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Abstract: The objective of this study is to evaluate the spatio-temporal dynamics of land vulnerability
and pasture areas in the dairy basins of the states of Pernambuco and Alagoas, which are part of the
Ipanema River Watershed (IRW) in the Northeast Region of Brazil. Maps of the Land Use and Land
Cover (LULC); the Index of Vulnerability to Degradation (IVD); the Land Vulnerability Index (LVI);
time series of Effective Herd (EH), Milked Cows (MC), and Milk Production (MP); and Pasture Cover
(PC) and Quality (PCQ) were created as parameters. An opposite pattern was observed between
the land use classes of Livestock, Agriculture, and Forest. The IRW area has predominantly flat
terrain with a very high risk of degradation. The analysis of MC was consistent with the information
from the EH analysis as well as with MP. When assessing Pasture Quality, Severe Degradation areas
increased from 2010 to 2014, decreased after 2015, and rose again in 2020. Moderate Degradation
areas remained high, while Not Degraded pasture areas were consistently the lowest from 2012 to
2020. Over the 10 years analyzed (2010–2020), the area showed a strong degradation process, with the
loss of approximately 16% of the native vegetation of the Caatinga Biome and an increase in pasture
areas and land vulnerability.

Keywords: caatinga; land vulnerability; cattle farming; semiarid; pasture quality

1. Introduction

Climate change and its impacts are among the most challenging threats the world faces
today [1]; according to the future climate projections of this report, the expected increase
in the duration and intensity of extreme heat waves and changes in the distribution of
precipitation, water availability, and drought could reduce agricultural productivity and
increase the risk of food insecurity.
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The long-term trend of climate change and global warming is particularly pronounced
in semiarid regions [2]. These regions are characterized by low rainfall and high temper-
atures, and already face significant challenges in ensuring food security and economic
development [3]; in addition, climate change is causing even more water scarcity and
increasing the frequency and intensity of extreme weather events, such as droughts and
heat waves [4,5].

According to Andrade et al. [6] and Maranhão et al. [7], semiarid regions account for
approximately 40% of the Earth’s surface and around 50% of the population living in these
regions obtain their basic needs (water, food, fiber, energy, etc.) from the goods and services
generated in these ecosystems.

The Brazilian semiarid region occupies all the states of the Northeast Region of Brazil
(NEB), with an area of 1,006,738 km2, covering the territorial limits of 1171 municipalities
with an estimated population of 26,378,043 inhabitants [8,9]. These regions are under
the domain of the Caatinga Biome, an exclusively Brazilian biome with an extension of
982,563 km2, occupying the equivalent of 11% of the entire national territory, which suffers
from a high variability of rainfall, with little spatial distribution and concentrated over
time [9]. In this sense, it has a highly dynamic vegetation cover, which requires constant
monitoring of the changing conditions of the different land uses [5,10]. It is estimated that
the net continuous loss of vegetation cover is in the order of 0.3% per year [11]. In addition,
native areas still share space with agricultural crops, pastures, and herbaceous landscapes
that alternate with bare soil [12].

In the semiarid region, subsistence farming is the primary economic activity and forms
the foundation of rural society in most of the small municipalities there [13]. Medeiros
et al. [14] and Vieira et al. [10] note that rainfed agriculture is the dominant agricultural
system in this area. Typically practiced on small properties, this system involves grow-
ing subsistence crops through the burning of native vegetation and conventional soil
preparation, alongside extensive livestock farming.

Agricultural and livestock production can result in the degradation of ecosystems,
contamination of food, soil, and water, an increase in the cost of water collection for human
supply, and an increase in greenhouse gas emissions through deforestation [15]. This
scenario leads the scientific community to adopt more integrative approaches to address
the problem, considering both climate change and sustainable development, with special
attention given to arid and semiarid areas; these areas typically have low fertility and
sparse vegetation cover, characteristic of fragile ecosystems, with a greater aptitude for
desertification, marked by adverse climatic conditions and social vulnerability. Desertifi-
cation is a global problem, affecting about a third of the planet’s land surface, especially
in arid and semiarid regions, and is characterized by soil erosion, reduced water quality,
and the loss of biodiversity, damaging agriculture, livestock, and the livelihoods of local
populations [16].

Given this scenario, it can be asserted that the sustainability of livestock farming
depends on multiple factors and there is no definition of sustainability that fits all pro-
duction worldwide, nor is there a single agricultural system that is more sustainable than
alternative systems [17,18]. In other words, the sustainability of production in some regions
may change as climate change affects water availability and agricultural production [19,20].

Pastures are the most practical and economical way to feed cattle, guaranteeing low
production costs. However, inadequate management and the use of high stocking rates,
which exceed the pasture’s carrying capacity [15], contribute to its degradation and the
stigmatization of extensive livestock farming as an unproductive activity that is essentially
harmful to the environment [21]. According to Silva et al. [22], pastureland is the main land
use in Brazil, occupying approximately 20% of the country’s land, and is the main source
of food for commercial livestock farming. According to the latest census by the Brazilian
Institute of Geography and Statistics (IBGE), 47% of production units in the agricultural
sector are made up of pastures, either natural and/or planted [23], and their degradation is



AgriEngineering 2024, 6 2972

an aggravating factor in the Brazilian agricultural scenario, directly impacting meat and
milk production. [24].

Pastures in the semiarid NEB face serious forage production problems due to the
scarcity of rainfall [25]. Considering that they are mainly composed of native pasture of
the region [26], this confirms that degraded pastures can reduce resources, indicating land
abandonment; capital flight; or the temporary suspension of activities, including dairy
farming, resulting in decreased economic activity in the affected areas [27].

Similar concerns can be observed in other studies, such as the work of Muralikrishnan
et al. [28], who evaluated the impacts of climate change-induced drought on semi-arid
pastoral and agricultural watersheds in South Asia, revealing reductions in surface and
groundwater availability, soil degradation, partial or total crop loss, increased agricultural
fallows and devastated lands, loss of biodiversity, and decreased agricultural production,
pastures, and livestock in drought-impacted South Asia. Weng et al. [29] conducted a
vulnerability assessment of a semiarid pastoral socio-ecological system in China, high-
lighting that livestock farming is central to the economic sector in semiarid regions, which
rely on natural or seeded pastures for livestock feed, making them more vulnerable to
climate change. Ndiritu [30] also conducted a study in Laikipia County, Kenya, evaluating
the role of perceived climate extremes and access to private pastures on farms. Fust and
Schlecht [31] analyzed the vulnerability of semiarid pasture systems to increased variability
in the temporal distribution of precipitation events in the face of climate change. Nand-
intsetseg et al. [32] studied the risk and vulnerability of Mongolia’s pastures under climate
change, concluding that mitigating the adverse impacts of climate change on ecosystems,
livestock, and pastures through strengthened coping capacities, risk reduction strategies,
and resilience in degraded environments is a crucial challenge.

Furthermore, it is estimated that 75% of the earth’s surface is under some degree of
soil degradation, and this is expected to increase to 90% by 2050 [33]; however, according to
the authors, estimates of land degradation are not conclusive and show large discrepancies.
Inconsistencies between studies are attributed to the methods applied, which capture differ-
ent aspects of degradation but neglect the whole picture; the most commonly used methods
are expert opinion, satellite images, biophysical models, and abandoned farmland [34]. Of
all the methods, perhaps the most accurate is that based on satellite images, as they show
the actual degradation of the soil and are not limited to certain types of land use [35].

