 9.232 | −1.219 | 0.445 | |
Edaphic Si | Foliar Si | −34.975 | −56.890 | −13.060 | 9.232 | −3.789 | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindo-Gutiérrez, N.F.; Garcés-Gómez, Y.A. Effects of Silicon Application on Yield, Spectral Index, and Fall Armyworm (Spodoptera frugiperda) Infestation on Maize (Zea mays) Crop. AgriEngineering 2023, 5, 2112-2122. https://doi.org/10.3390/agriengineering5040129
Galindo-Gutiérrez NF, Garcés-Gómez YA. Effects of Silicon Application on Yield, Spectral Index, and Fall Armyworm (Spodoptera frugiperda) Infestation on Maize (Zea mays) Crop. AgriEngineering. 2023; 5(4):2112-2122. https://doi.org/10.3390/agriengineering5040129
Chicago/Turabian StyleGalindo-Gutiérrez, Nelson Fernando, and Yeison Alberto Garcés-Gómez. 2023. "Effects of Silicon Application on Yield, Spectral Index, and Fall Armyworm (Spodoptera frugiperda) Infestation on Maize (Zea mays) Crop" AgriEngineering 5, no. 4: 2112-2122. https://doi.org/10.3390/agriengineering5040129
APA StyleGalindo-Gutiérrez, N. F., & Garcés-Gómez, Y. A. (2023). Effects of Silicon Application on Yield, Spectral Index, and Fall Armyworm (Spodoptera frugiperda) Infestation on Maize (Zea mays) Crop. AgriEngineering, 5(4), 2112-2122. https://doi.org/10.3390/agriengineering5040129