Remote Sensing and Kriging with External Drift to Improve Sparse Proximal Soil Sensing Data and Define Management Zones in Precision Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Proximal Soil Sensor Data Preparation
2.3. Remote Sensor Data Preparation
2.4. Selection of Remote Sensing Covariates
2.5. Mapping via Ordinary Kriging and Kriging with External Drift
2.5.1. Proximal Soil Sensing Mapped via Ordinary Kriging
2.5.2. Predicting and Mapping Proximal Soil Sensing Data via Kriging with External Drift
2.6. Management Zones
2.7. Soil Laboratory Data Sampling as Field Truth
2.8. Management Zone Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baudron, F.; Giller, K.E. Agriculture and nature: Trouble and strife? Biol. Conserv. 2014, 170, 232–245. [Google Scholar] [CrossRef]
- Boardman, J.; Poesen, J.; Evans, R. Socio-economic factors in soil erosion and conservation. Environ. Sci. Policy 2003, 6, 1–6. [Google Scholar] [CrossRef]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A. Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Peralta, N.R.; Costa, J.L.; Balzarini, M.; Franco, M.C.; Córdoba, M.; Bullock, D. Delineation of management zones to improve nitrogen management of wheat. Comput. Electron. Agric. 2015, 110, 103–113. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Walter, A.; Liebisch, F.; Umstätter, C. Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precis. Agric. 2020, 21, 1327–1350. [Google Scholar] [CrossRef]
- Hedley, C. The role of precision agriculture for improved nutrient management on farms. J. Sci. Food Agric. 2015, 95, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Demattê, J.A.M.; Alves, E.R.; Barbosa, R.N.; Morelli, J.L. Precision agriculture for sugarcane management: A strategy applied for brazilian conditions. Acta Sci. Agron. 2014, 36, 111. [Google Scholar] [CrossRef]
- Molin, J.P.; Tavares, T.R. Sensor systems for mapping soil fertility attributes: Challenges, advances, and perspectives in Brazilian tropical soils. Eng. Agrícola 2019, 39, 126–147. [Google Scholar] [CrossRef]
- Stafford, J.V. Implementing Precision Agriculture in the 21st Century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef]
- Sparovek, G.; Schnug, E. Soil tillage and precision agriculture: A theoretical case study for soil erosion control in Brazilian sugar cane production. Soil Tillage Res. 2001, 61, 47–54. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Bahat, I.; Peeters, A.; Shtein, A.; Netzer, Y.; Cohen, Y.; Ben-Gal, A. A weighted multivariate spatial clustering model to determine irrigation management zones. Comput. Electron. Agric. 2019, 162, 719–731. [Google Scholar] [CrossRef]
- Fleming, K.L.; Westfall, D.G.; Wiens, D.W.; Brodahl, M.C. Evaluating Farmer Defined Management Zone Maps for Variable Rate Fertilizer Application. Precis. Agric. 2000, 2, 201–215. [Google Scholar] [CrossRef]
- Doerge, T.A. Site-Specific Management Guidelines; Potash & Phosphate Institute: Norcross, GA, USA, 1999. [Google Scholar]
- Viscarra Rossel, R.A.; Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 2016, 148, 71–74. [Google Scholar] [CrossRef]
- Vasques, G.M.; Rodrigues, H.M.; Coelho, M.R.; Baca, J.F.M.; Dart, R.O.; Oliveira, R.P.; Teixeira, W.G.; Ceddia, M.B. Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps. Soil Syst. 2020, 4, 52. [Google Scholar] [CrossRef]
- Mahmood, H.S.; Hoogmoed, W.B.; Van Henten, E.J. Combined sensor system for mapping soil properties. In Precision Agriculture ’09; van Henten, E.J., Goense, D., Lokhorst, C., Eds.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2009; p. 992. [Google Scholar]