In this context, this study aimed to evaluate the spatio-temporal dynamics of land
vulnerability and pasture areas in the dairy basins of the states of Pernambuco and Alagoas,
inserted in the Ipanema River Watershed, in the Northeast Region of Brazil.

2. Materials and Methods
2.1. Study Area

The Ipanema River Watershed (IRW) is situated in the Caatinga Biome and has a
semiarid climate; it covers two of the primary dairy basins in the states of Pernambuco and
Alagoas, with an expanding area dynamic [9,13] between parallels 08◦18′04′′ S–10◦0′ S and
meridians 36◦0′ W and 38◦0′ W (Figure 1), with altitudes of less than 1115 m [36]. According
to the Köppen-Geiger climate classification, the region predominantly experiences a BSh
and As climate, characterized by a hot semiarid climate [37,38] with maximum temperatures
occurring in the months from November to January (33 ◦C), minimum temperatures
occurring in the months from May to July (19 ◦C), and average annual temperatures
above 23 ◦C; the rainy season is more concentrated between the months of March and
July, with an annual average of less than 700 mm [39,40]. The average annual potential
evapotranspiration is also high, with rates that can exceed 1600 mm [40].

World milk production grew by 1.3% in 2019, according to FAO [41]. It is projected
that global milk production will grow by 1.6% annually during the forecast period until
2029, growing faster than most other major agricultural products. The main producers, in
order, are India, the European Union, the United States, Pakistan, China, Brazil, Russia,
Turkey, New Zealand, and the United Kingdom.
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Figure 1. Location of the study area [37]. (a) Continental and national delimitation; (b) state 
delimitation and Ipanema River Basin; (c) delimitation of the main bed of the Ipanema River and 
identification of its mouth; (d) hypsometry based on the shuttle radar topography mission (SRTM) 
digital elevation model (DEM), with a spatial resolution of 30 m; (e) Köppen-Geiger climate 
classification of the Ipanema River Basin (IRW), Pernambuco and Alagoas, Brazil. 
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In Brazil, milk production is present in 99% of Brazilian municipalities, being one of 
the most traditional and important activities for the country’s food security. Despite all 
the difficulties, Brazilian milk production grew by 139% between 1990 and 2019 [42]. 

According to Embrapa [43], milk production was estimated at 35.3 billion liters in 2021. 
Among the regions, only the Northeast, ranked third, experienced a growth in production 
(12.8%) and reached the mark of 5.5 billion liters, with the states of Pernambuco and Alagoas 
occupying seventh and 11th place, respectively, in the national ranking. 

The dairy basins of Pernambuco and Alagoas are part of the IRW, with an area of 
approximately 7850 km², predominantly situated in the state of Pernambuco with its 
southern part extending into the state of Alagoas (Figure 2) and positioned within two 
significant hydrographic levels: the large São Francisco River Basin (macro-region) and 
the Lower São Francisco River Basin (meso-region) [44]. The term “dairy basin,” although 
a local Brazilian concept, aligns with what is known as a “Milk Production Region/Zone” 
in the European Union or “Dairy Belt” in the United States, descriptions of geographic 
areas where milk production is high or where dairy farming is a dominant agricultural 
activity [45,46]. 

Figure 1. Location of the study area [37]. (a) Continental and national delimitation; (b) state delimita-
tion and Ipanema River Basin; (c) delimitation of the main bed of the Ipanema River and identification
of its mouth; (d) hypsometry based on the shuttle radar topography mission (SRTM) digital elevation
model (DEM), with a spatial resolution of 30 m; (e) Köppen-Geiger climate classification of the
Ipanema River Basin (IRW), Pernambuco and Alagoas, Brazil.

In Brazil, milk production is present in 99% of Brazilian municipalities, being one of
the most traditional and important activities for the country’s food security. Despite all the
difficulties, Brazilian milk production grew by 139% between 1990 and 2019 [42].

According to Embrapa [43], milk production was estimated at 35.3 billion liters in
2021. Among the regions, only the Northeast, ranked third, experienced a growth in
production (12.8%) and reached the mark of 5.5 billion liters, with the states of Pernambuco
and Alagoas occupying seventh and 11th place, respectively, in the national ranking.

The dairy basins of Pernambuco and Alagoas are part of the IRW, with an area of
approximately 7850 km2, predominantly situated in the state of Pernambuco with its
southern part extending into the state of Alagoas (Figure 2) and positioned within two
significant hydrographic levels: the large São Francisco River Basin (macro-region) and the
Lower São Francisco River Basin (meso-region) [44]. The term “dairy basin,” although a
local Brazilian concept, aligns with what is known as a “Milk Production Region/Zone”
in the European Union or “Dairy Belt” in the United States, descriptions of geographic
areas where milk production is high or where dairy farming is a dominant agricultural
activity [45,46].

Data from the 2017 Agricultural Census [23] show that Alagoas had an effective
herd of 786,018 animals (17.6%—Ipanema River Basin), of which 81,599 were dairy cows
(41.8%—IRW), which generated the production of 188,628 (×1000) kg of milk (51.3%—IRW),
distributed in 16 municipalities. Pernambuco, on the other hand, had 1,284,796 heads
(22.5%—IRW), of which 222,344 were dairy cows (40.8%—IRW), which produced 520,990
(×1000) kg of milk (56.1%—IRW), distributed across 18 municipalities in Pernambuco,
according to Table 1.
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Table 1. Comparison of dairy farming across states within the Ipanema River Basin and their
respective percentages.

State

Alagoas Pernambuco

Total (2017)

Bovines (unit) 786,018 1,284,796
Cows Milked (unit) 81,599 222,344

Milk Produced (×1000) 188,628 520,990

Basin Rio Ipanema

Bovines (unit) 138,325 288,580
Cows Milked (unit) 34,129 90,785

Milk Produced (×1000) 96,778 292,533

% Illustrative (Basin/Total)

Bovines (unit) 17.6 22.5
Cows Milked (unit) 41.8 40.8

Milk Produced (×1000) 51.3 56.1
Source: Adapted from Agro Census 2017 [23].
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2.2. Dynamics of Vegetation Cover via MapBiomas Brasil

The use of MapBiomas for studies on Land Use and Land Cover dynamics provides a
robust, reliable, and high-quality database that is essential for understanding environmental
changes and making informed decisions regarding sustainable land use. This is because
it offers land cover data for the entire Brazilian territory with an extensive time series,
allowing detailed analyses of changes over the years. Additionally, its standardized and
recognized methodology ensures data consistency and comparability over time [47].

To evaluate vegetation cover, data for the study area were obtained from the Map-
Biomas platform [36]. Land use and Land Cover data can be accessed at: https://
plataforma.brasil.mapbiomas.org/ (accessed on 20 October 2022).

MapBiomas operates with data collections and is currently at version 8.0. Each new
collection involves reprocessing the entire historical dataset using updated methods and
algorithms [36]. For this study, data from the most recent collection of version 6.0 were
utilized; the collection includes a catalog of 25 legend classes from the platform, with a focus
on the primary Level 1 classes: Forest (arboreal caatinga), Non-Forest Natural Formation
(shrubby caatinga), Agriculture and Livestock, Non-Vegetated area (Urban Infrastructure
and Exposed Soil), and Water bodies.

