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Abstract: Weeds reduce cassava root yields and infest furrow areas quickly. The use of mechanical
weeders has been introduced in Thailand; however, manually aligning the weeders with each planting
row and at headland turns is still challenging. It is critical to clear weeds on furrow slopes and
driveways via mechanical weeders. Automation can support this difficult work for weed management
via driveway detection. In this context, deep learning algorithms have the potential to train models
to detect driveways through furrow image segmentation. Therefore, the purpose of this research
was to develop an image segmentation model for automated weed control operations in cassava
plantation fields. To achieve this, image datasets were obtained from various fields to aid weed
detection models in automated weed management. Three models—Mask R-CNN, YOLACT, and
YOLOv8n-seg—were used to construct the image segmentation model, and they were evaluated
according to their precision, recall, and FPS. The results show that YOLOv8n-seg achieved the highest
accuracy and FPS (114.94 FPS); however, it experienced issues with frame segmentation during video
testing. In contrast, YOLACT had no segmentation issues in the video tests (23.45 FPS), indicating its
potential for driveway segmentation in cassava plantations. In summary, image segmentation for
detecting driveways can improve weed management in cassava fields, and the further automation of
low-cost mechanical weeders in tropical climates can be performed based on the YOLACT algorithm.

Keywords: cassava; image segmentation algorithms; ground remote sensing

1. Introduction

Cassava is an important tropical crop because it provides the third largest amount
of carbohydrates among tropical-climate plants, after rice and maize [1]. However, cas-
sava yields suffer from significant weed infestation in tropical climates. These weeds
are generally unwanted plants and grow in cultivated fields. This is the main problem
for cassava cultivation among farmers conducting tropical agriculture in Southeast Asia,
including Thailand, Malaysia, Indonesia, and Vietnam. Weeds reduce the cassava root
yield. Cassava root yields are 11–26 tons/hectare at initial weeding [2]. When weeding is
not performed, the cassava yield decreases to 4 tons/hectare, a 15% decrease compared
with the regular cassava root yield. If there are three rounds of weeding, the possible
yield is 22.7–36.6 tons/hectare. In Thailand, cassava is produced mainly for animal feed
and as a starch source. The reported cassava yield per hectare was 7510 kg in 2010 [3].
Cassava plantation can benefit low-income households in Thailand because cassava is a
drought-resistant crop, whereas other cereal crops do not perform well. The soil moisture
content needed to grow cassava is 1–10% below the permanent wilting point [4]. Land
preparation should be performed twice before planting because it ensures that moisture
is retained within the soil, which allows cassava plants to grow and survive throughout
the dry season [5]. Moreover, land preparation helps eradicate weeds in the field before
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planting. Cassava has a cluster of fleshy, tapered roots (Figure 1). Cassava roots tend to
elongate, radiate outward from the base of the stem, and form a cluster of surrounding
tubers [6]. Thus, cassava roots can expand into the driveway areas of cassava planting
grooves (Figure 1). Weeds disrupt cassava growth by taking water and nutrients from the
cassava plant, which reduces the cassava root yield. In Thailand, cassava farmers tend
to build ridges and furrows after land preparation because planting cassava on ridges
increases the cassava root yield, makes the field more manageable and productive, increases
the potential for work-saving mechanization, and increases cassava production compared
to planting on flat ground [7].
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Figure 1. Side view of the cassava plantation structure in the intrarow area of the field, with the
grooves between two cassava plants shown on the left and right.

Three types of weeds are common in cassava fields: grasses, sedges, and broadleaf
weeds, as shown in Figure 2. The specific grass-type weeds in Thailand are Mission grass
(Pennisetum polystachyon), Bermuda grass (Cynodon dactylon), and Cogon grass (Imperata
cylindrica). The specific sedge weed type in Thailand is Java grass (Cyperus rotundus).
The specific broadleaf-type weeds in Thailand are Siam weed (Chromolaena odorata), giant
sensitive plant (Mimosa invisa), and coatbuttons (Tridax procumbens) [8].
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1.1. Related Works

Advances have been made in computer vision technology and deep learning algo-
rithms, which have been applied in many sectors, including agricultural machinery and
crop breeding [9]. Both techniques have been applied to driveway detection and seg-
mentation. Computer vision technology and deep learning algorithms have also been
implemented in agricultural vehicles to recognize driveways and plants to address crop
damage, labor shortages, and operational safety issues in agricultural sectors. Both tech-
nologies have the potential to replace conventional methods of manually driving or pushing
a vehicle to the desired path, which poses a significant risk to operators. Computer vision
and deep learning technologies in agriculture have significantly progressed. An increasing
amount of research and development has been conducted on such technologies in recent
years, as described below.