- Mahmood, H.S.; Hoogmoed, W.B.; Van Henten, E.J. Estimating soil properties with a proximal gamma-ray spectrometer using windows and full-spectrum analysis methods. In The Second Global Workshop on Proximal Soil Sensing; McGill University: Montreal, QC, Canada, 2011; p. 4. [Google Scholar]
- Fraisse, C.W.; Sudduth, K.A.; Kitchen, N.R. Delineation of Site-Specific Management Zones by Unsupervised Classification of Topographic Attributes and Soil Electrical Conductivity. Trans. ASAE 2001, 44, 155–166. [Google Scholar] [CrossRef]
- McBratney, A.; Minasny, B. On measuring pedodiversity. Geoderma 2007, 141, 149–154. [Google Scholar] [CrossRef]
- De Benedetto, D.; Castrignanò, A.; Rinaldi, M.; Ruggieri, S.; Santoro, F.; Figorito, B.; Gualano, S.; Diacono, M.; Tamborrino, R. An approach for delineating homogeneous zones by using multi-sensor data. Geoderma 2013, 199, 117–127. [Google Scholar] [CrossRef]
- Shaddad, S.M.; Madrau, S.; Castrignanò, A.; Mouazen, A.M. Data fusion techniques for delineation of site-specific management zones in a field in UK. Precis. Agric. 2016, 17, 200–217. [Google Scholar] [CrossRef]
- Rodrigues, H.M.; Vasques, G.M.; Oliveira, R.P.; Tavares, S.R.; Ceddia, M.B.; Hernani, L.C. Finding suitable transect spacing and sampling designs for accurate soil ECa mapping from EM38-MK2. Soil Syst. 2020, 4, 19. [Google Scholar] [CrossRef]
- Horney, R.D.; Taylor, B.; Munk, D.S.; Roberts, B.A.; Lesch, S.M.; Plant, R.E. Development of practical site-specific management methods for reclaiming salt-affected soil. Comput. Electron. Agric. 2005, 46, 379–397. [Google Scholar] [CrossRef]
- Nouri, H.; Borujeni, S.C.; Alaghmand, S.; Anderson, S.J.; Sutton, P.C.; Parvazian, S.; Beecham, S. Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands. Sustainability 2018, 10, 2826. [Google Scholar] [CrossRef]
- Huang, J.; Subasinghe, R.; Malik, R.; Triantafilis, J. Salinity hazard and risk mapping of point source salinisation using proximally sensed electromagnetic instruments. Comput. Electron. Agric. 2015, 113, 213–224. [Google Scholar] [CrossRef]
- Triantafilis, J.; Lesch, S. Mapping clay content variation using electromagnetic induction techniques. Comput. Electron. Agric. 2005, 46, 203–237. [Google Scholar] [CrossRef]
- Sudduth, K.; Kitchen, N.; Wiebold, W.; Batchelor, W.; Bollero, G.; Bullock, D.; Clay, D.; Palm, H.; Pierce, F.; Schuler, R.; et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Becegato, V.A.; Ferreira, F.J.F. Gamaespectrometria, resistividade elétrica e susceptibilidade magnética de solos agrícolas no noroeste do estado do Paraná. Rev. Bras. Geofis. 2005, 23, 371–405. [Google Scholar] [CrossRef]
- Loonstra, E.; van Egmond, F. On-the-go measurement of soil gamma radiation. In Precision Agriculture, Proceedings of the 7th European Conference on Precision Agriculture, Wageningen, The Netherlands, 6–8 July 2009; van Henten, E.J., Goense, D., Lokhorst, C., Eds.; Wageningen Academic: Wageningen, The Netherlands, 2009. [Google Scholar]
- Taylor, M.J.; Smettem, K.; Pracilio, G.; Verboom, W. Relationships between Soil Properties and High-Resolution Radiometrics, Central Eastern Wheatbelt, Western Australia. Explor. Geophys. 2002, 33, 95–102. [Google Scholar] [CrossRef]
- Holland, J.; Biswas, A.; Huang, J.; Triantafilis, J. Scoping for scale-dependent relationships between proximal gamma radiometrics and soil properties. Catena 2017, 154, 40–49. [Google Scholar] [CrossRef]