Raster files for the years 2010 to 2020 were generated for each land use type, and
the predominant classes were computed using the “r.report” plugin in GRASS 7 software,
integrated with QGIS 3.22.

2.3. Orbital Satellite Data: Landsat 5—Thematic Mapper (TM) and Landsat 8—Operational Land
Imager (OLI)

The integration of geoprocessing with remote sensing techniques and satellite data are
alternatives for monitoring land vulnerability, making it essential and economically viable for
analyzing the spatio-temporal dynamics of Land Cover and Land Use changes [48,49], so that
conservation management techniques can be established (agroforestry systems with animals,
agroecological management of pastures, conservation agriculture, and crop–livestock–forestry
integration), providing less pessimistic future scenarios and supporting decision making and
planning for the sustainable use of agricultural activity.

Landsat satellites play a crucial role in monitoring the Earth’s surface, with a spatial
resolution of 30 m, which is sufficiently detailed to identify and analyze vegetation patterns
and land use on regional scales. They also offer an extensive time series dating back to
1972, allowing for long-term analysis of changes in Land Cover and Land Use, and are
widely available and accessible to the public, often at no cost [50,51].

The Normalized Difference Vegetation Index (NDVI) is a widely used index for moni-
toring vegetation, classifying land use, analyzing environmental changes, and managing
natural resources. Thus, the combination of Landsat data and NDVI calculation provides
a powerful tool for monitoring, analyzing, and managing Land Use and Land Cover,
contributing to a better understanding of environmental dynamics and informed decision-
making [51–53].

This study utilized orbital images from the Landsat-5 satellites with the TM sensor and
the Landsat-8 satellite with the OLI sensor (Table 2), specifically, from orbit/point 215/066,
provided by the United States Geological Survey (USGS) through the National Aeronautics
and Space Administration (NASA). On average, 10 orbital images were processed annually
from 2010 to 2020. It is important to note that indices for 2012 could not be generated due
to a lack of coverage from the Landsat series for that period.

https://plataforma.brasil.mapbiomas.org/
https://plataforma.brasil.mapbiomas.org/


AgriEngineering 2024, 6 2976

Table 2. Features of the multispectral bands from the Landsat 5 (TM) and Landsat 8 (OLI) satellites.

Band Spectral
Resolution (µm)

Spatial
Resolution (m)

Temporal
Resolution

TM sensor
r1: Blue 0.45–0.52 30

16 days

r2: Green 0.52–0.60 30

TM sensor

r3: Red 0.63–0.69 30
r4: Near Infrared 0.76–0.90 30
r5: Near Infrared 1.55–1.75 30

r6: Thermal 10.40–12.50 120
r7: Mid Infrared 2.08–2.35 30

OLI sensor

r1: Costal Aerosol 0.43–0.45 30

16 days

r2: Blue 0.45–0.51 30
r3: Green 0.53–0.59 30
r4: Red 0.64–0.67 30

r5: Near Infrared 0.85–0.88 30
r6: SWIR 1 1.57–1.65 30
r7: SWIR 2 2.11–2.29 30

r8: Panchromatic 0.50–0.68 15
r9: Cirrus 1.36–1.38 30

r10: Thermal Infrared 1 10.6–11.19 100
r11: Thermal Infrared 2 11.50–12.51 100

Source: Adapted from USGS/NASA [54].

To develop thematic maps of land vulnerability, based on geospatial and biophysical
parameters, the NDVI was determined, developed, managed, and processed automatically
using the Google Earth Engine (GEE) digital cloud platform (https://earthengine.google.
com/ accessed on 10 October 2022) with JavaScript programming. This platform offers
libraries equipped with a range of functions for mathematical analysis, modeling, statistical
analysis, and machine learning, utilizing specific algorithms for the digital processing of
satellite images [55].

The images used were sourced from the ee.ImageCollection (“LANDSAT/LT05/C02/
T1_L2”) and (“LANDSAT/LC08/C02/T1_SR”) collections, covering surface reflectance
products from 1 January 2010 to 31 December 2020. The dry period was defined as
September, October, November, December, and January, while the rainy period included
March, April, May, June, and July each year. A cloud cover threshold of less than 20%
was applied, and the average image for each period was computed based on this criterion.
However, for 2011, the minimum cloud cover criteria were adjusted to 30% for the dry
period and 55% for the rainy period due to the lowest available cloud percentages for image
acquisition. Thematic maps were classified and generated using QGIS 3.22.

2.4. Determining and Classifying Land Slope

The study of the risk of soil degradation is essential for maintaining agricultural
productivity, preserving ecosystems, mitigating climate change, supporting economic
sustainability, managing natural resources, and ensuring human well-being [56].

That said, the slope map was generated using a mosaic of digital images of altimetry
data from the SRTM/NASA project, from quadrants s10_w038, s10_w037, s09_w038, and
s09_w037, essential for understanding the region’s topography and its impact on vulnera-
bility to soil degradation. Using the “Raster Analysis—Reclassify by Table” processing tool,
available in QGIS 3.22, the classification was carried out according to the limits of the slope
classes referring to the risk of land degradation in order to obtain the Index of Vulnerability
to Degradation (IVD) shown in Table 3.

https://earthengine.google.com/
https://earthengine.google.com/
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Table 3. Slope classes related to the risk of land degradation.

Degradation Risk Class Class Limits

Very Low 0 to 3
Low 3 to 6

Average 6 to 12
High 12 to 20

Very High >20
Source: Lopes and Campos [57].

The relief slope classification (Table 4) was carried out according to the methodology
proposed by Embrapa [58].

Table 4. Slope classes according to methodology proposed by EMBRAPA [58].

Slope Class Class Limits (%)

Flat 0–3
Soft Wavy 3–8

Wavy 8–20
Strong Wavy 20–45

Hilly 45–75
Cliff >75

2.5. Land Vulnerability Index (LVI)

The LVI was calculated by processing the images in QGIS 3.22, as shown in Figure 3.
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SRTM = Shuttle Radar Topography Mission; NASA = National Aeronautics and Space Administra-
tion; QGIS = Quantum Geographic Information System; IVD = Index of Vulnerability to Degrada-
tion; NDVI = Normalized Difference Vegetation Index; IBVL = Woody Vegetation Biomass Index;
IVV = Vegetation Vulnerability Index; LVI = Land Vulnerability Index.

NDVI is a sensitive measure of vegetation health, with values ranging from −1 to
1. Values close to 1 indicate high levels of photosynthetically active vegetation, while
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values near zero suggest minimal or no vegetation. Negative values typically denote water
bodies [49]. NDVI was determined according to Equation (1) [59,60].

NDVI =
rb NIR − rb RED
rb NIR+rb RED

(1)

where rb NIR and rb RED correspond to the respective reflective bands 4 and 3 of the
Landsat-5 TM sensor and 5 and 4 of the Landsat-8 OLI sensor.

The NDVI was employed to reclassify vegetation (Table 5), using the Woody Vegetation
Biomass Index (IBVL) method proposed by Chaves et al. [61], to assess and describe
vegetation in the Caatinga at various stages of anthropization.

Table 5. Vegetation and slope classes and indices for estimating land vulnerability.