Researchers have developed Agronav, an advanced framework for autonomous nav-
igation by agricultural robots and vehicles in the field [10]. This cutting-edge system
uses semantic segmentation and semantic line detection to process input images and out-
put the centerline, enabling seamless end-to-end vision-based navigation. Additionally,
Agroscapes, a meticulously annotated dataset collected from six different crops at varying
heights and angles, has been introduced. This comprehensive dataset enables the Agronav
framework to be effectively trained to operate across ground and aerial robotic platforms.

Machine vision-based automatic field navigation technology has been described in
previous research [11]. Vision navigation operates primarily on the basis of collected visual
information. Field path information is extracted from the image to control the robot’s
movement. In modern agriculture, most crops are grown in a rigid pattern. The distance
between rows is relatively constant, so vision-based weeding robots usually determine
the centerlines between crop rows as a guide. However, because of differences in the crop
type, growth stage, lighting conditions, soil color, and other factors, quickly and accurately
determining the locations of crop rows is challenging.

Researchers have also developed a vision-based navigation scheme to guide robots
through row-crop fields via computer vision and signal processing techniques without
manual intervention [12]. This approach uses onboard cameras to accurately follow crop
rows and switch between them and it works independently of global localization or
mapping. The system is designed to be deployed in fields with different canopy shapes
and plants at various growth stages, making it a versatile solution for different types of
crops. The system was tested under various illumination conditions on simulated and
actual fields, achieving an average navigation accuracy of 3.82 cm with minimal human
intervention in a four-wheel experimental robot.

The development of a robot-supervised learning system using convolutional neural
networks (CNNs) to automatically generate labels for semantic segmentation for crop row
detection in a field was developed in [13]. They used a training robot equipped with an RTK
GNSS and an RGB camera to train a neural network, which could be used for vision-based
navigation. The researchers tested the system on an agri-robot in a strawberry field and
successfully trained it on crop row segmentation without the need for hand-drawn image
labels. They reported that the resulting segmentation output of the CNNs was better than
the noisy labels on which the system was trained. Furthermore, open-loop field trials with
the agri-robot demonstrated that row following on the basis of the segmentation result
is likely accurate enough for closed-loop guidance. The automatic generation of noisy
segmentation labels has proven to be a promising approach for vision-based row following,
as it can quickly and easily adapt to new scenes.

1.2. Objectives

There is great potential to conduct research on and develop cassava weeders to reduce
the use of chemical herbicides in Thailand. Most of this technology involves manually
operated mechanical machines that use disk or moldboard plows to eliminate weeds in
cassava fields. A cassava field contains plants, planting rows, grooves, and headland
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turns. A mechanical weeder moves along the groove between two opposite rows of cassava
plants, and the headland turn gives the vehicle room to turn around. The mechanical
weeder moves along individual groove sections to eradicate weeds. However, farmers
must manually drag the weeder to make a turn and adjust the vehicle’s position to move to
the next planting groove. Therefore, the existing mechanical weeders must be converted
to low-cost automated weeders to reduce the manual labor of farmers in weeding. To
construct an automated weeding system, the weeder must recognize the headlands and
grooves of cassava planting fields. In this regard, driveway detection is necessary for
the cassava weeder to navigate inside the driveway to make weeding operations easier.
Most research has focused on weed and crop classification-based weed control robots
that use computer vision systems. However, to the best of our knowledge, none of the
related studies mention driveway segmentation, although dense weed patches occur near
driveways in cassava fields.