- Ji, W.; Adamchuk, V.I.; Chen, S.; Su, A.S.M.; Ismail, A.; Gan, Q.; Shi, Z.; Biswas, A. Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study. Geoderma 2019, 341, 111–128. [Google Scholar] [CrossRef]
- Pelegrino, M.H.P.; Weindorf, D.C.; Silva, S.H.G.; de Menezes, M.D.; Poggere, G.C.; Guilherme, L.R.G.; Curi, N. Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils. Precis. Agric. 2018, 20, 746–766. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E.; Meyer, H.; van der Linden, S. Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 88–102. [Google Scholar] [CrossRef]
- Landrum, C.; Castrignanò, A.; Mueller, T.; Zourarakis, D.; Zhu, J.; De Benedetto, D. An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics. Agric. Water Manag. 2015, 147, 144–153. [Google Scholar] [CrossRef]
- Rossel, R.V.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal soil sensing. In An Effective Approach for Soil Measurements in Space and Time; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- de Queiroz, D.M.; de Freitas Coelho, A.L.; Valente, D.S.M.; Schueller, J.K. Sensors Applied to Digital Agriculture: A Review. Rev. Ciência Agronômica 2020, 51, 1–15. [Google Scholar] [CrossRef]
- Dalmolin, R.S.D.; Gonçalves, C.N.; Klamt, E.; Dick, D.P. Relação entre os constituintes do solo e seu comportamento espectral. Ciência Rural 2005, 35, 481–489. [Google Scholar] [CrossRef]
- Vasques, G.M.; Demattê, J.A.M.; Rossel, R.A.V.; López, L.R.; Terra, F.S.; Rizzo, R.; Filho, C.R.D.S. Integrating geospatial and multi-depth laboratory spectral data for mapping soil classes in a geologically complex area in southeastern Brazil. Eur. J. Soil Sci. 2015, 66, 767–779. [Google Scholar] [CrossRef]
- Rodrigues, F.; Bramley, R.; Gobbett, D. Proximal soil sensing for Precision Agriculture: Simultaneous use of electromagnetic induction and gamma radiometrics in contrasting soils. Geoderma 2015, 243–244, 183–195. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Mouazen, A.M.; Alexandridis, T.; Kuang, B. Data Fusion of Proximal Soil Sensing and Remote Crop Sensing for the Delineation of Management Zones in Arable Crop Precision Farming. In Proceedings of the 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, Kavala, Greece, 17–20 September 2015; pp. 765–776. [Google Scholar]
- Li, Y.; Shi, Z.; Wu, C.-F.; Li, H.-Y.; Li, F. Determination of potential management zones from soil electrical conductivity, yield and crop data. J. Zhejiang Univ. B 2008, 9, 68–76. [Google Scholar] [CrossRef]
- FAO. World reference base for soil resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gómez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. Available online: https://dplyr.tidyverse.org (accessed on 19 April 2023).
- Meyer, H.; Reudenbach, C.; Wöllauer, S.; Nauss, T. Importance of spatial predictor variable selection in machine learning applications—Moving from data reproduction to spatial prediction. Ecol. Model. 2019, 411, 108815. [Google Scholar] [CrossRef]
- Brenning, A.; Bangs, D.; Becker, M. RSAGA: SAGA Geoprocessing and Terrain Analysis. R Package Version 1.4.0. 2022. Available online: https://CRAN.R-project.org/package=RSAGA (accessed on 22 April 2023).
- Hijmans, R. raster: Geographic Data Analysis and Modeling. R Package Version 3.6-26. 2023. Available online: https://CRAN.R-project.org/package=raster (accessed on 22 April 2023).
- Lumley, T. leaps: Regression Subset Selection. R Package Version 3.1. 2020. Available online: https://CRAN.R-project.org/package=leaps (accessed on 13 May 2023).
