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Abstract: Traditional techniques for measuring leaf nitrogen content (LNC) involve slow and labo-
rious processes, and radiometric data have been used to assist in the nutritional analysis of plants.
Therefore, this study aimed to evaluate the performance of LNC predictions in corn plants based
on laboratory hyperspectral Vis-NIR-SWIR data. The treatments corresponded to 60, 120, 180, and
240 kg ha−1 of nitrogen, in addition to the control (0 kg ha−1), and they were distributed using a
randomized complete block design. At the laboratory, hyperspectral data of the leaves and LNC were
obtained. The hyperspectral data were used in the calculation of different vegetation indices (VIs),
which were applied in a predictive model—partial least squares regression (PLSR)—and the capacity
of the prediction was assessed. The combination of bands and VIs generated a better prediction
(0.74 < R2 < 0.87; 1.00 < RMSE < 1.50 kg ha−1) in comparison with the individual prediction by band
(0.69 < R2 < 0.85; 1.00 < RMSE < 1.77 kg ha−1) and by VI (0.55 < R2 < 0.68; 1.00 < RMSE < 1.78 kg ha−1).
Hyperspectral data offer a new opportunity to monitor the LNC in corn plants, especially in the
region comprising the bands from 450 to 750 nm, since these were the bands that were most sensitive
to the LNC.

Keywords: nutritional status; hyperspectral data; leaf nitrogen content

1. Introduction

Corn (Zea mays L.) is one of the most important crops in the Brazilian agribusiness
production chain. The growing demand for corn reinforces its potential not only as a food
source, with a high relevance for livestock and agriculture, but also as an indispensable raw
material in nutrition, health, the chemical industry, and bioenergy [1]. Furthermore, corn
has an essential function in soil conservation and the sustainability of production systems
due to the high amount of straw produced from corn, which, in turn, helps with protection,
nutrient cycling, and increasing soil organic matter (SOM), in addition to its roots helping
with soil decompression [2].

Among the main limiting factors in the development of corn plants, the nutritional
supply stands out. The management of and recommendations for nitrogen (N) are com-
plex, given the various chemical and biological reactions that influence it and its great
dependence on edaphoclimatic conditions for absorption by the plant [3]. N monitoring
and quantification are based on conventional approaches, including an analysis of plant
tissues [4]. Analyzing the leaf nutrient content is one strategy for monitoring crops and
adequately managing nitrogen-based fertilizers.

However, these methods are expensive, in addition to presenting limitations in large-
scale applications due to the slow speed of data acquisition and the demand for a large
number of samples [5]. Alternatively, hyperspectral remote sensing (RS), a technique
described as an ally in the efficiency of agricultural production systems, has emerged as an
agile, effective, and low-cost tool, and studies on the application of RS in the monitoring

AgriEngineering 2024, 6, 4135–4153. https://doi.org/10.3390/agriengineering6040233 https://www.mdpi.com/journal/agriengineering

https://doi.org/10.3390/agriengineering6040233
https://doi.org/10.3390/agriengineering6040233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com
https://orcid.org/0000-0003-3461-357X
https://doi.org/10.3390/agriengineering6040233
https://www.mdpi.com/journal/agriengineering
https://www.mdpi.com/article/10.3390/agriengineering6040233?type=check_update&version=2


AgriEngineering 2024, 6 4136

of leaf nitrogen levels in crops have great significance [6–9]. The spectral reflectance of
plants in the Vis-NIR-SWIR range provides important information on the N status of crops.
Remote sensing indicators of N status are related to chlorophyll or N concentration, and
hyperspectral data are usually obtained from crop leaves or the whole canopy. Some
studies describe the significant relationship between the leaves/canopy and grain yield
in cereal crops [10,11]. Photosynthesis is the primary determinant of the conversion of
light into biomass and is one of the driving factors of crop yield, whether biomass or grain
production [12]. Therefore, remote sensing indicators derived from the aerial structure of
plants usually provide important information for crop monitoring, including an assessment
of nutrient status.