Ground-based image acquisition is an approach for collecting data remotely to develop
datasets [14]. These datasets can be used to train a model via deep learning algorithms.
A deep learning model is a neural network with many layers that can learn from large
amounts of data to perform specific tasks [15]. Deep learning for driveway detection
can be performed by collecting cassava plantation data, preparing the data, selecting the
model, adjusting the parameters, training the model, evaluating the model, and making
predictions. Ground-based image acquisition is essential because of the potential to gather
detailed information about specific features or the locations of weeds and cassava plants
from plantation fields and provide insights into the characteristics of each plantation.
This is very important for training deep learning models with custom datasets. A deep
learning model is essential because of its exceptional accuracy and high-quality results; its
multilayer architecture can achieve a high level of abstraction when working with large
data samples. Deep learning is increasingly popular in all fields that require information
extraction from data, including driveway detection [16]. Therefore, this research aimed to
create a system to detect driveways for weed control in cassava plantation grooves on the
basis of ground-based image acquisition datasets. After the driveways are detected, the
mechanical weeder can be automated to eradicate weeds in the furrows for the effective
management of cassava plantations.

2. Materials and Methods

This study focused on detecting drivable areas in cassava fields by developing a
vision-based detection system based on the following deep learning algorithms: Mask
R-CNN, YOLACT, and YOLOv8n-seg. These three algorithms can be applied to recognize
drivable areas in cassava fields, which supports the movement of cassava weeders in
cassava planting grooves and headland turn areas. In this research, we specifically used
Mask R-CNN, YOLACT, and YOLOv8n-seg because these algorithms have been highly
utilized in agricultural applications and have shown high accuracy [17,18]. To achieve
the desired results, several procedures are needed. The original picture datasets were
extracted from recorded video and manually labeled, as described in the next section.
Then, polygonal bounding boxes were used to annotate the drivable area in the cassava
field, and the labeled images were split into training and validation datasets. Mask R-
CNN, YOLACT, and YOLOv8n-seg were subsequently trained on the training datasets and
employed to detect single-class datasets. Finally, model evaluation was performed to test
the performance of the detection model (Figure 3).
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the segmentation system.

2.1. Remote Sensing-Based Ground Image Acquisition

The remote sensing-based ground image dataset for cassava planting fields was
collected in northern Thailand (18.0338◦ N, 100.0248◦ E). Five fields were used to record the
videos. The plants were 90 days old and 45–55 cm tall in the first field. In the second field,
the plants were 110 days old and 60–70 cm tall. In the third, the trees were 60 days old and
25–35 cm tall. In the fourth field, the plants were 30 days old and 15–25 cm tall. In the fifth
field, the plants were 30 days old and 15–25 cm tall. The videos were recorded three times
in each field, at 8:30, 11:45, and 15:30, from 14 to 17 November 2023, using a GoPro Action
camera (GoPro Inc., San Manteo, CA, USA) at a resolution of 1920 × 1080 pixels. The video
was recorded from 15 cm above the ground while walking through the cassava planting
grooves and headland turn sections. The data collection simulated the viewpoint of a
camera attached to a cassava weeder moving along the drivable area. The image dataset,
which captured the cassava planting grooves and headland turn areas, was extracted from
the video; approximately 3000 pictures were obtained and saved in Joint Photographic
Experts Group (JPEG) format. The images show the cassava planting grooves, headland
turns, and cassava plants (Figures 4–6).
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Figure 4. Cassava planting groove images were obtained at different times of the day (times are given
in Thailand Standard Time (THA)). (a) Cassava planting groove at 8:30; (b) cassava planting groove
at 11:45; (c) cassava planting groove at 15:30; (d) weeded cassava planting groove at 8:30; (e) weeded
cassava planting groove at 11:45; (f) weeded cassava planting groove at 15:30.
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2.2. Image Dataset Development

The 3000 images were randomly selected and augmented via a Python program
through flipping, cropping, and contrasting to increase the size of the dataset to 10,000 im-
ages. The newly created dataset was resized to 400 × 225 pixels to decrease the compu-
tational workload of the deep learning algorithm while training the model. Data aug-
mentation increases the accuracy of model predictions, which is vital for cutting-edge
deep learning systems. The labeling process was manually performed via Labelme® [19]
(Figure 5b,c,e,f,h,i,k,l). Polygonal bounding boxes were drawn; the objects marked in red
are cassava planting grooves and headland turns in the same class (i.e., “MovingPath”)
because the cassava weeder moves along these two sections while operating in cassava
plantations. Figures 5 and 6 show examples of annotated images obtained by Mask R-CNN,
YOLACT, and YOLOv8n-seg instance image segmentation. The annotated image data
were saved in a JavaScript object notation (JSON) file and were later converted to different
formats: Visual Geometry Group (VGG), Common Object in Context-JavaScript Object
Notation (COCO-JSON), and Text File Document (TXT) for Mask R-CNN, YOLACT, and
YOLOv8n-seg, respectively. Afterward, the dataset was divided into training and valida-
tion datasets with 7000 and 3000 images, respectively. Then, 100 original cassava planting
groove images were selected to test the segmentation performances of the algorithms.