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1986, 6, 461–464. [Google Scholar] [CrossRef]
- da Silva, N.C.; Santos, R.C.; Zucca, R.; Geisenhoff, L.O.; Cesca, R.S.; Lovatto, J. Enthalpy Thematic Map Interpolated with Spline Method for Management of Broiler Chicken Production. Rev. Bras. Eng. Agric. Ambient. 2020, 24, 431–436. [Google Scholar] [CrossRef]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geoestatistics: An Introduction with Applications, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2003; ISBN 9783662052945. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA; The Atrium: Chichester, UK, 2007. [Google Scholar]
- Diggle, P.J.; Ribeiro, P.J., Jr. Model-Based Geostatistics; Springer Science+Business Media, LLC: New York, NY, USA, 2007; ISBN 9780387329079. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means Clustering Algorithm. J. R. Stat. Soc. Ser. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Walvoort, D.J.J.; Brus, D.J.; de Gruijter, J.J. spcosa: Spatial Coverage Sampling and Random Sampling from Compact Geographical Strata. Volume 28. 2023. Available online: https://CRAN.R-project.org/package=spcosa (accessed on 13 May 2023).
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- DeCarlo, L.T. On the meaning and use kurtosis. Psychol. Methods 1997, 2, 292–307. [Google Scholar] [CrossRef]
- Castrignanò, A.; Wong, M.; Stelluti, M.; De Benedetto, D.; Sollitto, D. Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma 2012, 175–176, 78–89. [Google Scholar] [CrossRef]
- Wong, M.T.F.; Oliver, Y.; Robertson, M.J. Gamma-Radiometric Assessment of Soil Depth across a Landscape Not Measurable Using Electromagnetic Surveys. Soil Sci. Soc. Am. J. 2009, 73, 1261–1267. [Google Scholar] [CrossRef]
- Fulton, A.; Schwankl, L.; Lynn, K.; Lampinen, B.; Edstrom, J.; Prichard, T. Using EM and VERIS technology to assess land suitability for orchard and vineyard development. Irrig. Sci. 2011, 29, 497–512. [Google Scholar] [CrossRef]
- Islam, M.M.; Saey, T.; Meerschman, E.; De Smedt, P.; Meeuws, F.; Van De Vijver, E.; Van Meirvenne, M. Delineating water management zones in a paddy rice field using a Floating Soil Sensing System. Agric. Water Manag. 2011, 102, 8–12. [Google Scholar] [CrossRef]
- Wilford, J. A weathering intensity index for the Australian continent using airborne gamma-ray spectrometry and digital terrain analysis. Geoderma 2012, 183–184, 124–142. [Google Scholar] [CrossRef]
- Van Meirvenne, M.; Islam, M.M.; De Smedt, P.; Meerschman, E.; Van De Vijver, E.; Saey, T. Key variables for the identification of soil management classes in the aeolian landscapes of north–west Europe. Geoderma 2013, 199, 99–105. [Google Scholar] [CrossRef]
