Balancing Efficiency and Quality: Effects of Gradual Temperature Increase on Extra Virgin Olive Oil Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olives
2.2. Experimental Conditions
- 21 °C for the entire malaxation time (25 min), labeled Low Temperature
- 21 °C for the first 15 min, followed by 27 °C for the next 10 min, labeled Low–High Temperature.
- 27 °C for the entire malaxation time (25 min), labeled High Temperature
2.3. Chemical Analysis
2.4. Volatile Organic Compounds Analysis
2.5. Sensory Analysis
2.6. Statistical Analysis
3. Results
3.1. Quality Parameters in EVOO
3.2. Phenolic Compounds, VOCs Concentration and Sensory Description
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Environmental Protection Agency. Climate Change Impacts on Agriculture and Food Supply; U.S. Environmental Protection Agency: Washington, DC, USA, 2023.
- Boselli, E.; Di Lecce, G.; Strabbioli, R.; Pieralisi, G.; Frega, N.G. Are virgin olive oils obtained below 27 °C better than those produced at higher temperatures? LWT 2009, 42, 748–757. [Google Scholar] [CrossRef]
- Nissim, Y.; Shloberg, M.; Biton, I.; Many, Y.; Doron-Faigenboim, A.; Zemach, H.; Hovav, R.; Kerem, Z.; Avidan, B.; Ben-Ari, G. High temperature environment reduces olive oil yield and quality. PLoS ONE 2020, 15, e0231956. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Masella, P.; Angeloni, G.; Migliorini, M.; Parenti, A. Changes in Olive Paste Composition During Decanter Feeding and Effects on Oil Yield. Eur. J. Lipid Sci. Technol. 2017, 119, 1700223. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Vierhuis, E.; Servili, M.; Baldioli, M.; Schols, H.A.; Voragen, A.G.J.; Montedoro, G. Effect of Enzyme Treatment during Mechanical Extraction of Olive Oil on Phenolic Compounds and Polysaccharides. J. Agric. Food Chem. 2001, 49, 1218–1223. [Google Scholar] [CrossRef]
- Tamborrino, A.; Pati, S.; Romaniello, R.; Quinto, M.; Zagaria, R.; Leone, A. Design and implementation of an automatically controlled malaxer pilot plant equipped with an in-line oxygen injection system into the olive paste. J. Food Eng. 2014, 141, 1–12. [Google Scholar] [CrossRef]
- Perone, C.; Romaniello, R.; Leone, A.; Catalano, P.; Tamborrino, A. CFD analysis of a tubular heat exchanger for the conditioning of olive paste. Appl. Sci. 2021, 11, 1858. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E. A nalysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. J. Chromatogr. A 2003, 983, 19–33. [Google Scholar] [CrossRef]
- Mateos, R.; Cert, A.; Carmen Pérez-Camino, M.; García, J.M. Evaluation of Virgin Olive Oil Bitterness by Quantification of Secoiridoid Derivatives. J. Am. Oil Chem. Soc. 2004, 81, 71–75. [Google Scholar] [CrossRef]
- Corti, F.; Zanoni, B.; Parenti, A.; Masella, P.; Breschi, C.; Angeloni, G.; Spadi, A.; Guerrini, L. A methodological approach to estimate the overall heat transfer coefficient in olive paste malaxers. J. Food Eng. 2023, 343, 111377. [Google Scholar] [CrossRef]
- Veneziani, G.; Nucciarelli, D.; Taticchi, A.; Esposto, S.; Selvaggini, R.; Tomasone, R.; Pagano, M.; Servili, M. Application of low temperature during the malaxation phase of virgin olive oil mechanical extraction processes of three different italian cultivars. Foods 2021, 10, 1578. [Google Scholar] [CrossRef] [PubMed]
- Masella, P.; Guerrini, L.; Angeloni, G.; Spadi, A.; Baldi, F.; Parenti, A. Freezing/storing olives, consequences for extra virgin olive oil quality. Int. J. Refrig. 2019, 106, 24–32. [Google Scholar] [CrossRef]
- Guerrini, L.; Masella, P.; Angeloni, G.; Zanoni, B.; Breschi, C.; Calamai, L.; Parenti, A. The effect of an increase in paste temperature between malaxation and centrifugation on olive oil quality and yield: Preliminary results. Ital. J. Food Sci. 2019, 31, 451–458. [Google Scholar] [CrossRef]
- Uceda, M.; Frias, L. Harvest dates. Evolution of the fruit oil content, oil composition and oil quality. In Proceedings of the II Seminario Oleícola Internacional, International Olive Oil Council, Cordoba, Spain, 6–17 October 1975; pp. 125–128. [Google Scholar]
- Anallely, L.; Ninot, A.; Vallverd, A. Influence of the Ripening Stage and Extraction Conditions on the Phenolic Fingerprint of ‘Corbella ’ Extra-Virgin Olive Oil. Antioxidants 2021, 10, 877. [Google Scholar] [CrossRef]
- EC COMMISSION REGULATION (EC) No 640/2008 of 4 July 2008 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2008, 51, 11–16.