2.3. Network Architecture

The efficiencies of three object segmentation algorithms, Mask R-CNN, YOLACT, and
YOLOv8n-seg, were compared. All three methods are image segmentation algorithms
that can identify and segment individual objects in an image to provide a more detailed
understanding of the image content. In the following section, the three deep learning
algorithms are introduced.

2.3.1. Mask R-CNN

Mask R-CNN is an image segmentation algorithm developed from Faster R-CNN, a
region-based convolutional neural network [20]. In the network structure (Figure 7), the
algorithmic process is as follows:

1. The input images of dimensions 800 × 800 are processed and input into ResNet50-FPN
to extract the features. ResNet50-FPN, a combination of a ResNet50 backbone and a
feature pyramid network (FPN), enhances the feature extraction across multiple scales.
In this process, the images are converted into a feature map of 32 × 32 × 2048 pixels;

2. The region proposal network (RPN) uses these feature maps to generate proposals or
candidate bounding boxes indicating objects that may be contained in the images. The
RPN then proposes potential regions of interest [21]. The ROI pooling layers extract
the feature maps from the corresponding region to ensure that the feature representa-
tions for all the proposed regions have identical spatial dimensions regardless of the
original sizes of the regions [22];

3. The feature map and regions of interest are sent to the ROIAlign layers to ensure that
all the proposed regions have identical sizes;

4. Finally, the fixed-size feature maps are fed to two parallel branches. The first branch
enters the object classification branch for class probability prediction for each proposed
region. The second branch is a bounding box regression branch that refines the
coordinates of the proposed bounding boxes to better fit the objects [23]. The algorithm
outputs the 1152 × 1152-pixel output picture, which includes segmentation masks
and bounding boxes.
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2.3.3. YOLOv8 Instance Segmentation

YOLOv8 is an object detection model that performs instance segmentation via YOLOv8-
seg, which uses the YOLACT principles for image segmentation [26]. YOLOv8-seg consists
of four main parts: the input, spine, neck, and head [27]:

1. Input: Images with a size of 640 × 640 pixels are input into the CSPDarknet53 back-
bone to extract features from the images. The model size is 6.5 megabytes (YOLOv8n-
seg) [28];
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2. Spine: The spine of YOLOv8-seg extracts features via a cross-stage partial (CSP)
layer called the C2f module. This cross-stage bottleneck is faster to implement than
convolutional modules and combines high-level features to improve the detection
accuracy. Additionally, the spatial pyramid pooling-fast (SPPF) layer and feature
convolution layer, which extract features at different levels, significantly improve the
model’s generalization ability;

3. Neck: the feature pyramid network (FPN) in YOLOv8-seg allows the model to lever-
age multiscale features to detect objects of varying sizes accurately;

4. Head: The head consists of a detection head and a segmentation head. The detection
head outputs the bounding box and class label. The segmentation head consists of
two parts for detection and segmentation and outputs a set of k masks and k detected
objects. This head simultaneously produces different segmentation output levels
inherited from the neck [29]. The segmentation results are subsequently combined to
produce a single output of the segmentation process (Figure 9). The output image is
640 × 360 pixels in size.
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2.4. Systems of Network Training and Testing

The Mask R-CNN, YOLACT, and YOLOv8n-seg training networks were built on
an open-source Python distribution with the environment manager Conda. Conda was
installed on a computer with an Intel Core i7 9th Gen CPU, 48 GB of RAM, and an NVIDIA
GeForce GTX 1660 6-GB GPU (1408 CUDA cores) running the Windows 10 64-bit operating
system. In accordance with the network frameworks, Mask R-CNN implements Python
with TensorFlow for training and evaluation. YOLACT uses PyTorch and Python for
training and evaluation. Computer vision frameworks, including CUDA 11.8, OpenCV
4.6.0, and Ultralytics 8.1.14, were used for object segmentation via YOLOv8. YOLOv8n-seg
was selected to train the model on the data because this method uses fewer computations
than other variants of YOLOv8 instance segmentation. YOLOv8n-seg trains the model
without greatly burdening the GPU. Table 1 shows the training configurations of Mask
R-CNN, YOLACT, and YOLOv8n-seg, including the input size, batch size, epoch, decay,
class number, learning rate, and momentum.
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Table 1. Training configurations of all image segmentation algorithms.

