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Abstract: The production of Explorer roses has historically been attractive due to the acceptance of
the product around the world. This species of roses presents high sensitivity to physical contact and
manipulation, creating a challenge to keep the final product quality after cultivation. In this work, we
present a system that combines the capabilities of intelligent computer vision and unmanned aerial
vehicles (UAVs) to identify the state of roses ready for cultivation. The system uses a deep learning-
based approach to estimate Explorer rose crop yields by identifying open and closed rosebuds in
the field using videos captured by UAVs. The methodology employs YOLO version 5, along with
DeepSORT algorithms and a Kalman filter, to enhance counting precision. The evaluation of the
system gave a mean average precision (mAP) of 94.1% on the test dataset, and the rosebud counting
results obtained through this technique exhibited a strong correlation (R2 = 0.998) with manual
counting. This high accuracy allows one to minimize the manipulation and times used for the
tracking and cultivation process.

Keywords: DeepSORT; Explorer rose; YOLOv5; UAVs

1. Introduction

Precision farming has experienced significant progress thanks to the incorporation of
technology, especially through the utilization of robotics and artificial intelligence. Ever
since the inception of industrial robots, there has been a noticeable surge of interest within
the agricultural industry, resulting in swift advancements and implementations across
diverse agricultural contexts [1]. The floriculture industry, particularly in the cultivation
of specialized varieties like Explorer roses, has felt the profound effects of technological
advancements. This is largely driven by the continuously growing demand for premium-
quality flowers [2]. One crucial aspect in the assessment of flower quality is the vase life of
roses. Achieving optimal vase life requires roses to be grown in ideal conditions, which
in turn has created a pressing need for expedited processes from harvest to delivery to
the end consumer [3]. To confront these challenges head-on, the industry has embraced
automated systems incorporating mechatronics and automatic control technologies. These
systems play a pivotal role in the classification of roses, streamlining the production process
and reducing the time-to-market. By leveraging automation, floriculture businesses can
better uphold product quality standards while efficiently meeting the demands of the
market [4,5].

Drone technology, especially lightweight UAVs (5 to 50 kg), has propelled agriculture
forward by enhancing precision and efficiency in crop management compared with similar
remote sensing platforms such as satellites, manned aircraft, or ground-based platforms [6].
Equipped with multispectral cameras, drones can capture detailed images of different sizes
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and color targets (tomatoes, palm trees, grapes, apples, citrus, and vegetables) [7], providing
a depth of information on crop health and needs that was previously unattainable due to
manual monitoring times [8]. The drone technology, along with machine vision algorithms,
has been utilized in floriculture to gather information from an aerial perspective, especially
in large crops, aiding farmers and growers in improving the efficiency and profitability
of their operations through the image processing for early detection of events [6]. The
application of artificial intelligence (AI) and computer vision in agriculture has demon-
strated effectiveness for the real-time identification of objects within images and videos,
particularly for perishable products like flowers, where AI-driven autonomous greenhouses
can lead to increased yields and enhanced control over production [9]. Computer vision
allows the monitoring of plant growth and detection of any adverse effects at an early stage,
thus leading to optimized agricultural resource use and higher yields [10–12].

Deep convolutional neural networks (CNNs) have been used for image segmentation
and classification, addressing environmental variability challenges and improving accuracy
in applications such as disease detection and floral identification, and has obtained an
average accuracy of over 90% [7–13]. The convergence of UAVs with CNNs and detection
techniques like YOLO holds the promise of significant improvements in capturing essential
information for production and greenhouse efficiency, which can translate to increased
profitability and sustainability in the agricultural industry [14,15]. By employing deep
learning algorithms, rose growers can classify rosebuds more accurately by their maturity
and quality, leading to a substantial impact on production efficiency and business prof-
itability [16]. Notable works such as those by [10,14,17,18] have demonstrated innovative
and effective approaches to employing machine learning and image processing techniques
within the agricultural industry. These techniques have proven capable of enhancing
crop detection, accurate monitoring, and thereby offering a more effective alternative to
traditional methods.

The purpose of demonstrating the usability of a combination of UAVs and image
classification is to estimate the state of Explorer roses. In this work, we implemented an
intelligent computer vision system to count the open and closed rosebuds in a greenhouse.
We provided a work sequence based on an image acquisition process, a dataset retrieval
method, and the development of the rose detection model. For the identification of roses,
we developed a methodology based on three detection areas for roses: tracking, counting
based on the crossline method, and models training.