Vegetation Classes
Vegetation Slope Vulnerability

IBVL * IVV IVD LVI Class

Very Dense Tree 1.00 1.00
0 a 3 0 a 6 Very Low

Dense Tree 0.80 1.25

Dense Undergrowth 0.68 1.47
3 a 6 6 a 12 LowDense Shrubby Undergrowth 0.60 1.67

Dense Sub-Tree Shrub 0.48 2.08
6 a 12 12 a 24 ModerateOpen Sub-Tree Shrub 0.36 2.78

Open Sub-Shrub Shrub 0.24 4.17
12 a 20 24 a 40 High

Thin Shrubby Sub-Shrub 0.14 7.14

Very Sparse Shrubby Shrub 0.07 14.29
>20 >40 Very High

Exposed Soil 0.05 20.00
* IBVL, Woody Vegetation Biomass Index; IVV, Vegetation Vulnerability Index; IVD, Index of Vulnerability to
Degradation; LVI, Land Vulnerability Index.

The Vegetation Vulnerability Index (IVV), also developed by Chaves et al. [61], was
estimated by calculating the difference between the IBVL for a hypothetical scenario
of maximum preservation and the actual condition of the vegetation being evaluated,
according to Equation (2).

IVV =

(
1

IBVL

)
(2)

where “1” is the Woody Vegetation Biomass Index (IBVL) value for the condition of max-
imum preservation, while IBVL represents the Woody Vegetation Biomass Index for the
evaluated vegetation condition.

The Land Vulnerability Index (LVI) was calculated as the product of the Vegetation
Vulnerability Index (IVV) and the Index of Vulnerability to Degradation (IVD), following
Equation (3).

LVI = IVV × IVD (3)

To map the vulnerability of the basin’s land, data on the vegetation and slope parame-
ters were cross-referenced, as shown in Table 5.

2.6. Characterization of the Cattle Herd, Milked Cows and Milk Production Time Series
by Municipality

Quantifying the herd and its production and productivity is essential for understand-
ing and mitigating the impacts of livestock on soil degradation, promoting sustainable land
use, and ensuring environmental conservation and economic and social sustainability [62].

In this way, a survey was carried out to quantify the Effective Herd (EH), Milked Cows
(MC), and Milk Production (MP) in each of the 34 municipalities studied in the 2010–2020
period using the Municipal Livestock Survey (PPM) database from the Automatic Recovery
System (SIDRA) platform of the Brazilian Institute of Geography and Statistics (IBGE) via
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the following email address: https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2021
(accessed on 20 October 2022).

Thematic maps were created to visualize the temporal spatialization of the EH, MC,
and MP of the municipalities in the dairy basin included in the IRW in the years 2010 and
2020, by making shapefile (.shp) and raster files, combining the data obtained from SIDRA
and the geographical data from IBGE, using QGIS 3.22.

2.7. Pasture Cover Dynamics via the Pasture Atlas

The study of pasture cover dynamics is essential for optimizing livestock production,
ensuring environmental sustainability, improving resource efficiency, and adapting to climate
change, contributing to a more productive and sustainable dairy farming system [63,64].

Pasture data for the study region were extracted from the Pasture Atlas platform of
the Image Processing and Geoprocessing Laboratory of the Federal University of Goiás
(PAPIG/UFG). The data are available at: https://atlasdaspastagens.ufg.br/map (accessed
on 20 October 2022).

The pasture mapping used in the platform is based on images from the Landsat
satellite series; the Random Forest supervised classifier and robust statistical sampling
techniques (for calibration and validation of the classification models) were used, with an
overall accuracy of approximately 91% [65].

The shapefile files were generated and transformed into raster files for the years
2010–2020 and processed using QGIS 3.22.

2.8. Pasture Quality via MapBiomas Pasture

The Pasture Quality data were extracted from the MapBiomas Brasil platform, from
Collection 6, which is available at: https://plataforma.brasil.mapbiomas.org/ (accessed on
20 October 2022).

According to MapBiomas [66], Brazil’s main land use is pasture, which occupies
an area of 154 million hectares, from the north to the south of Brazil, and is present in
all of Brazil’s Biomes. The Caatinga Biome, in 2020, had a total pasture area of around
20.2 million hectares; in percentage terms, it is the third most occupied Biome by cultivated
pastures, of around 23.1%, with the most occupied being the Atlantic Forest (25.7%) and
the Cerrado (23.7%).

The raster files were processed in QGIS 3.22 and the thematic maps were produced
and classified into three main classes: severely degraded, moderately degraded, and
not degraded.

2.9. Statistical Procedures

Principal component analysis (PCA) was carried out using the variables LVI, Map-
Biomas classes (5 classes), number of livestock, and pasture in the dry and rainy periods, for
the series from 2010 to 2020. Based on the principal components (PC), the covariance matrix
was obtained to extract the eigenvalues that originate the eigenvectors. The Kaiser criterion
was used to identify the variables that showed correlation, considering eigenvalues greater
than 1.0, which generate components with a relevant amount of information contained in
the original data [67,68].

Finally, Pearson’s correlation (r) was carried out for all the variables, seeking to
correlate with the PCA, in order to highlight the similarities between the variables. The
program used for PCA and Pearson’s correlation was RStudio, version 3.6.1 [69].

3. Results and Discussion
3.1. Land Use and Cover Classes via MapBiomas Brasil

Between 2013 and 2015, the Northeast Region showed an annual growth in the agri-
cultural sector of approximately 3374 ha, followed by a reduction in the native forest of the
Caatinga Biome [9,70], which is considered one of the most threatened by environmental
degradation due to the predominance of the semiarid climate [10]. Figure 4 shows the Land

https://sidra.ibge.gov.br/pesquisa/ppm/quadros/brasil/2021
https://atlasdaspastagens.ufg.br/map
https://plataforma.brasil.mapbiomas.org/
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Use and Land Classes (LULC) and Figure 5 shows the quantification of the area in hectares
(ha) for the period from 2010 to 2020. An inverse relationship was observed between the
Forest and Agriculture and Livestock classes; forested areas (Caatinga) decreased over time,
while agricultural areas increased.
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Figure 5. Quantification of areas (ha) of Land Use and Land Cover for the years 2010–2020 in IRW.

In 2016 and 2017, the forest area was 305,047 ha and 287,852 ha, respectively. During
the same years, the agricultural area increased from 460,547 ha to 483,125 ha, reflecting
a reduction of 13,696 ha in forested land and an increase of 22,578 ha in agricultural and
livestock areas (Figure 5). Additionally, the area of non-forest natural formations decreased
by 3270 ha over this period, similar results can also be observed in the study by Fernandes
et al. [71], who evaluated changes in Land Use and Land Cover (LULC) in the semiarid
region of Sergipe between 1992 and 2017 using remote sensing data and techniques. They
simulated changes in Land Use and Land Cover between 2017 and 2030 by applying a
cellular automata model. The authors concluded that agricultural and livestock activities
increased from 1992 to 2017, while forest areas decreased and were undergoing degradation
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processes; these findings support the results reported by Silva et al. [68], who assessed land
degradation in the semiarid region of the Ipojuca Valley. They also align with the work of
Melo et al. [72], who analyzed Land Use and Land Cover changes in the Agreste region
of Pernambuco, and Silva et al. [55], who investigated the environmental degradation of
vegetation and water bodies in the semiarid region of the NEB.

Based on the observed data, it is important to highlight the overall accuracy of the
MapBiomas classification for Collection 6 (Figure 6). For the study period and area, the
accuracy ranged from a maximum of 84% to a minimum of 80%, with an average of
82.2% [73].
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Figure 6. Accuracy of Level 1 MapBiomas Collection 6 for the years 2010–2020 across the dairy-
producing municipalities in the IRW, located in the states of Alagoas and Pernambuco.