Model Input Size Batch Size Epoch Decay Class Learning Momentum

Mask R-CNN 800 × 800 2 30 0.0001 1 0.001 0.9
YOLACT 550 × 550 8 11 0.0005 1 0.001 0.9

YOLOv8n-seg 640 × 640 2 109 0.0005 1 0.001 0.937

2.5. Building the Cassava Field Driveway Detection Model

The cassava plantation driveway images were divided into training and testing
datasets at a 70:30 ratio. The data were manually labeled via the Labelme® program
and saved in the JSON file format. For Mask R-CNN, the labeled images were merged
into a single file and then converted to VGG format via a Python program to make them
compatible with the Mask R-CNN network. The converted data were divided into training
and validation folders. The ResNet50 backbone was utilized to train the Mask R-CNN
model, producing a driveway segmentation model saved in H5 format. For YOLACT, the
labeled image data were merged and converted into COCO-JSON format via Python. The
ResNet50 backbone was employed to train the YOLACT model, producing a driveway
detection model saved in PyTorch state dictionary (pth) format. For YOLOv8n-seg, the
Labelme® format image data were converted into TXT format via Roboflow, an end-to-end
computer vision platform. The data were then organized, and a YAML file was created to
configure the dataset path. The YOLOv8n-seg model was trained to create the driveway
segmentation model in serialized PyTorch state dictionary (pt) format.

2.6. Evaluation Metrics

The three instance segmentation models, Mask R-CNN, YOLACT, and YOLOv8n-seg,
were trained and tested on the same dataset and were split into ratios of 70% for training
and 30% for validation. The evaluation used AP performance metrics at different IoU
thresholds [30]. The evaluation metrics were first considered: The intersection over union
(IoU) measures how well the predicted mask or bounding box matches the ground-truth
data. It is calculated by dividing the area of the intersection, which is the overlapped
area between the predicted data and the ground-truth data, by the area of their union,
which is the area enclosed by both the predicted data and ground-truth data. A higher IoU
value (closer to 1.0) indicates better agreement between the predicted and ground-truth
masks, suggesting a more accurate model. Second, the precision (P) was calculated from
the numbers of true positives (TPs) and false positives (FPs) with a specified IoU threshold.
Higher IoU values indicate true positives, whereas lower values indicate false positives.
Third, the recall (R) reflects how often a machine learning model accurately identifies
true positives among all the actual positive samples in a dataset. It is calculated from the
numbers of true positives (TPs) and false negatives (FNs). Finally, the average precision
(AP) and mean average precision (mAP) are used to evaluate the model’s performance,
considering 10 IoU thresholds between 0.50 and 0.95. Precision and recall are essential for
bounding boxes and segmentation masks.

To evaluate the image segmentation model, tests were conducted separately on two
devices: a desktop computer used for training and a laptop computer equipped with
an Intel Core i7 9th-Gen processor and 16 GB of RAM without a GPU. The evaluation
compared the speed of the output generation for the video processing of each object
segmentation model between the GPU-equipped computer and non-GPU computer, which
was measured in terms of FPS (frames per second).

3. Results and Discussion
3.1. Image Dataset Evaluation

The image segmentation models based on Mask R-CNN, YOLACT, and YOLOv8n-seg
were trained and evaluated on identical training and validation datasets. Seventy percent of
the data were used to train the model, and the rest were used for validation to customize the
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hyperparameters during training to avoid the overfitting of mAP@0.5 and mAP@0.5:0.95.
The cassava plantation video and image datasets were collected, including various cassava,
weed, and field patterns at various times. Obtaining more datasets would be challenging,
as it would require much survey time to find suitable cassava plantations for driveway
detection. This process involves observing the characteristics of each cassava field. Most
cassava plantation datasets are not publicly available because some fields require farmers’
permission to record videos and collect data. Some cassava field plantations have no
headland turns, making them unsuitable for use in constructing datasets for this detection
system. Additionally, young cassava plants that are identical in size to weeds and grow
in the same location as weeds make it difficult to distinguish between weeds and cassava
plants in the field.