- De Benedetto, D.; Castrignano, A.; Diacono, M.; Rinaldi, M.; Ruggieri, S.; Tamborrino, R. Field partition by proximal and remote sensing data fusion. Biosyst. Eng. 2013, 114, 372–383. [Google Scholar] [CrossRef]
Resolution | Satellite | Band | Wavelength | Abbreviation | Variables |
---|---|---|---|---|---|
15 m | Terra-1 | VNIR | 0.52–0.60 | ast_B1 | Aster |
0.63–0.69 | ast_B2 | ||||
0.78–0.86 | ast_B3N | ||||
10 m | ESA | Blue | 0.44–0.53 | sent_year_B2 | Sentinel 2 |
Green | 0.54–0.58 | sent_year_B3 | |||
Red | 0.65–0.69 | sent_year_B4 | |||
NIR | 0.77–0.91 | sent_year_B8 | |||
20 m | VRE | 0.69–0.71 | sent_year_B5 | ||
0.73–0.75 | sent_year_B6 | ||||
0.77–0.80 | sent_year_B7 | ||||
NIR | 0.85–0.88 | sent_year_B8A | |||
SWIR | 1.34–1.41 | sent_year_B11 | |||
2.07–2.31 | sent_year_B12 | ||||
30 m | NASA | C/A | 0.43–0.45 | land_year_B1 | Landsat 8 |
Blue | 0.45–0.51 | land_year_B2 | |||
Green | 0.53–0.59 | land_year_B3 | |||
Red | 0.64–0.67 | land_year_B4 | |||
NIR | 0.85–0.88 | land_year_B5 | |||
SWIR | 1.57–1.65 | land_year_B6 | |||
2.11–2.29 | land_year_B7 | ||||
TIRS | 10.60–11.19 | land_year_B10 | |||
11.50–12.51 | land_year_B11 | ||||
Resolution | Reference | Type | Abbreviation | Variables | |
12.5 m | Calculated from DEM | Quantitative | aspect | Aspect | |
DEM | Elevation (m) | ||||
slope | Slope (%) | ||||
plan_curv | Curvature plan | ||||
prof_curv | Curvature depth | ||||
convergence | Convergence | ||||
twi | Topographic Wetness index | ||||
ls_fator | Length-slope factor | ||||
rsp | Relative slope Position | ||||
chnd | Channel network distance | ||||
chnb | Channel network base level |
Kurtosis | Skewness | Std. Deviation | Variance | Median | Mean | Max. | Min. | N. Obs. | |
---|---|---|---|---|---|---|---|---|---|
aEC (mS/m) | |||||||||
0.22 | 0.68 | 3.39 | 11.49 | 9.3 | 9.58 | 26.25 | 2.62 | 3906 | Training |
0.92 | 0.78 | 3.35 | 11.2 | 9.53 | 9.62 | 25.31 | 3.63 | 400 | Validation |
aMS (ppt) | |||||||||
−0.80 | −0.06 | 0.65 | 0.42 | 2.24 | 2.27 | 3.88 | 0.44 | 3906 | Training |
−0.58 | −0.03 | 0.64 | 0.41 | 2.19 | 2.25 | 3.81 | 0.5 | 400 | Validation |
eTh (ppm) | |||||||||
−0.03 | 0.11 | 3.03 | 9.16 | 15.94 | 16 | 27.81 | 6.08 | 4496 | Training |
−0.04 | 0.21 | 3.24 | 10.47 | 15.78 | 15.97 | 26.17 | 7.02 | 400 | Validation |
eU (ppm) | |||||||||
0.06 | 0.09 | 1.21 | 1.46 | 3.12 | 3.14 | 7.26 | −0.99 | 4496 | Training |
0.13 | 0.25 | 1.23 | 1.52 | 3.03 | 3.1 | 7.72 | 0.08 | 400 | Validation |
Laboratory dataset | |||||||||
1.42 | −1.20 | 45.28 | 2050.7 | 420 | 413.33 | 500 | 280 | 72 | Clay (g kg−1) |
−0.34 | 0.26 | 0.88 | 0.77 | 6.25 | 6.31 | 8.5 | 4.6 | 72 | Ca (g kg−1) |
