Growth Monitoring of Greenhouse Tomatoes Based on Context Recognition
Abstract
:1. Introduction
2. Related Works
3. System Components
3.1. Object Detection
3.2. Context Recognition
3.3. Autonomous Growth Monitoring Robot
4. Experiments
4.1. Experimental Results
4.1.1. Detection of Tomatoes
4.1.2. Recognition of Tomato Plant Status
4.1.3. Visualization of Information
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministry of Agriculture, Forestry and Fisheries. Agricultural Statistics. Available online: https://www.maff.go.jp/j/tokei/kouhyou/noukou/ (accessed on 7 June 2024).
- Ling, X.; Zhao, Y.; Gong, L.; Liu, C.; Wang, T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robot. Auton. Syst. 2019, 114, 134–143. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, B.; Fan, J.; Hu, X.; Wei, S.; Li, Y.; Zhou, Q.; Wei, C. Development of a tomato harvesting robot used in greenhouse. Int. J. Agric. Biol. Eng. 2017, 10, 140–149. [Google Scholar]
- Jun, J.; Kim, J.; Seol, J.; Kim, J.; Son, H.I. Towards an Efficient Tomato Harvesting Robot: 3D Perception, Manipulation, and End-Effector. IEEE Access 2021, 9, 17631–17640. [Google Scholar] [CrossRef]
- Kondo, N.; Yamamoto, K.; Shimizu, H.; Yata, K.; Kurita, M.; Shiigi, T.; Monta, M.; Nishizu, T. A Machine Vision System for Tomato Cluster Harvesting Robot. Eng. Agric. Environ. Food 2009, 2, 60–65. [Google Scholar] [CrossRef]
- Arefi, A.; Motlagh, A.M.; Mollazade, K.; Teimourlou, R.F. Recognition and localization of ripen tomato based on machine vision. Aust. J. Crop. Sci. 2011, 5, 1144–1149. [Google Scholar]
- Malik, M.H.; Zhang, T.; Li, H.; Zhang, M.; Shabbir, S.; Saeed, A. Mature Tomato Fruit Detection Algorithm Based on improved HSV and Watershed Algorithm. IFAC-PapersOnLine 2018, 51, 431–436. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, L.; Zhou, B.; Huang, Y.; Liu, C. Detecting tomatoes in greenhouse scenes by combining AdaBoost classifier and colour analysis. Biosyst. Eng. 2016, 148, 127–137. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, L.; Huang, Y.; Liu, C. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion. Sensors 2016, 16, 173. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Nouaze, J.C.; Mbouembe, P.L.T.; Kim, J.H. YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3. Sensors 2020, 20, 2145. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Zhao, Y.; Wang, G.; Liu, P.; Yan, Y.; Zu, L. Tomato Maturity Classification Based on SE-YOLOv3-MobileNetV1 Network under Nature Greenhouse Environment. Agronomy 2020, 12, 1638. [Google Scholar] [CrossRef]
- Magalhães, S.A.; Castro, L.; Moreira, G.; Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse. Sensors 2021, 21, 3569. [Google Scholar] [CrossRef] [PubMed]
- Ampatzidis, Y.; Bellis, L.D.; Luvisi, A. iPathology: Robotic Applications and Management of Plants and Plant Diseases. Sustainability 2017, 9, 1010. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef]
- Trung-Tin, T.; Jae-Won, C.; Thien-Tu, L.H.; Jong-Wook, K. A Comparative Study of Deep CNN in Forecasting and Classifying the Macronutrient Deficiencies on Development of Tomato Plant. Appl. Sci. 2019, 9, 1601. [Google Scholar] [CrossRef]
- Kocian, A.; Massa, D.; Cannazzaro, S.; Incrocci, L.; Lonardo, S.D.; Milazzo, P.; Chessa, S. Dynamic Bayesian network for crop growth prediction in greenhouses. Comput. Electron. Agric. 2020, 169, 105167. [Google Scholar] [CrossRef]
- Hu, F.; Zhou, M.; Yan, P.; Liang, Z.; Li, M. A Bayesian optimal convolutional neural network approach for classification of coal and gangue with multispectral imaging. Opt. Lasers Eng. 2022, 156, 107081. [Google Scholar] [CrossRef]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9157–9166. [Google Scholar]
- Richard, E. Neapolitan, Learning Bayesian Networks; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Johnson, L.K.; Bloom, J.D.; Dunning, R.D.; Gunter, C.C.; Boyette, M.D.; Creamer, N.G. Farmer harvest decisions and vegetable loss in primary production. Agric. Syst. 2019, 176, 102672. [Google Scholar] [CrossRef]
- Logicool. C922n Pro Stream Webcam. Available online: https://www.logicool.co.jp/ja-jp/products/webcams/c922n-pro-stream-webcam.960-001262.html (accessed on 7 June 2024).
- Charmed Labs and Carnegie Mellon. Pixy (CMUcam5): A Fast, Easy-to-Use Vision Sensor. Kickstarter. Available online: https://www.kickstarter.com/projects/254449872/pixy-cmucam5-a-fast-easy-to-use-vision-sensor (accessed on 14 February 2022).
- Laboro.AI Inc. Laboro Tomato: Instance Segmentation Dataset. GitHub. Available online: https://github.com/laboroai/LaboroTomato.git (accessed on 15 January 2022).
Predicted | |||||
---|---|---|---|---|---|
Fully Ripened | Half Ripened | Green | No Detection | ||
Actual | Fully ripened | 55 | 0 | 0 | 15 |
Half ripened | 4 | 13 | 1 | 6 | |
Green | 0 | 0 | 59 | 28 | |
Others | 0 | 0 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, F.A.; Takanayagi, M.; Eguchi, T.; Yeoh, W.L.; Yamaguchi, N.; Okumura, H.; Tanaka, M.; Inaba, S.; Fukuda, O. Growth Monitoring of Greenhouse Tomatoes Based on Context Recognition. AgriEngineering 2024, 6, 2043-2056. https://doi.org/10.3390/agriengineering6030119
Rahman FA, Takanayagi M, Eguchi T, Yeoh WL, Yamaguchi N, Okumura H, Tanaka M, Inaba S, Fukuda O. Growth Monitoring of Greenhouse Tomatoes Based on Context Recognition. AgriEngineering. 2024; 6(3):2043-2056. https://doi.org/10.3390/agriengineering6030119
Chicago/Turabian StyleRahman, Fisilmi Azizah, Miho Takanayagi, Taiga Eguchi, Wen Liang Yeoh, Nobuhiko Yamaguchi, Hiroshi Okumura, Munehiro Tanaka, Shigeki Inaba, and Osamu Fukuda. 2024. "Growth Monitoring of Greenhouse Tomatoes Based on Context Recognition" AgriEngineering 6, no. 3: 2043-2056. https://doi.org/10.3390/agriengineering6030119
APA StyleRahman, F. A., Takanayagi, M., Eguchi, T., Yeoh, W. L., Yamaguchi, N., Okumura, H., Tanaka, M., Inaba, S., & Fukuda, O. (2024). Growth Monitoring of Greenhouse Tomatoes Based on Context Recognition. AgriEngineering, 6(3), 2043-2056. https://doi.org/10.3390/agriengineering6030119