3.2. Training Performance

Overall, all the algorithms achieved good performances in the driveway segmentation
tasks. As shown in Table 2, YOLOv8n-seg had the highest segmentation accuracy, followed
by YOLACT and Mask R-CNN for mAP@0.5. For mAP@0.5:0.95, YOLOv8n-seg had the best
results (0.793), followed by YOLACT and Mask R-CNN. These results were subsequently
compared with the original mAP values of the weights pretrained on the COCO 2017 dataset
as a standard benchmark to evaluate the performance of the computer vision models [31].
The cassava datasets available for public use include the Makerere University cassava
image datasets, which contain images of diseased and healthy cassava leaves. However,
cassava plantation groove image datasets are still not available to the public. Therefore, the
original COCO 2017 mAP values were chosen to evaluate the performance of the driveway
segmentation model. Mask R-CNN had slightly worse mAP@0.5:0.95 results than the
original COCO 2017 mAP, whereas the other image segmentation algorithms had better
mAP@0.5:0.95 results than the original COCO 2017 mAP value.

Table 2. Accuracy performances of all the segmentation models when using mAP@0.5 and
mAP@0.5:0.95.

No. Model Backbone Original mAP of Weights Pretrained
on COCO 2017 mAP@0.5 mAP@0.5:0.95

1 Mask R-CNN ResNet50 0.361 0.735 0.349
2 YOLACT ResNet50 0.298 0.988 0.733
3 YOLOv8n-seg CSPDarknet53 0.367 0.994 0.793

The precision–recall curves of the YOLOv8n-seg cassava driveway segmentation
model were generated via mAP@0.5 (Figure 10). These curves show a balance between the
precision and recall values for different thresholds. The large area below the blue line in the
precision–recall curve indicates high precision and high recall. High precision corresponds
to a low false-positive rate, and high recall corresponds to a low false-negative rate [32].

The Mask R-CNN results are illustrated using a loss graph (a smaller value indicates
a better model). The model was trained over 30 epochs. According to both graphs, the
loss value gradually increased during data training (Figure 11). However, the loss value
dropped sharply at the fifth epoch to approximately 0.24 for the bounding box loss and
0.25 for the mask loss. Then, the loss value continued to decrease until the last epoch, which
can be attributed to the mask loss being slightly greater than the bounding box loss.

The mAP comparison results for mAPs at different IoU values are shown from
mAP@0.5 to mAP@0.95 (Figure 12). According to the graph, all the mAP results for Mask
R-CNN, YOLACT, and YOLOv8n-seg gradually decreased from mAP@0.5 to mAP@0.95.
Mask R-CNN had the lowest accuracy, which began at 0.735 at mAP@0.5 and gradually
decreased to 0 at mAP@0.95. YOLOv8n-seg had the highest accuracy for each mAP value
among all the IoUs, which ranged from 0.994 at mAP@0.5 to 0.1545 at mAP@0.95. YOLACT
and YOLOv8n-seg had similar accuracy values from mAP@0.5 to mAP@0.85, as the slight
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downward pattern of the bar graph indicates. However, there was a significant decrease in
the mAP@0.90 value of YOLACT from 0.6137 to 0.3578, and the mAP value decreased to
0.042 at mAP@0.95.
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All three image segmentation models were successfully trained on a desktop computer
with a discrete GPU. YOLOv8n-seg had the best training performance for mAP@0.5 and
mAP@0.5:0.95. The Mask R-CNN training parameters for the Kiwi fruit detection system
using the ResNet50 backbone were similar to those of our driveway detection system,
which yielded a high accuracy of 0.984 [33]. However, there were limitations for particular
image segmentation models. In the training process for Mask R-CNN and YOLACT, the
ResNet101 backbone could not be employed because of the computational capacity of the
GPU. To address this, the ResNet50 backbone was used. In the case of YOLOv8n-seg, the
existing library used to convert the Labelme JSON format to the TXT format could not
correctly convert the complex polygonal labeling shape, so YOLOv8n-seg could not train
the model. To overcome this, Roboflow web-based frameworks (available online: https:
//roboflow.com/, accessed on 10 May 2024) were implemented to convert the label format
because Roboflow has a prebuilt image data conversion system that is fast and robust.