According to the Algorithm Theoretical Basis Document (ATBD), which outlines the
process of map development and the algorithms used, the digital classification of Landsat
mosaics in the Caatinga Biome combines the Agriculture and Pasture classes into a single
category, making it impossible to distinguish between them. Additionally, the Unvegetated
Areas category includes both Urban Areas and Exposed Soil. This could explain the
potential discrepancies in the classification of the Agriculture and Livestock class for 2017,
which recorded the largest area at 483,125 ha, significantly higher than other years that
ranged from 460,000 to 463,000 ha (2016 and 2018, respectively). This occurred alongside
the smallest Forest area (287,852 ha) of the entire series (2010–2020) and one of the smallest
areas for the Non-Forest Natural Formation class (815.73 ha). It is important to note that
this year also had the second-lowest value for the specified category’s overall accuracy
percentage (80.9%) [74] and the second-highest area mismatch (−0.055).

Another notable aspect is the data for the Non-Vegetated Area class (Urban Infrastruc-
ture and Exposed Soil). In 2012, this class covered 14,920 ha, which increased to 20,910 ha
in 2013 and 20,574 ha in 2014, showing a rise of 5990 ha, before decreasing to 18,661 ha in
2015, a reduction of 335.40 ha. Given that features in this class are related, it is likely that
the variation reflects changes in Exposed Soil areas. This pattern is evident in the region,
where such changes typically occur after the harvest of crops used for grain production,
silage forage, or grazing, until the rainy season returns and natural vegetation recovers, or
a new crop is planted for the next cycle, corroborating the results of Bolfe et al. [25].
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3.2. Analysis of Slope and Index of Vulnerability to Degradation (IVD)

The maps for determining the slope and the Index of Vulnerability to Degradation
(IVD) show that the IRW area has predominantly flat terrain with a very high risk of
degradation. Wavy and strongly wavy terrain corresponds to a low and very low risk of
degradation (Figure 7).
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Figure 7. Classification of the slope according to the Embrapa Methodology (A) and the risk of
degradation (B) of the area of the municipalities of the dairy basins of the states of Alagoas and
Pernambuco, inserted in the IRW.

It was observed that the low and very low degradation risks are also directly related
to the higher altitudes of the area (Figure 7B), where the slope effect is typically reduced by
the higher levels of vegetation cover. This is associated with areas that are challenging to
access, with shallow and sloping soils that are not suitable for agriculture [75], and are now
destined for Legal Reserve Areas, in compliance with Law N◦. 12,727, which sets forth
general regulations for the protection of vegetation and Permanent Preservation Areas [76].
Furthermore, Tolche et al. [77], in their study of modeling and accessing land degradation
vulnerability using remote sensing techniques, argue that slope was found to be the main
factor determining land degradation.

Hossain et al. [78], who analyzed agricultural land degradation and processes that
undermine future food security, indicated that, besides variations in land use practices and
deforestation, the topography and slope of a landscape affects soil erosion and degradation,
noting that even gentle slopes can lead to erosion due to their topographic positioning and
exposure to anthropogenic actions.

Duguma and Janssens [79] proposed identifying the main constraints to livestock
production in three highland regions within mixed crop–livestock production systems in
southwestern Ethiopia. They concluded that pasturelands were degrading, with causes
varying but primarily focusing on vegetation and soil erosion, underscoring the importance
of evaluating the IVD (Index of Vegetation Degradation) in this study.
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3.3. Evaluation Land Vulnerability Index (LVI)

The results obtained by the LVI corroborate the results obtained by the IVD, indicating
that the IRW area has a high risk of land vulnerability and that the areas with the greatest
vulnerability are those with flat and soft wavy terrain. For the dry period (Figure 8), the
index remained high and constant throughout the series (2010–2020).
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When comparing the land use and occupation maps via MapBiomas (Figure 4), it
can be seen that the areas with a moderate LVI class are nearly always linked to low and
very low vulnerability classes across the study area, corresponding to areas with forest
(Caatinga). The areas at high and very high risk correspond to the Agriculture and Livestock
classes. Similar results were found by Santos et al. [49] in their study on the causes and
consequences of seasonal changes in the flow of the São Francisco River in the Brazilian
semiarid region. The study revealed a predominance of high and very high classes, with
average values of 15.3% and 58.5%, respectively, a situation exacerbated during drought
periods due to the intrinsic characteristics of the Caatinga vegetation.

In the rainy season (Figure 9), the Vulnerability Index also remained high and constant
throughout the series. The results were in agreement with the data from the dry season,
where the areas with moderate, low, and very low LVI correspond to areas with Forest
(Caatinga) and the areas with a high and very high risk correspond to areas in the Agri-
culture and Livestock classes, as they are easily managed, including, in some cases, the
use of machinery, according to the land use and occupation maps (Figure 4). It can also be
seen that in the rainy season, the decrease in the percentage of high and very high classes
is attributed to the increase in rainfall distribution and volume, which leads to greater
vegetation cover in this area, a result similar to that observed by Santos et al. [49].

Table 6 shows that, despite maintaining the high class, according to the Vulnerability
Index, during the rainy season, there was a percentage reduction in the representation
of this class in the area. This was also observed by Cantalice et al. [80] in a study of
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laminar runoff in a semiarid environment, in which they found that the presence of native
vegetation has a greater effect on protecting the soil cover, increasing rainfall interception
and reducing surface runoff.
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Table 6. Representative percentage of the areas of the Land Vulnerability Index (LVI) classes for the
dry and rainy periods from 2010 to 2020 in the IRW.

LVI Year
Class Area (%)

Very Low Low Moderate High Very High

Dry

2010 0.43 6.98 25.19 67.27 0.13
2011 5.73 26.77 24.77 37.35 5.38
2013 1.72 25.89 44.56 27.53 0.30
2014 1.12 8.51 25.14 64.56 0.67
2015 1.05 15.15 29.42 54.02 0.35
2016 1.73 14.15 28.39 54.45 1.29
2017 0.26 4.35 22.36 72.95 0.09
2018 1.95 11.64 26.67 58.47 1.28
2019 0.25 6.56 25.99 67.12 0.08
2020 0.32 2.43 22.01 75.12 0.12

Rainy

2010 0.39 9.76 28.97 60.76 0.12
2011 2.50 18.68 35.40 42.39 1.03
2013 0.82 19.45 37.45 42.10 0.18
2014 0.54 12.80 31.52 54.99 0.15
2015 1.76 23.41 47.02 27.52 0.28
2016 3.04 20.34 46.73 29.32 0.56
2017 0.59 16.57 30.53 52.16 0.15
2018 1.91 24.49 38.21 35.01 0.39
2019 1.30 22.17 37.55 38.70 0.28
2020 0.53 16.73 31.36 51.23 0.15
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As noted above, the high vulnerability class was predominant in the area in almost
all years, during the dry and rainy periods, with maximum values of 72.95% (2017) and
60.76% (2010), respectively. The moderate vulnerability class was the second most represen-
tative class, with values of 44.56% (2013) and 47.02% (2015) in the dry and rainy periods,
respectively.