2. Materials and Methods

A four-stage sequence was defined to develop this work (Figure 1). The data ac-
quisition stage included the implementation of a DJI Mini SE drone with its integrated
camera, telemetry sensors, remote control, and data acquisition from the state of roses
by high-resolution video. The data transmission stage oversaw interconnecting the video
information captured by the drone in the previous stage through streaming. For this
purpose, the connection of the remote control with the drone was used by the Real Time
Messaging Protocol (RTMP) for MonaServer v2.723, VideoLAN Client (VLC) v3.0.18 Veti-
nari, and Open Broadcaster Software (OBS) v29.1.3 (64 bit). This stage was focused on
ensuring real-time data transmission, which allows discriminating between closed and
open roses with the drone’s point of view and labeling them accurately with experience,
differentiating the cutting status by the field staff. The stage of data processing included
the data analysis, the selection of models, and image processing to give results about the
count and the rosebuds. For the presentation stage, the results of the state of rosebuds were
displayed with the percentage of confidence and individual results for each bed. In this
stage, we used Visual Studio Version 1.84 and Python 3.10 to create the output window
with a monitoring interface.
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Figure 1. General scheme of methodology sequence for data acquisition, transmission, data process-
ing, and the presentation of results.

2.1. Data Acquisition and Transmission Stage
2.1.1. System Implementation and Conditions

The system was implemented by using a drone with an integrated high-resolution
camera capable of capturing videos at 30 frames per second. Due to an 83-degree field
of view (FOV), the camera allows to cover two blocks of roses. To ensure stable imaging,
the camera unit was mounted on a 3-axis stabilizer to minimize unwanted vibrations
during data collection. Visual data, including images and videos, was collected from
several Explorer rose crops, following the standard schedule for manually monitoring
roses: morning time. Table 1 shows the parameters of the detection system and conditions
in the greenhouse.

Table 1. Parameters and condition for the detection system and for the greenhouse, respectively.

Parameters Values

Drone DJI Mavic Mini SE
Camera 1/2.3-inch CMOS sensor, 12Mpixels, high resolution

Camera field of view (FOV) 83 degrees and an aperture of f/2.8 with autofocus
Data acquisition 2.7 K videos at 30 frames per second

Schedule task of image acquisition 8:00 AM to 12:00 PM

Greenhouse temperature 5.3 ◦C to 36.1 ◦C
Greenhouse relative humidity 27.5% to 96.8%

Greenhouse dew point 4.6 ◦C to 25 ◦C
Vapor Pressure Deficit (VPD) 0.03 kPa to 4.23 kPa

The image acquisition process was established to perform in a closed greenhouse;
Figure 2 depicts a typical arrangement of an Explorer rose block, considering the space
between the rosebuds and the greenhouse top. The dotted area in Figure 2 represents the
camera’s field of view during the UAV’s flight, ensuring precise image capture for further
analysis. The path of detection was established under the same conditions for manual
tracking for comparison purposes.
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Figure 2. Flight path of the UAV for image acquisition implemented strategy to cover the rose blocks.

2.1.2. Dataset Retrieval Method

The experimenter guided the UAV slowly between the rose beds at a speed of 0.5 m/s
and the camera tilted to 90◦ downward. The capture distance was 30 to 50 cm from
the rosebuds to the camera. Table 2 shows the parameters and conditions used for the
experiment. One image for every 10 frames of video was extracted, and the rosebuds
were labeled with LabelImg. Images with dimensions of 960 × 608 pixels were randomly
cropped to facilitate rapid training. A total of 39,250 open rosebuds and 35,875 closed
rosebuds were labeled across 3750 images. Then, the labeled images were divided to form
a dataset consisting of 60%, 20%, and 20% for training, validation, and testing, respectively.

Table 2. Dataset overview.