−0.50 | 0.28 | 1.66 | 2.74 | 14.8 | 15 | 19.15 | 10.99 | 72 | C (g kg−1) |
−0.33 | 0.24 | 0.28 | 0.08 | 1.9 | 1.93 | 2.6 | 1.4 | 72 | Mg (g kg−1) |
eU (ppm) | eTh (ppm) | aMS (ppt) | log(aEC) (mS/m) | |||||
---|---|---|---|---|---|---|---|---|
Conf. Int (95%) | Estimates | Conf. Int (95%) | Estimates | Conf. Int (95%) | Estimates | Conf. Int (95%) | Estimates | Coefficient |
−19.43–−4.22 | −11.83 | −48.95–−7.80 | −28.37 | −38.65–−33.89 | −36.27 | 19.23–21.62 | 20.42 | (Intercept) |
0.01–0.02 | 0.01 | aspect | ||||||
0.01–0.00 | 0 | ast_B1 | ||||||
0.00–0.00 | 0 | land_2018_B3 | ||||||
0.00–0.00 | 0 | 0.00–0.00 | 0 | land_2018_B5 | ||||
0.00–0.00 | 0 | land_2018_B10 | ||||||
0.00–0.00 | 0 | land_2019_B3 | ||||||
0.00–0.00 | 0 | sent_2018_B8A | ||||||
−0.00–−0.00 | 0 | −0.01–−0.01 | −0.01 | −0.00–−0.00 | 0 | 0.00–0.00 | 0 | sent_2018_B12 |
−0.00–−0.00 | 0 | 0.00–0.00 | 0 | sent_2019_B2 | ||||
−0.00–−0.00 | 0 | 0.00–0.00 | 0 | sent_2019_B3 | ||||
0.00–0.00 | 0 | sent_2019_B8A | ||||||
−0.34–−0.15 | −0.24 | −0.03–−0.01 | −0.02 | −0.02–−0.02 | −0.02 | chnb | ||
0.01–0.03 | 0.02 | 0.23–0.44 | 0.33 | 0.08–0.11 | 0.09 | DEM | ||
−21.62–−9.64 | −15.63 | plan_curv | ||||||
0.00–0.02 | 0.01 | twi | ||||||
−0.94–−0.35 | −0.65 | −8.03–−4.82 | −6.42 | −1.36–−1.00 | −1.18 | rsp | ||
−0.01–−0.00 | 0 | ast_B3N | ||||||
0.00–0.00 | 0 | 0.00–0.00 | 0 | land_2018_B7 | ||||
0.00–0.00 | 0 | −0.00–−0.00 | 0 | land_2019_B5 | ||||
−0.00–−0.00 | 0 | land_2019_B7 | ||||||
0.00–0.00 | 0 | 0.00–0.01 | 0.01 | −0.00–−0.00 | 0 | sent_2018_B2 | ||
0.00–0.00 | 0 | sent_2018_B4 | ||||||
0.00–0.01 | 0.01 | 0.00–0.00 | 0 | sent_2019_B11 | ||||
−0.00–−0.00 | 0 | land_2019_B2 | ||||||
0.00–0.00 | 0 | sent_2019_B4 | ||||||
4496 | 4496 | 3906 | 3906 | Observations | ||||
0.11/0.11 | 0.20/0.20 | 0.81/0.81 | 0.78/0.78 | R2/adjusted R2 |
Range (m) | Nugget/Sill (%) | Sill | Partial Sill | Nugget | Model | Method |
---|---|---|---|---|---|---|
aEC (mS/m) | ||||||
163.33 | 34.03 | 2.13 | 1.4 | 0.72 | Spherical | KED |
500.31 | 0.96 | 0.15 | 0.15 | 0 | OK (log format) | |
aMS (ppt) | ||||||
152.77 | 16.78 | 0.08 | 0.07 | 0.01 | Spherical | KED |
495.37 | 1.93 | 0.52 | 0.51 | 0.01 | OK | |
eTh (ppm) | ||||||
668.18 | 64.44 | 10.39 | 3.7 | 6.69 | Spherical | OK |
eU (ppm) | ||||||
443.37 | 79.27 | 1.62 | 0.34 | 1.29 | Gaussian | OK |
eU (ppm) | eTh (ppm) | aMS (ppt) | aEC (mS/m) | Mg (g kg−1) | C (g kg−1) | Ca (g kg−1) | Clay (g kg−1) | |
---|---|---|---|---|---|---|---|---|
0.46 ** | 0.50 ** | 0.28 * | −0.17 | 0.25 * | 0.28 * | 0.19 | 1 | Clay (g kg−1) |
0.43 ** | 0.42 ** | 0.28 * | −0.15 | 0.60 ** | 0.75 ** | 1 | Ca (g kg−1) | |