3.4. Time Series Analysis of the Herd, Milked Cows and Milk Production

The spatial analysis of the time series for EH (Animal Unit—AU) in the study area
(Figure 10) showed that there was a drop in the number of AU between 2010 and 2012
in the municipality of Itaíba—PE (Figure 2), from 95,000 AU in 2010 to 100,000 AU in
2011 and 50,000 (AU) in 2012, a reduction of 50%. One possible reason for this drastic
reduction in the number of AUs in the municipality was the attack by the carmine cochineal
(Dactylopius opuntiae), which affected a large part of the region’s palm groves, considered
one of the main sources of forage for dairy cattle in the Northeast Region during the dry
period of the year [81], causing extremely serious socio-economic consequences for all
livestock activities, in addition to the hydrological years of below-average rainfall and
severe droughts, especially between 2012 and 2016 [82,83]. Similar results were described
by Montcho et al. [84], who reported dairy producers in West Africa perceiving an increase
in the dry season and temperature, which led to a decrease in herd size, cattle fertility, milk
production, forage availability, and milk preservation. From 2012 onwards, herd numbers
in all municipalities remained stable, with little variation, with a maximum of 60,005 AU in
Itaíba and a minimum of 3600 AU in Paranatama.
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According to the study by Seidou et al. [85], which evaluated the effect of integrated
agricultural systems on daily milk production and demographic characteristics of dairy
cows in drylands, monitoring the structure of a dairy herd provides important insights into
herd profitability and farm dynamics, enabling the improvement of livestock integration
practices adopted by farmers of this type.



AgriEngineering 2024, 6 2986

The ranking of the municipalities representing the five largest EH can be seen in
Table 7, where it is noted that there was little variation in positions. The municipality
of Itaíba maintained the highest EH throughout the series, except during the period of
2014–2017, when the municipality of Bom Conselho occupied first place. There was also
a fluctuation in the EH of the municipality of Buíque, which ranged between second and
fourth place.

Table 7. Ranking of the five municipalities with the highest number of EH from 2010 to 2020 in IRW.

Year
Municipality

1◦ 2◦ 3◦ 4◦ 5◦

2010 Itaíba Bom Conselho Buíque Pedra Tupanatinga
2011 Itaíba Buíque Bom Conselho Águas Belas Pedra
2012 Itaíba Bom Conselho Buíque Águas Belas Pesqueira
2013 Itaíba Buíque Bom Conselho Pedra Águas Belas
2014 Bom Conselho Itaíba Buíque Pedra Águas Belas
2015 Bom Conselho Itaíba Buíque Águas Belas Pedra
2016 Bom Conselho Itaíba Buíque Águas Belas Pedra
2017 Bom Conselho Itaíba Buíque Águas Belas Pedra
2018 Itaíba Bom Conselho Buíque Pedra Águas Belas
2019 Itaíba Bom Conselho Pedra Buíque Águas Belas
2020 Itaíba Bom Conselho Águas Belas Pedra Major Isidoro

Differences in management practices between regions and herd sizes can help define
potential future approaches for research and extension. In this way, such studies can
provide valuable information that will assist dairy producers in developing strategies for
managing and administering their properties, aiming to improve production efficiency [86].

For the MC analysis (Figure 11), there was agreement with the information contained
in the EH analysis, where the maximum value was 33,000 in the municipality of Itaíba
(2011) and the minimum was 497 in Paranatama (2014). It can be seen that, as with the
EH, the number of MC in the municipality of Itaíba fell between 2010 and 2012, from
30,000 to 18,000, respectively, a reduction of 45.5%, close to the 50% reduction in its EH;
these reduction rates can be explained by the reduction in AU due to the attack by the
carmine cochineal (Dactylopius opuntiae), which affected a large part of the region’s palm
groves, in addition to the hydrological years of below-average rainfall and severe droughts,
highlighting the need for more effective and adaptive management strategies to address
environmental challenges and maintain production sustainability.

The ranking of the five municipalities with the highest number of CM (Table 8) shows
that although the municipality of Itaíba has had the highest EH for almost every year,
the number of Milked Cows in the municipality was highest only during 2011–2012 and
2019–2020. The municipalities of Buíque, Pedra, and Bom Conselho are among the munici-
palities with the highest number of MC in the entire series.

The results demonstrate the importance of considering not only the production ef-
ficiency but also the stability and resilience of dairy systems. Although Itaíba led in EH
for most of the analyzed period, its position in the ranking of the number of dairy cows
varied, indicating that other municipalities, such as Buíque, Pedra, and Bom Conselho,
have played significant roles in the milk production of the study area. These insights are
crucial for formulating targeted policies and strategies that can enhance the efficiency and
competitiveness of the dairy industry while promoting sustainable growth.

When analyzing MP (Figure 12), the pattern observed in the previous analyses was
repeated. The MP of the municipality of Itaíba, during the first three years of the series,
showed the same behavior, with an increase between the years 2010 and 2011 and a decrease
in 2012, with values of 86,797 (×1000), 102,383 (×1000), and 59,625 (×1000), respectively, a
reduction of 41.8% in production; this pattern highlights Itaíba’s vulnerability to production
fluctuations, which may be associated with environmental or management factors. As
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expected, from the analysis of the previous variables, the municipality of Paranatama had
the lowest MP, with 72 (×1000), following the pattern of the lowest EH and the lowest
number of MC in 2014.
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Table 8. Ranking of the five municipalities with the highest number of MC from 2010 to 2020 in IRW.

Year
Municipality

1◦ 2◦ 3◦ 4◦ 5◦

2010 Itaíba Buíque Pedra Bom Conselho Pesqueira
2011 Itaíba Buíque Pedra Bom Conselho Pesqueira
2012 Buíque Itaíba Pedra Bom Conselho Pesqueira
2013 Pedra Buíque Itaíba Bom Conselho Tupanatinga
2014 Bom Conselho Pedra Buíque Águas Belas Itaíba
2015 Bom Conselho Buíque Pedra Águas Belas Itaíba
2016 Bom Conselho Buíque Águas Belas Pedra Itaíba
2017 Buíque Pedra Bom Conselho Itaíba Águas Belas
2018 Buíque Pedra Bom Conselho Itaíba Águas Belas
2019 Itaíba Buíque Bom Conselho Pedra Águas Belas
2020 Itaíba Pedra Bom Conselho Águas Belas Major Isidoro

The municipalities of Buíque, Pedra, and Bom Conselho continued to appear in the
ranking (Table 9) among the municipalities with the highest MP in the series. Similar results
were highlighted by Silva and Costa Júnior [87] in the study of 228Ra¹ in cow’s milk from
an anomalous region of Pernambuco, in which the municipality of Pedra is among the most
relevant regarding milk production in the state of Pernambuco. According to IBGE [23],
this region ranks as the second-largest milk-producing area in the NEB. Adding to this, the
persistence of these municipalities in the ranking of the highest MPs throughout the series
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highlights the importance of successful management and dairy production strategies in
these areas.
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Table 9. Ranking of the five municipalities with the highest MP from 2010 to 2020 in the IRW.