Items Values

Number of videos taken 42
Length travelled by drone in each video (meters) 33.9213

Bed width (meters) 0.7
Plants per bed 388

Approximate duration of each video 1 min
Video resolution (pixels) 2704 × 1520

Images registered 1250
Images extracted from video 2500

Image resolution (pixels) 960 × 608
Training dataset 60%

Validation dataset 20%
Test dataset 20%

Average number of open rosebuds per image 10.2
Average number of lose rosebuds per image 9.3

2.1.3. Roses Detection Model

We employed the YOLO model for object detection, a single-stage model known for
its computational efficiency. YOLOv5, in particular, has gained widespread adoption in
agricultural settings due to its reliability in detecting objects [14]. Unlike previous iterations
like sD, YOLOv3, YOLOv4, RetinaNet, and others, YOLOv5 diverges by utilizing PyTorch
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and CSP-Darknet53 instead of Darknet. The architecture comprises three components:
spine, neck, and head, as shown in Figure 3.
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Figure 3. Architecture of the YOLOv5 model used.

The YOLOv5 architecture incorporates a backbone network that produces feature
maps of various sizes (152 × 152, 76 × 76, 38 × 38, and 19 × 19 pixels) from the input
image. The focus module aids in improved feature extraction by dividing and consolidating
images while downsampling. Additionally, the spatial pyramid pooling (SPP) module com-
presses the input feature map to represent image attributes at a higher level of abstraction.
Additionally, the cross-stage partial (CSP) module links the front and back layers of the net-
work, decreasing model size and improving inference speed. The CONV-BN-LeakyRELU
(CBL) module handles convolution and normalization tasks.

The neck network combines features extracted from convolutional neural networks.
The CSP module replaces residual units with CBL modules, enabling the combination of
feature maps to gather more contextual information from the backbone’s feature maps.
When combining feature maps at different levels, feature pyramid network (FPN) and path
aggregation network (PAN) structures are employed to enhance the feature combination
capabilities of the neck structure. The output network was used for object detection and
classification by feature maps sized 19 × 19 × 255, suitable for identifying large objects,
whereas 76 × 76 × 255 sized maps better identify small objects [19].

The first five architectures of YOLOv5 are commonly used for rose detection (nano,
small, medium, large, and extra-large). The performance of these five architectures was
compared using the FLORES 2023 dataset. In the evaluation of object detection, the accuracy
of an object proposal is typically determined using intersection over union (IoU or IU), as
specified in Equation (1). This approach involves taking set A, which comprises proposed
object pixels, and set B, which consists of true object pixels, and then computes:

IoU(A, B) =
(A ∩ B)
(A ∪ B)

; IoU ∈ [0, 1] (1)



AgriEngineering 2024, 6 1013

When the intersection over union (IoU) threshold is greater than 0.5, it signifies a
successful object detection, while an IoU ≤ 0.5 is deemed a failure. The average precision
(AP) for each object class c is computed using Equation (2)

AP(c) =
TP(c)

TP(c) + FP(c)
(2)

where TP(c) TP(c) indicates the count of true positive instances, while FP(c) represents
the count of false positive instances. For any given class value c, an AP(c) = 1 signifies
a flawless detection, whereas an AP(c) = 0 indicates a bad one. Consequently, the mean
average precision (mAP) can be computed using Equation (3) over the set of all objects (O)
within a dataset.

mAP =
1
|O| ∑

c∈O
AP(C) (3)

Thus, the mAP0.5:0.95 metric shows mAP across various IoU thresholds ranging
from 0.5 to 0.95, with increments of 0.05. Specifically, mAP0.5 denoted an mAP for an
IoU > 0.5 [20,21]. YOLOv5 has key benefits, such as simple installation, fast training and
reduced experiment costs, inference ports on different platforms, intuitive design based on
the standard file folder design, and easy translation to mobile devices. YOLOv5 is available
in PyTorch v1.13.1 using Jupyter v7.0.0a12 or Google Colab notebooks.