- International Olive Council Guide for the Determination of the Characteristics of Oil-Olives; International Olive Council: Madrid, Spain, 2011; p. 39.
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Mulinacci, N. New Volatile Molecular Markers of Rancidity in Virgin Olive Oils under Nonaccelerated Oxidative Storage Conditions. J. Agric. Food Chem. 2019, 67, 13150–13163. [Google Scholar] [CrossRef] [PubMed]
- Olmo-Cunillera, A.; Lozano-Castellón, J.; Pérez, M.; Miliarakis, E.; Tresserra-Rimbau, A.; Ninot, A.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A. Optimizing the malaxation conditions to produce an arbequina EVOO with high content of bioactive compounds. Antioxidants 2021, 10, 1819. [Google Scholar] [CrossRef]
- Servili, M.; Taticchi, A.; Esposto, S.; Urbani, S.; Selvaggini, R.; Montedoro, G. Influence of the decrease in oxygen during malaxation of olive paste on the composition of volatiles and phenolic compounds in virgin olive oil. J. Agric. Food Chem. 2008, 56, 10048–10055. [Google Scholar] [CrossRef]
- Perone, C.; Catalano, F.; Leone, A.; Berardi, A.; Tamborrino, A. Modelling the Rheology of Olive Paste for Oil Extraction Plant Automation: Effects of the Crushing Process on the Rheology of Olive Pastes. Foods 2023, 12, 2218. [Google Scholar] [CrossRef] [PubMed]
- Nucciarelli, D.; Esposto, S.; Veneziani, G.; Daidone, L.; Urbani, S.; Taticchi, A.; Selvaggini, R.; Servili, M. The Use of a Cooling Crusher to Reduce the Temperature of Olive Paste and Improve EVOO Quality of Coratina, Peranzana, and Moresca Cultivars: Impact on Phenolic and Volatile Compounds. Food Bioprocess Technol. 2022, 15, 1988–1996. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, W.; Yu, J.; Zhao, L.; Wang, K.; Hu, Z.; Liu, X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants 2023, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Mugnozza, G.S.; Gargouri, M. Mechanical strategies to increase nutritional and sensory quality of virgin olive oil by modulating the endogenous enzyme activities. Compr. Rev. Food Sci. Food Saf. 2014, 13, 135–154. [Google Scholar] [CrossRef]
- Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Tracking sensory characteristics of virgin olive oils during storage: Interpretation of their changes from a multiparametric perspective. Molecules 2020, 25, 1686. [Google Scholar] [CrossRef]
Samples | Mean Temperature (°C) | Dev. Standard |
---|---|---|
Low Temperature | 21.52 | 0.46 |
Low–High Temperature | 21.8–27.8 | 0.55–0.45 |
High Temperature | 26.81 | 0.41 |
Samples | Low Temperature | Low–High Temperature | High Temperature |
---|---|---|---|
Free Fatty Acids (%) | 0.28 ± 0.01 a | 0.28 ± 0.01 a | 0.29 ± 0.01 a |
Peroxide number (meq O2 kg−1) | 4.82 ± 0.58 a | 5.44 ± 0.35 a | 5.99 ± 0.64 a |
K232 | 1.77 ± 0.04 a | 1.79 ± 0.01 a | 1.81 ± 0.03 a |
K270 | 0.13 ± 0.00 a | 0.12 ± 0.00 a | 0.13 ± 0.00 a |
ΔK | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
OY (%) | 16.43 ± 0.24 b | 16.76 ± 0.20 ab | 17.18 ± 0.27 a |
EI (%) | 71.10 ± 0.71 b | 75.96 ± 1.34 a | 75.35 ± 1.39 a |
Samples | Low Temperature | Low–High Temperature | High Temperature | |
---|---|---|---|---|
Hydroxytyrosol | 2.15 ± 0.16 b | 2.10 ± 0.11 b | 2.78 ± 0.19 a | |
Tyrosol | 4.06 ± 0.07 b | 3.99 ± 0.06 b | 4.90 ± 0.08 a | |
Tyrosyl acetate | 3.31 ± 1.74 a | 4.10 ± 1.79 a | 1.82 ± 1.22 a | |
Vanillic acid + Caffeic acid | 2.61 ± 0.16 b | 2.25 ± 0.15 b | 3.39 ± 0.01 a | |