0.57 ** | 0.65 ** | 0.48 ** | −0.42 ** | 0.58 ** | 1 | C (g kg−1) | ||
0.39 ** | 0.44 ** | 0.32 ** | −0.24 * | 1 | Mg (g kg−1) | |||
−0.28 * | −0.68 ** | −0.93 ** | 1 | aEC (mS/m) | ||||
0.45 ** | 0.79 ** | 1 | aMS (ppt) | |||||
0.76 ** | 1 | eTh (ppm) | ||||||
1 | eU (ppm) |
RMSE | Method | Attribute |
---|---|---|
0.56 | OK | aEC (mS/m) |
0.62 | KED | |
0.09 | OK | aMS (ppt) |
0.09 | KED | |
2.8 | OK | eTh (ppm) |
1.18 | OK | eU (ppm) |
F | Mean Sq | Sum Sq | DF | MZ |
---|---|---|---|---|
Clay (g kg−1) | ||||
0.001 *** | 13,743 | 27,486 | 2 | PSS |
0.001 *** | 13,743 | 27,486 | 2 | PSS and RS |
0.001 *** | 14,180 | 28,361 | 2 | RS |
Ca (g kg−1) | ||||
0.003 ** | 4.12 | 8.24 | 2 | PSS |
0.003 ** | 4.12 | 8.24 | 2 | PSS and RS |
0.03 * | 2.64 | 5.29 | 2 | RS |
C (g kg−1) | ||||
3.9 × 10−7 *** | 33.88 | 67.77 | 2 | PSS |
3.9 × 10−7 *** | 33.88 | 67.77 | 2 | PSS and RS |
6.2 × 10−4 *** | 18.75 | 37.5 | 2 | RS |
Mg (g kg−1) | ||||
0.001 ** | 0.49 | 0.98 | 2 | PSS |
0.001 ** | 0.49 | 0.98 | 2 | PSS and RS |
0.012 * | 0.33 | 0.66 | 2 | RS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, H.; Ceddia, M.B.; Vasques, G.M.; Mulder, V.L.; Heuvelink, G.B.M.; Oliveira, R.P.; Brandão, Z.N.; Morais, J.P.S.; Neves, M.L.; Tavares, S.R.L. Remote Sensing and Kriging with External Drift to Improve Sparse Proximal Soil Sensing Data and Define Management Zones in Precision Agriculture. AgriEngineering 2023, 5, 2326-2348. https://doi.org/10.3390/agriengineering5040143
Rodrigues H, Ceddia MB, Vasques GM, Mulder VL, Heuvelink GBM, Oliveira RP, Brandão ZN, Morais JPS, Neves ML, Tavares SRL. Remote Sensing and Kriging with External Drift to Improve Sparse Proximal Soil Sensing Data and Define Management Zones in Precision Agriculture. AgriEngineering. 2023; 5(4):2326-2348. https://doi.org/10.3390/agriengineering5040143
Chicago/Turabian StyleRodrigues, Hugo, Marcos B. Ceddia, Gustavo M. Vasques, Vera L. Mulder, Gerard B. M. Heuvelink, Ronaldo P. Oliveira, Ziany N. Brandão, João P. S. Morais, Matheus L. Neves, and Sílvio R. L. Tavares. 2023. "Remote Sensing and Kriging with External Drift to Improve Sparse Proximal Soil Sensing Data and Define Management Zones in Precision Agriculture" AgriEngineering 5, no. 4: 2326-2348. https://doi.org/10.3390/agriengineering5040143
APA StyleRodrigues, H., Ceddia, M. B., Vasques, G. M., Mulder, V. L., Heuvelink, G. B. M., Oliveira, R. P., Brandão, Z. N., Morais, J. P. S., Neves, M. L., & Tavares, S. R. L. (2023). Remote Sensing and Kriging with External Drift to Improve Sparse Proximal Soil Sensing Data and Define Management Zones in Precision Agriculture. AgriEngineering, 5(4), 2326-2348. https://doi.org/10.3390/agriengineering5040143