2.1.4. Roses Tracking

For the roses tracking, we further extracted their characteristics and used the Deep-
SORT multiple objects tracking algorithm to compare these characteristics with those of
other video frames to establish a correlation between the same rose and other similar ones.
DeepSORT employs a fusion of the Kalman filter and the Hungarian algorithm to facilitate
tracking. The Kalman filter anticipates the present state of a rose by extrapolating from
a previous value and furnishes the associated uncertainties of that forecast [22]. These
uncertainties are encompassed using the Mahalanobis distance, expressed in Equation (4).

t(1)(i, j) = (tj − yi)T S−1
i (tj − yi) (4)

Here, tj denotes target j, yi represents the tracker i, and S−1
i represents the covariance

of t and y. The model assesses the similarity between the target and the tracker using the
cosine distance as defined in Equation (5).

t(2)(i, j) = min{1 − rT
j r(i)k ∈ Ri} (5)

In this context, 1 − rT
j r(i)k denotes the cosine distance. The cosine distance is utilized to

evaluate the apparent attributes of the track and the apparent attributes associated with the
detection, aiming to enhance identification accuracy. By merging Equations (4) and (5), the
model derives the integral coincidence degree formula as depicted in Equation (6).

ci,j = λt(1)(i, j) + (1 − λ)t(2)(i, j) (6)

Subsequently, the Hungarian algorithm was used for the association of roses and the
attribution of IDs, which assigns a unique identification to the rose and determines whether
the rose in the current frame is the same as the one observed in the previous frame. Once
the location of the rose has been determined, the DeepSORT algorithm generates a block
diagram illustrating the data flow, as depicted in Figure 4.
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Figure 4. Sequence used for roses tracking. Feature Extractor extracts the unique characteristic of each
image, giving images with a probability for open and closed buds as detection results. DeepSORT and
the Kalman filter help us to refine the accuracy of images for the tracking. The cascading matching
compares the detected images’ characteristics with the tracked images based on distance calculations.
IOU matching associates the current detections with tracked objects through the frames, giving the
final tracking results.

2.2. Processsing Stage
Models Training

All YOLOv5 architectures in this study were trained on a system running Windows
11 operating system, Python 3.10, and PyTorch 2.0. The CPU used was an Intel Xeon
W-11855M, and the GPU was an Nvidia RTX A4000. The CUDA and CUDA Deep Neural
Network library versions employed were 11.7 and 7.6, correspondingly. For training,
distinct parameters including the learning rate, learning rate decay momentum, batch
size, optimizer weight decay factor, and epochs were configured to 0.001, 0.937, 16, 0.0005,
and 500, respectively. To prevent training stagnation, a patience parameter of 100 epochs
was configured to interrupt training if progress ceased. All remaining parameters were
adjusted to their suggested values according to the official website recommendations. The
model weights were initialized utilizing pre-trained weights acquired from the Microsoft
COCO dataset. The training durations for each YOLOv5 model are listed in Table 3, with
the YOLOv5l model having the shortest training time at 3.885 h, and the YOLOv5s model
having the longest at 11.511 h.

Table 3. Data of training of YOLOv5 models on the experimental dataset.

Models Training Duration (h) Parameters Layers GFLOPs

YOLOv5n 9.084 1,761,871 157 4.1
YOLOv5s 11.511 701,519 157 15.8
YOLOv5m 4.311 208,569,775 212 47.9
YOLOv5l 3.885 46,113,663 267 107.7
YOLOv5x 3.942 86,180,143 322 203.8

3. Results
3.1. Rose Counting Based on the Crossline Method

The detection model depicted in Figure 2 enables the capturing of image sequences,
each of which is assigned a unique identifier. Tracking identifiers are allocated solely upon
the accurate detection of the rose. However, potential distortions may arise when the
target is positioned at the border of the image detection, thereby impacting the accuracy
and reliability of both the tracker and detector. To enhance the precision of the counting
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process, two areas (common and counting areas) were delineated, and a counting line was
introduced to partition the image into three sections, as illustrated in Figure 5.
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3.2. Evaluation of Models

To assess the neural network’s effectiveness, a preliminary test was conducted on
a subset of the training data to ascertain if a specific model possesses sufficient learning
capability for rose detection. A subset of test data was then used to measure the generaliz-
ability of the network and its ability to handle unknown input data. In this classification
experiment, five YOLOv5 architectures (n, s, m, l, x) were independently evaluated, first
on the training image subsets and then on the test subsets. The results are presented in
Figure 6.
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The predictions of the open rosebuds class have higher accuracy due to their distinctive
color, shape, and size characteristics, as shown in Table 4. In contrast, the accuracy of the
closed rosebud class predictions was lower due mainly to the size, and can be confused
with the presence of green leaves in almost all the study areas of the greenhouse complex.
Furthermore, for assessing the model’s performance, we utilized plots depicting precision,
recall, and F1 score with respect to the confidence level, along with the PR curve, as depicted
in Figure 7.