https://roboflow.com/
https://roboflow.com/
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3.3. Testing Performance
3.3.1. Model Speed Performance

FPS values were selected as a metric to compare the model speed between desktop
computers with discrete GPUs and laptop computers without discrete GPUs. The FPS
values of Mask R-CNN, YOLACT, and YOLOv8n-seg were obtained by adding Python
code to measure the time taken to predict each model. The code was given a 19 s sample
video as input and was executed via the Anaconda command prompt to calculate the
FPS value. A total of 300 separate original images were also used to evaluate the testing
performance in terms of the model inference. Table 3 shows the results.

Table 3. FPS results of the segmentation model between the GPU and CPU computers.

Devices Mask R-CNN YOLACT YOLOv8n-seg

GPUs 1.92 FPS 23.45 FPS 114.94 FPS
CPUs 0.38 FPS 1.49 FPS 12.16 FPS

According to Table 3, YOLOv8n-seg had the highest FPS value when deployed on
desktop computers with discrete GPUs and CPUs, followed by YOLACT and Mask R-CNN.
Mask R-CNN had the lowest FPS value. The YOLOv8n-seg results were approximately five
times and nine times better than those of YOLACT with and without a GPU, respectively.
Owing to its high FPS and accuracy, YOLOv8-seg can perform real-time cassava field
driveway segmentation.

3.3.2. Model Segmentation Performance

All three segmentation models can correctly segment the cassava planting grooves
in both weeded and unweeded fields (Figure 13a–i). The Mask R-CNN, YOLACT, and
YOLOv8n-seg segmentation results for weeded and ridged furrows, indicated as red
instance masks and bounding boxes, were correctly applied to cassava planting grooves
with high segmentation probability (Figure 13a–c). Mask R-CNN, YOLACT, and YOLOv8n-
seg segmentation resulted in an unweeded field with tall cassava plants, which indicated
that the red masks were applied to the weed area in the cassava planting groove (Figure 13d–
f). The results indicate that the segmentation accuracies of Mask R-CNN and YOLOv8n-seg
were lower than that of YOLACT (Figure 13d,f). Additionally, Mask R-CNN, YOLOv8n-
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seg, and YOLACT could not segment the weeds on the left side of the planting groove.
Figure 13g–i show the Mask R-CNN, YOLACT, and YOLOv8n-seg segmentation results
for short cassava plants in a field. The segmentation masks of all the algorithms could
accurately cover the cassava planting groove areas. However, the YOLOv8n-seg mask can
cover a greater area than the YOLACT and Mask R-CNN masks (Figure 13i). In terms of
the inference speed, YOLOv8n-seg achieved the highest FPS results, reaching 114.94 FPS on
computers with discrete GPUs and 12.16 FPS on those without, outperforming YOLACT
and Mask R-CNN. In a separate study, YOLACT delivered a result of 0.837 for drivable
area detection on high-speed roads, which was lower than our result [34].
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Figure 13. Sample driveway segmentation results of Mask R-CNN (a,d,g), YOLACT (b,e,h), and
YOLOv8n-seg (c,f,i) on three types of planting grooves in the cassava plantation.