Vanillin | 2.12 ± 0.19 a | 1.74 ± 0.10 b | 2.35 ± 0.07 a | |
Para-coumaric acid | 2.03 ± 0.18 b | 1.87 ± 0.24 b | 2.96 ± 0.21 a | |
Hydroxy tyrosyl acetate | 0.47 ± 0.10 b | 0.57 ± 0.07 ab | 0.69 ± 0.09 a | |
Ferulic acid | 5.61 ± 0.12 b | 3.09 ± 0.19 c | 7.19 ± 0.10 a | |
Ortho-coumaric acid | 1.24 ± 0.30 a | 1.19 ± 0.51 a | 1.84 ± 0.20 a | |
Cinnamic acid | 3.24 ± 0.38 a | 4.82 ± 1.44 a | 2.66 ± 0.38 a | |
Decarboxy methyl oleuropein aglycone, oxidised dialdehyde | 1.27 ± 0.43 a | 1.40 ± 0.35 a | 1.64 ± 0.89 a | |
Oleuropein | 7.70 ± 2.89 a | 9.69 ± 2.40 a | 6.69 ± 2.36 a | |
Oleuropein-aglycone mono-aldehyde (3,4-DHPEA-EA) | 21.16 ± 2.14 b | 22.73 ± 0.82 b | 33.11 ± 2.27 a | |
Oleuropein-aglycone di-aldehyde (3,4-DHPEA-EDA) | 100.81 ± 1.13 c | 122.21 ± 3.04 b | 161.77 ± 6.99 a | |
Oleuropein aglycone, oxidised aldehyde and hydroxylic | 6.55 ± 2.12 a | 6.10 ± 1.52 a | 6.76 ± 0.38 a | |
Oleuropein aglycone, aldehyde and hydroxylic | 26.50 ± 0.14 a | 24.22 ± 1.05 ab | 20.89 ± 1.23 b | |
Decarboxymethyl ligstroside aglycone, oxidised dialdehyde | 17.22 ± 0.96 a | 18.14 ± 1.18 a | 18.94 ± 1.86 a | |
Ligstroside-aglycone mono-aldehyde (p-HPEA-EA) | 9.34 ± 3.13 a | 9.81 ± 0.78 a | 6.71 ± 0.39 a | |
Ligstroside-aglycone di-aldehyde (p-HPEA-EDA) | 35.30 ± 1.03 c | 45.55 ± 3.61 b | 62.44 ± 3.88 a | |
Ligstroside aglycone, oxidised aldehyde and hydroxylic | 14.31 ± 2.41 a | 17.24 ± 1.63 a | 15.86 ± 0.99 a | |
Ligstroside aglycone, aldehyde and hydroxylic | 7.38 ± 0.68 a | 5.59 ± 0.88 b | 4.80 ± 0.31 b | |
Pinoresinol | 15.52 ± 1.20 b | 22.80 ± 1.15 a | 16.67 ± 0.88 b | |
Luteolin + Methyl-luteolin | 14.15 ± 1.08 b | 21.66 ± 1.45 a | 21.61 ± 1.31 a | |
Apigenin | 1.35 ± 0.42 a | 1.74 ± 0.11 a | 2.01 ± 0.41 a | |
Total phenolic compounds | 305.39 ± 3.21 c | 354.61 ± 5.61 b | 410.49 ± 15.12 a |
Samples | Low Temperature | Low–High Temperature | High Temperature |
---|---|---|---|
C5 | 0.58 ± 0.13 a | 0.68 ± 0.08 a | 0.69 ± 0.03 a |
C6 | 26.79 ± 1.63 b | 31.74 ± 0.46 a | 32.63 ± 2.76 a |
Derived from microbial metabolites | 8.18 ± 0.67 b | 9.95 ± 0.26 a | 10.21 ± 0.53 a |
Others | 11.28 ± 0.35 b | 11.24 ± 0.15 b | 14.47 ± 1.41 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angeloni, G.; Spadi, A.; Corti, F.; Calamai, L.; Masella, P.; Parenti, A. Balancing Efficiency and Quality: Effects of Gradual Temperature Increase on Extra Virgin Olive Oil Extraction. AgriEngineering 2024, 6, 3553-3562. https://doi.org/10.3390/agriengineering6040202
Angeloni G, Spadi A, Corti F, Calamai L, Masella P, Parenti A. Balancing Efficiency and Quality: Effects of Gradual Temperature Increase on Extra Virgin Olive Oil Extraction. AgriEngineering. 2024; 6(4):3553-3562. https://doi.org/10.3390/agriengineering6040202
Chicago/Turabian StyleAngeloni, Giulia, Agnese Spadi, Ferdinando Corti, Luca Calamai, Piernicola Masella, and Alessandro Parenti. 2024. "Balancing Efficiency and Quality: Effects of Gradual Temperature Increase on Extra Virgin Olive Oil Extraction" AgriEngineering 6, no. 4: 3553-3562. https://doi.org/10.3390/agriengineering6040202
APA StyleAngeloni, G., Spadi, A., Corti, F., Calamai, L., Masella, P., & Parenti, A. (2024). Balancing Efficiency and Quality: Effects of Gradual Temperature Increase on Extra Virgin Olive Oil Extraction. AgriEngineering, 6(4), 3553-3562. https://doi.org/10.3390/agriengineering6040202