Table 4. Comparative results of rose detection models.

Open Rosebuds P (%) R (%) mAP@0.5 mAP@0.95

YOLOv5n 0.906 0.965 0.957 0.720
YOLOv5s 0.951 0.956 0.960 0.702
YOLOv5m 0.949 0.960 0.961 0.707
YOLOv5l 0.932 0.972 0.962 0.697
YOLOv5x 0.949 0.956 0.965 0.730

Closed rosebuds

YOLOv5n 0.870 0.802 0.868 0.540
YOLOv5s 0.900 0.778 0.875 0.555
YOLOv5m 0.877 0.837 0.886 0.559
YOLOv5l 0.845 0.827 0.903 0.562
YOLOv5x 0.883 0.813 0.889 0.568

All

YOLOv5n 0.888 0.883 0.913 0.630
YOLOv5s 0.924 0.867 0.920 0.643
YOLOv5m 0.905 0.904 0.924 0.630
YOLOv5l 0.897 0.893 0.923 0.630
YOLOv5x 0.917 0.885 0.941 0.632
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The results show the best weight obtained at age 197, and mAP 0.5 = 0.941, which
corresponded to the model YOLOv5x for all open and closed rosebuds detected.

Figure 7 shows the confusion matrix for the YOLOv5x structure obtained 96% of true
positives (TP) for the open class, which has a higher number of examples in the training
subset. On the other hand, it achieved 86% for the close class, which has fewer data
instances. The results could be partly attributable to the previously mentioned problem of
a slightly unbalanced class distribution.

According to Figure 8, the accuracy demonstrates a nearly linear increase as the
confidence level approaches 1. At a confidence level of 0.94, the maximum precision
is attained, indicating a significant proportion of true positive values across all classes.
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The recall values also offer insights into the prediction performance. It is noticeable
that the recall values gradually decline with higher confidence levels, primarily due to
the negative false detection of open rosebuds exerting a greater influence on prediction
accuracy. Additionally, the PR curve illustrates how various thresholds impact different
classes, with the “closed rosebuds” class exhibiting a lower percentage.
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The F1 scores for individual categories such as open rosebuds and closed rosebuds
stand at 0.96 and 0.82, respectively, when the confidence level is 0.566. Furthermore, at
this confidence level, the average F1 score for all categories increases swiftly and reaches a
peak of 0.90. However, as the confidence level surpasses 0.96, the F1 score begins to decline
gradually, indicating that the most accurate predictions occur between confidence levels of
0.8 and 0.9.

3.3. Evaluation of the Counting Method

The developed method for counting open rosebuds using artificial vision was eval-
uated by comparing the counts obtained from the algorithm with manual counts. The
coefficient of determination R2 was used to evaluate the correlation between the counts of
the developed method and the reference manual counts. The obtained R2 value of 0.997
shows a high correlation between the counts generated by the algorithm and the manual
counts, suggesting that the developed method is highly accurate in predicting the number
of open rosebuds (Figure 9). However, it is important to keep in mind that other factors,
such as the accuracy of the manual counting method and the quality of the images used in
the artificial vision system, can also influence the accuracy of the measurement [23].
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The average of the counts generated by the UAV was 129.68± 46.78, while the average
for manual counts was 153.12 ± 65.37. The variability of the manual counts exceeds
the variability obtained by UAV counts. In addition, the coefficient of variation of the
UAV count was 36.08%, while for the manual count it was 42.69%. The UAV’s counting
method allows us to improve the effectiveness of rose counting in comparison with manual
methods. Additional advantages of the UAV’s count allow us to prefer this method, since
the UAV and artificial vision reduce the contact with plants for the counting process, which
minimizes the invasiveness on roses by manipulation.