Year
Municipality

1◦ 2◦ 3◦ 4◦ 5◦

2010 Itaíba Buíque Pedra Tupanatinga Pesqueira
2011 Itaíba Buíque Pedra Tupanatinga Pesqueira
2012 Itaíba Buíque Pedra Major Isidoro Tupanatinga
2013 Pedra Buíque Itaíba Tupanatinga Major Isidoro
2014 Pedra Buíque Itaíba Bom Conselho Major Isidoro
2015 Bom Conselho Pedra Buíque Itaíba Venturosa
2016 Bom Conselho Buíque Águas Belas Itaíba Pedra
2017 Buíque Bom Conselho Águas Belas Pedra Itaíba
2018 Buíque Pedra Águas Belas Bom Conselho Itaíba
2019 Buíque Itaíba Bom Conselho Pedra Águas Belas
2020 Itaíba Pedra Bom Conselho Águas Belas Buíque

When comparing the data presented with the information from the land use and
occupation map via MapBiomas (Figure 4) and the LVI (Figures 8 and 9), it can be seen that
the municipalities with the highest EH, MC, and MP rankings are located in the Agriculture
and Livestock areas in land use and occupation, and in the high vulnerability class in the
LVI, corroborating the relationship between all the variables analyzed.

Several studies related to dairy cattle productivity have been conducted in the semi-
arid regions of the world, which support the importance of analyzing the data presented
here. For instance, Oumou et al. [88] conducted a study on the analysis of milk production
systems in the Sahelian zone of Burkina Faso, and Wankar et al. [89] discussed thermal
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stress in dairy animals and current trends in milk production, analyzing production in
the Americas, Europe, Africa, Oceania, and Asia. They concluded that milk production
is under serious threat from global warming and that it is urgent to optimize production
systems and mitigate climate risks.

We also highlight the work of Brizga et al. [90], who investigated the environmental
impacts of dairy farms in Latvia with different management practices, emphasizing that
milk production depends on the diet and the cows’ ability to consume dry matter (DM);
Froldi et al. [91], on the environmental impacts of milk produced for cheese manufacturing
in Northern Italy, concluding that the degree of specialization of dairy farms and proper
management reduce the environmental impact. Darré et al. [92], who estimated the global
and local environmental impacts per kg of milk and per hectare in a case study in Uruguay,
concluding that management factors, including diet type, input amounts, and grazing
system type, can be more relevant in determining the environmental impacts of dairy
systems than productivity itself. Finally, we highlight the study by Wilkinson et al. [93]
on grazing dairy cows, which observed that the carbon footprint is lower in pasture
systems compared to other milk production systems, and also noted that health and
welfare indicators are positively influenced by extensive grazing practices.

In this regard, we highlight that the lack of knowledge and adequate information is
an obstacle to adaptation and, therefore, requires high-quality, accurate, and accessible
information [84], such as the analysis conducted here.

3.5. Analysis of the Dynamics of Pasture Cover and Quality

The analysis of Pasture Cover via the Pasture Atlas (Figure 13) shows the amount of
pasture in the total area of the municipalities.
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There is a further relationship between the values of the largest pasture areas and
the parameters of Effective Herd, Milked Cows, and Milk Production (×1000), where the
municipality with the largest pasture area was the municipality of Itaíba with a maximum
value of 83,846 ha in 2015 and a minimum of 76,067 ha in 2020 (Table 10). From 2010 to
2018, among the five municipalities with the largest pasture areas, Buíque ranked second,
with a maximum of 75,984 ha in 2015 and a minimum of 65,709 ha in 2010. In 2019 and
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2020, the municipality of Ibimirim was in second place, with 75,555 ha and 75,110 ha,
respectively. From 2014 to 2018, it was in third place, and from 2010 to 2013, it was in
fourth place. Although the municipality of Ibimirim does not appear in the rankings of
municipalities with the highest EH, MC, and MP, it is among the municipalities with the
largest pasture areas. This is because, in the last decades, in order to promote a high-
productivity agricultural model, governments have invested in water infrastructure to
create various irrigation districts, and one of these irrigable sectors is the Moxotó Irrigated
Perimeter (Pimox), made up of diversified agricultural systems located downstream of the
Eng. Francisco Sabóia Dam, known as the Poço da Cruz Dam, in that municipality [94]. The
other municipalities with the largest areas are Águas Belas, Tupanatinga, and Pedra, with
maximum values of 63,963 ha in 2019, 44,065 ha in 2015, and 46,026 ha in 2018, respectively.

Table 10. Ranking of the five municipalities with the largest area of pasture cover from 2010 to 2020
in the IRW.

Year
Municipality

1◦ 2◦ 3◦ 4◦ 5◦

2010 Itaíba Buíque Águas Belas Ibimirim Tupanatinga
2011 Itaíba Buíque Águas Belas Ibimirim Tupanatinga
2012 Itaíba Buíque Águas Belas Ibimirim Tupanatinga
2013 Itaíba Buíque Águas Belas Ibimirim Tupanatinga
2014 Itaíba Buíque Ibimirim Águas Belas Tupanatinga
2015 Itaíba Buíque Ibimirim Águas Belas Tupanatinga
2016 Itaíba Buíque Ibimirim Águas Belas Tupanatinga
2017 Itaíba Buíque Ibimirim Águas Belas Pedra
2018 Itaíba Buíque Ibimirim Águas Belas Pedra
2019 Itaíba Ibimirim Buíque Águas Belas Pedra
2020 Itaíba Ibimirim Buíque Águas Belas Pedra

These data are fundamentally important in the context of maintaining the economic
activity of dairy farming, as corroborated by studies such as those by Godde et al. [95],
which state that changes in herbaceous vegetation (pasture areas) will have consequences
on livestock production, with a decrease in global pastures between 2000 and 2050 posing
a challenge for herd management. Similarly, Wróbel et al. [96] evaluated the challenges
of pasture-based feeding systems, concluding that among the significant advantages of
feeding dairy cows on pastures are the high quality and health benefits of milk and dairy
products, which translate into health benefits for consumers.

The Pasture Quality via MapBiomas (Figure 14) showed visually similar data with
regard to the Pasture Coverage indicated by the Atlas of Pastures (Figure 13); however,
the methodology for classifying areas of Pasture Quality does not present quantitative
values by municipality, and is classified qualitatively, so a comparison between the data by
municipality area was not carried out. However, Hu et al. [97], in a study on soil structural
degradation in New Zealand, concluded that soil structural degradation due to compaction
is typically associated with reduced pasture and crop production, where more intensive
land uses for dairy cattle grazing resulted in a higher degree of soil structural degradation.

The analysis of Pasture Quality classes allows a comparison between the Severe
Degradation, Moderate Degradation, and Not Degraded classes, which can be seen in
Table 11.

Areas with Severe Degradation showed increasing values from 2010 to 2014, with a
maximum value of 272,222 ha in 2014. From 2015 onwards, there was a gradual decrease in
the class, reaching a minimum value of 139,294 ha in 2019 and rising again in 2020. The
Moderate Degradation class maintained high average values, with a maximum value of
199,882 ha in 2011 and a minimum value of 150,009 ha in 2010. Finally, the areas in the
Not Degraded pasture class were the smallest in the entire classification, with values that



AgriEngineering 2024, 6 2991

fluctuated, reaching a maximum of 195,328 ha in 2010 and a minimum of 24,260 ha in 2014.
Figure 15 shows the variation of the classes regarding the years.
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Table 11. Area of Pasture Quality classes from 2010 to 2020 in IRW.