Mask R-CNN, YOLACT, and YOLOv8n-seg successfully segmented the headland
turn section of a cassava plantation (Figure 14). Images of three types of headland turns
were used to evaluate the segmentation performance of the driveway detection model:
grass (Figure 14a–c), dark-colored soil (Figure 14d–f), and light-colored soil (Figure 14g–i).
Figure 14a,d,g, Figure 14b,e,h, and Figure 14 c,f,i show the segmentation results of Mask R-
CNN, YOLACT, and YOLOv8n-seg, respectively. Mask R-CNN more accurately segmented
dark-colored headland turns than YOLACT and YOLOv8n-seg did (Figure 14d). For the
grass headland turn, Mask R-CNN could segment the area more accurately than YOLACT
and YOLOv8n-seg could (Figure 14a). For light-colored headland turns, Mask R-CNN
and YOLOv8n-seg could apply segmentation masks that covered the area of the headland
turn more completely than those of YOLACT (Figure 14g,i). However, each segmentation
model has its limitations. The Mask R-CNN model struggled to segment headland turns,
which are sometimes covered with grass, as shown in Figure 15a, resulting in no detection.
YOLACT detected partial cassava plants and nearby cassava planting grooves, as depicted
in Figure 15b. Conversely, the YOLOv8n-seg model detected two areas in a single picture
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because the NMS failed to eliminate overlapping detections, as shown in Figure 15c. These
findings could be applied to segment driveways effectively in cassava plantations to aid
weeders in navigating precisely within cassava planting grooves. However, inappropriate
detection issues arose with YOLOv8n-seg during the evaluation of the segmentation model.
Consequently, the YOLACT image segmentation network was found to be more suitable
for weeders in driveway segmentation in cassava plantations.
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seg (c,f,i) for three types of headland turn areas in a cassava plantation. 

Figure 14. Driveway segmentation results of Mask R-CNN (a,d,g), YOLACT (b,e,h), and YOLOv8n-
seg (c,f,i) for three types of headland turn areas in a cassava plantation.
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3.3.3. Implementation of the Detection Results

This research aimed to obtain an automated navigation system for cassava weeders by
utilizing a model trained on ground-based image datasets to segment only the drivable
areas of the cassava field. Such automation would enable the weeder to move through
the cassava planting field, make automatic turns at the headland, and proceed to another
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planting groove for unmanned weed management. The model is intended to detect cassava
planting grooves and driveways and control the steering mechanism (Figure 16). By
implementing driveway segmentation for weed management, the model has the potential
to significantly reduce the need for manual labor in weeding operations.
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4. Conclusions

Weed management, when performed manually or with mechanical weeders, is time-
consuming and potentially ineffective. Therefore, a ground-based image segmentation
method was developed to automate mechanical weeders to detect driveways for weed
management in cassava plantations. In this context, cassava plantation datasets are greatly
needed for constructing a driveway detection model. However, detecting driveways in
cassava fields is challenging due to the lack of datasets available to the public. To address
these challenges, this study presents a driveway segmentation method based on deep
learning approaches. In this context, three image segmentation algorithms for segmenting
driveways in cassava fields are presented: Mask R-CNN, YOLACT, and YOLOv8n-seg.
All three used the same datasets for the training, validation, and testing. All the proposed
algorithms can be deployed on a personal computer without a discrete GPU to enable
cassava weeder navigation. The following conclusions are drawn from this research:

1. Dataset Construction: Images of cassava plantations were collected at various times
and under various conditions. In total, 3000 images were selected from the cassava
datasets, which were augmented to 10,000. The datasets were separated into training
and validation sets. Afterward, the data were input into the different image segmen-
tation algorithms for training. A separate set of 300 original images was used for
evaluating the test performances of the models;

2. Driveway Detection: Drivable areas were successfully detected via the Mask R-CNN,
YOLACT, and YOLOv8n-seg image segmentation algorithms. The training and test
performances were assessed. YOLOv8n-seg achieved the best training performance in
terms of both mAP@0.5 and mAP@0.5:0.95, which were 0.994 and 0.793, respectively.
YOLOv8n-seg achieved the best FPS results on computers with and without discrete
GPUs: 114.94 FPS and 12.16 FPS, respectively;

3. Segmentation Results: New results were obtained via Mask R-CNN, which had the
lowest accuracy at mAP@0.5 and resulted in inappropriate detections during testing
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on the video. The FPS results of all three image segmentation networks were obtained.
YOLOv8n-seg obtained the best results, followed by YOLACT and Mask R-CNN.
However, during testing on the video, YOLOv8n-seg yielded double detection on
a single frame because NMS did not eliminate overlapping detections. Therefore,
YOLACT can be implemented in driveway detection systems because this issue does
not occur with it;

4. Proposed Implementation: Further research will be conducted on a ground-based
image dataset with a computer vision system that uses deep learning algorithms to
automatically navigate a mechanical weeder in the cassava plantation driveway of a
planting groove along a headland turn for unmanned weed management.
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