The deep learning-based approach for counting open rosebuds has achieved a co-
efficient of determination (R2) of 0.997, indicating a high correlation between the counts
generated by the algorithm and the manual reference counts. This implies that approxi-
mately 99.7% of the variability in the counts can be explained through the linear relationship
between the two methods. On the other hand, in [24], the plant counting approach using
UAVs and object detection algorithms has achieved (R2) values ranging from 0.96 to 0.97,
also giving a strong correlation with manual counts. These numerical results confirm the
capability of the computer vision and deep learning-based method to achieve an accurate
and consistent estimation of the number of open rosebuds, slightly surpassing the cotton
plant counting approach in terms of correlation. The approach utilized in this study is
based on feature extraction using computer vision techniques and the utilization of deep
learning algorithms such as YOLO V5. These methods enable the accurate detection of
open rosebuds under different lighting conditions, sizes, and stages of plant development.

Furthermore, the coefficient of determination (R2) of 0.8973 in the count of closed
rosebuds reflects a strong relationship between the results obtained through the algorithm
and the manual reference counts. This value suggests that approximately 89.73% of the
observed variability in the counts of closed buds can be attributed to the accuracy of the
developed algorithm. The experimental results of Yolov5-combined DeepSORT in rosebud
detection were 99.8% for open rosebuds and 89.73% for closed rosebuds.

4. Discussion

The integration of object detection and aerial imagery systems in agriculture has
produced a variety of applications, including the detection of different tree species, tomato
counting, and diseased plant identification, among others. Different research has used
image processing and deep-learning methods to count and detect fruits and flowers, with
accuracy rates varying according to the study. The research published in [25] achieved a
prediction accuracy of 86% in fruit counting, and [26] obtained an average error rate of 10%
in the counting of strawberry flowers. For [27], the authors obtained a prediction accuracy
of over 90% in the detection and counting of pineapple fruits. In [10], the results obtained
an accuracy rate of 99% for green tomatoes, 85% for red tomatoes, and 50% for flower
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counting. Also, in the investigation based on the maturation state of the flowers [28], they
proposed a classification method based on deep learning and deep information to rate the
quality of rosebuds, obtaining a result for the accuracy of the classification.

The degree of maturation status for the improved model, based on InceptionV3 with
depth data, was up to 98%, though it should be mentioned that the recognition was not
carried out in the field. For the research reported by [29], transfer learning methods based
on CNN were studied for the recognition of flower species, which included rosebuds. This
study resulted in the highest accuracy of 92.25%, obtained with the InceptionResNetV2
model for flowers. In this research, an mAP@0.5 of 0.965 for open rosebuds and 0.889 for
closed rosebuds was achieved with the YOLOv5x model. The lower accuracy in detecting
closed rosebuds is attributed to a lower number of labels and the challenges posed by their
size, shape, and confusion with the green color of the leaves in this class of rosebuds. These
results are displayed in Table 5.

Table 5. Comparison between our work and recent research.

List of Works Working Topic Proposed Method Accuracy (%)

This work Rosebuds detection YoloV5 Models 94.10%
Hossein et al. [25] Plants on agricultural land Faster R-CNN 86.00%

Egi et al. [10] Detect and count tomato
flowers and fruits YoloV5 92.00%

Syazwani et al. [27] Counting and detection
of pineapple ANN-GDX 94.00%

Heylen et al. [26] Counting strawberry
flowers CNN 90.00%

Sun et al. [28] Classification of grades
of maturation of rosebuds InceptionV3 98.00%

Bozkurt. [29]
CNN Based Transfer

Learning for Recognition
of Flower

InceptionResNetV2 92.25%

5. Conclusions

In this work, we demonstrate the usability of a combination of UAVs and image classifi-
cation to estimate the state of Explorer roses on a farmer’s greenhouse. The implementation
of the system gave us consistent results compared to the traditional methods used for
counting open and closed rosebuds. This allows the reduction in the time spent on manual
recognition of the state of rosebuds and increases the volume of the sample analyzed in a
single read. The model used achieved an mAP of 94.1% under normal conditions of light
and temperature for open and closed rosebuds. Compared with similar works reported,
the use of YOLOv5 gave us good performance in rose counting. The results obtained allow
us to recommend the use of the system to plan harvests with a certain accuracy, despite the
image acquisition being enhanced by the development of autonomous trajectory control
algorithms to reduce counting time and improve accuracy. This contactless method for
rose-state analysis also offers benefits to the floricultural industry. As many types of roses
exhibit high sensitivity to manipulation, the use of UAVs minimizes plant damage and
affects the final product quality.
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