Classes
Area (ha)

Severe Degradation Moderate Degradation Not Degraded

2010 93,359 150,009 195,328
2011 118,347 199,882 100,442
2012 182,393 185,604 51,579
2013 204,220 173,107 46,250
2014 272,222 152,569 24,260
2015 234,501 192,537 35,032
2016 221,027 183,626 42,873
2017 210,405 175,385 48,414
2018 185,251 190,702 71,657
2019 139,294 192,502 96,151
2020 146,173 197,212 97,255

According to the FAO [98], one of the main causes of pasture degradation under direct
anthropogenic influence is inadequate management, in particular, the systematic use of
stocking rates that exceed the pasture’s ability to recover from grazing and trampling,
which justifies, as we can see in the quantification of EH (Figure 10), the fact that the areas
representing the Severe Degradation class correspond to the municipalities with the highest
EH numbers. Gosch et al. [99] carried out an assessment via Landsat of the quantitative and
qualitative dynamics of pasture areas in rural settlements in the state of Goiás, concluding
that it was possible to extract information from satellite images efficiently and accurately
regarding the pasture quality; however, they emphasized that exploring pasture quality
standards via MapBiomas does not present a high accuracy, justifying that the platform
uses general standards on pasture quality. The quality and the quantity of pasture were also
described by Duguma [100] as critical and limiting factors affecting the dairy production of
small-scale farmers and ensuring optimal production.
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3.6. Statistical Analysis

Table 12 presents the multivariate component statistics by principal component (PC),
including eigenvalues, total variance, and cumulative variance (%) for all principal com-
ponents 1 through 8 (PC1 and PC8). The eigenvalues of PC1 and 2 were greater than 1.
Therefore, according to the Kaiser [67] criterion, they can be used to generate and interpret
the biplot graphs and together they represent more than 70% of the variance in the data.

Table 12. Principal components 1 to 8 (PC1 through PC8) of the variables studied, along with their
respective eigenvalues, total variance, and cumulative variance (%).

Dry Season

PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8)

Eigenvalue 4.43 1.76 1.00 0.42 0.21 0.17 0.02 0.00
Total Variance 0.55 0.22 0.12 0.05 0.03 0.02 0.00 0.00

Cumulative variance (%) 55.3% 77.3% 89.8% 95.1% 97.7% 99.8% 100.0% 100.0%

Rainy Season

PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8)

Eigenvalue 4.26 1.91 0.99 0.55 0.21 0.06 0.02 0.00
Total Variance 0.53 0.24 0.12 0.07 0.03 0.01 0.00 0.00

Cumulative variance (%) 53.2% 77.2% 89.6% 96.5% 99.1% 99.8% 100.0% 100.0%

The total variance indicates the representativeness and significance of the data, with
77.3% for the dry period and 77.2% for the rainy period in the cumulative PC2, suggesting
the importance of the correlations between the LVI index, the MapBiomas majority classes
(five classes), the Effective Herd and Pasture. In a study by Silva et al. [22], applying
principal component analysis to monitor soil indicators and pasture production areas,
cumulative variances between 50% and 60% were found. This allowed for the extraction of
significant information from the correlations between the indices and the establishment of
a multiple regression model with satisfactory results. Salvati et al. [101], in a multivariate
evaluation of the agroforestry landscape, found a cumulative variance of 52%, Zeraatpisheh
et al. [102], using covariance and multivariate statistical analyses in a case study in semiarid
regions, found a cumulative variance in the first two components (PCA 1 and PCA 2) that
explained more than 42% of the total variability.
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In the dry season (Figure 16), there is an inverse correlation between the Forest
variable and the “Pasture” and “Agriculture and Livestock” variables. The year 2010
was the most correlated with the Forest variable and the years 2017, 2018, 2019, and 2020
were the most correlated with the “Pasture” and “Agriculture and Livestock” variables.
The LVI variable maintained a correlation with the Non-Forest Natural Formation and
Non-Vegetated Area variables, which is explained by the fact that the LVI increases with
an increase in these variables, and has an inverse correlation with the Forest, Effective
Herd, and Water Bodies variables. The years 2013, 2014, 2015, and 2016 are related to the
Non-Forest Natural Formation and Non-Vegetated Area classes, and the year 2011 was
more related to the Effective Herd and Water Bodies variables, corroborating the data
obtained through MapBiomas (Figures 5 and 6) and the temporal analysis of Effective Herd
(Figure 10), as well as greater contributions in the years 2013 and 2017 from the Non-Forest
Natural Formation, Non-Vegetated Area, and Agriculture and Livestock classes.
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Figure 17 shows a strong correlation between all the variables (R2 > 0.8), except for the
variables Pasture and LVI, which showed relatively low correlations (R2 < 0.6).

For the rainy season (Figure 18), the Forest and LVI variables were inversely correlated
with the Pasture and Agriculture and Livestock variables, with the Forest variable being rep-
resentative in 2011. The Non-Forest Natural Formation and Non-Vegetated Area variables
also maintained a strong correlation with each other and an inverse correlation with the
Effective Herd and Water Bodies variables. The year 2010 was more representative for the
Effective Herd and Water Bodies variables. The years 2013 to 2016 for Non-Forest Natural
Formation and Non-Vegetated Area and the years 2017 to 2020 for Pasture and Agriculture
and Livestock, corroborating the data provided by MapBiomas (Figures 5 and 6) and the
temporal analysis of Effective Herd (Figure 10).

The correlation remained high (R2 > 0.8) between most of the variables (Figure 19),
except for the Non-Forest Natural Formation and Pasture variables (0.6 < R2 < 0.7) and the
LVI, which showed the lowest correlation (R2 < 0.5).

Given the context presented, it is evident that over the 10-year study period (2010–2020),
the dairy basins of Pernambuco and Alagoas, which are part of the IRW, showed a strong
process of degradation, with significant losses of the native vegetation of the Caatinga
Biome and an increase in pasture areas and land vulnerability. Similar results were found
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by Silva et al. [103], who analyzed a 20-year time series (1998–2018) and identified that the
primary driver of soil and vegetation degradation in the region was largely associated with
the expansion of pasture areas to support dairy farming and by Melo et al. [72] who noted
that between 2017 and 2020, soil and vegetation degradation occurred in certain areas of
the dairy basin region in the state of Pernambuco.
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Figure 18. Principal component analysis of the variables NDVI, IVV, IBVL, and LVI*, the MapBiomas
majority classes (five classes), and the Effective Herd for the rainy season from 2010 to 2020 in
IRW. Note: NDVI = Normalized Difference Vegetation Index; IVV = Vegetation Vulnerability Index;
IBVL = Woody Vegetation Biomass Index; LVI = Land Vulnerability Index.
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4. Conclusions

The study reveals a reduction in native vegetation in the Caatinga Biome, with a signif-
icant increase in areas dedicated to agriculture, livestock, and pastures. This phenomenon
is associated with degradation processes caused by anthropogenic actions and exacerbated
by drought periods. The spatial and temporal analysis of dairy basins in Pernambuco
and Alagoas, within the Ipanema River Watershed, showed an expansion of pasture areas,
highlighting soil vulnerability and the need for sustainable management practices.

The information generated is crucial for formulating public policies aimed at reducing
environmental degradation and promoting agricultural sustainability in semiarid regions.
Remote sensing and geoprocessing technologies used in the study proved effective for con-
tinuous land use monitoring, contributing to natural resource conservation and sustainable
economic development.

Future studies should expand the analysis to other river basins and incorporate new
remote sensing technologies and predictive modeling techniques. Additionally, exploring
sustainable soil and water management practices is important to mitigate degradation and
promote the recovery of affected areas.
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