In addition, the potential of VIs to estimate leaf N has been widely explored. VIs
have applications in several crops, such as wheat [13], corn [14], sugarcane [15], and
others [16], since indices are generally simple to calculate and can reduce the interference
from other targets [17]. Nonetheless, hyperspectral data, due to their quantity, require
robust techniques to be evaluated, such as partial least squares regression (PLSR). This
method has been frequently applied to detect nutritional deficiencies, especially when
hyperspectral data are used [7,18,19], because it is a statistical procedure that flexibly adjusts
leaf spectra, measuring several characteristics with a high predictive performance [20,21].

Promising results have been obtained using PLSR for nutrient predictions (R2 = 0.76
and RMSE = 0.11 g kg−1) in sugarcane [22]; in rice, with the R2 varying from 0.68 to 0.87 and
NRMSE varying from 10 to 29% [23]; in soybeans (R2 = 0.80) [24]; and in pine trees, with an
R2 = 0.62 [25]. Reports on nitrogen predictions in corn leaves have also presented promising
results, with R2 ranging from 0.6 to 0.9. Zhang et al. [26] developed an NIR device to
retrieve the spectra from corn crops and predict the average nitrogen content in fresh leaves.
In this case, the models’ performance corresponded to an R2 = 0.75 and an RMSE = 0.26 g.
Silva et al. [27] evaluated the effect of different abiotic stress treatments on maize and
sorghum leaves. Vis-NIR-SWIR and mid-infrared (MIR) spectra were used to calibrate the
PLSR models, and the results were an R2 between 0.77 and 0.93. Xie et al. [28] found that
the best spectral region for N predictions in corn leaves was 350–1000 nm, and they were
able to calibrate models with an R2 and RMSE of 0.65 and 0.26, respectively. Ge at al. [23]
predicted the nitrogen levels of leaves with different water content levels and indicated
that the models calibrated with Vis-NIR-SWIR spectra had a good performance (R2 = 0.86
and RPD = 2.64). Nevertheless, these studies suggest that further investigations are needed
regarding the nutritional analysis; given the complexity inherent in nitrogen dynamics in
soil and crops, robust and reliable techniques regarding the leaf nitrogen content (LNC)
require more in-depth investigations, with the aim of improving the understanding of the
information offered by the spectral response.

Therefore, this study aimed to evaluate the performance of LNC predictions in corn
plants through the partial least squares regression algorithm. While many studies have
evaluated the potential of Vis-NIR-SWIR spectroscopy to predict leaf nitrogen in corn fields
in North America and Europe, very few have tested this method under tropical conditions.
Due to the differences in the soil, climate, and plant cultivars, it is extremely important
to evaluate the method’s potential under different environmental conditions. Thus, this
research aimed to obtain insights into N quantification using spectroradiometry, as well as
discuss the methodological limitations that still need to be overcome.

2. Materials and Methods
2.1. Experiment Description

This experiment was performed at the “Luiz de Queiroz” College of Agriculture
(ESALQ/USP) in the municipality of Piracicaba, at the geographic coordinates 22◦41′54′′ S,
47◦38′34′′ W, and an altitude of 540 m (Figure 1). The soil in the region is classified as Nitisol
according to the World Reference Base [29], presenting a high base saturation and clay
content. According to the Köppen classification, the local climate is of the Cwa type, humid
subtropical, with dry winters and rainy summers, an average rainfall of 1247 mm year−1,
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an average temperature in the hottest month of 22 ◦C and an average temperature in the
coldest month of 18 ◦C, an average relative humidity of 74%, and an average wind speed
of 2.2 m s−1 [30].
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Figure 1. Site location in Brazil (a) and in the State of São Paulo (b). Experimental design and nitrogen
doses (c).

Sowing occurred on 11 December 2021, and the corn cultivar used was SHS7939, a
hybrid considered early with a high productivity. This cultivar is grown throughout Brazil,
both in the summer and in the off-season. It is used in the production of grains, whole
plant silage, and wet grain silage.

2.1.1. Description of Fertilization and Design

The treatments corresponded to doses of 60, 120, 180, and 240 kg of nitrogen per ha−1,
in addition to the control (without nitrogen application), using urea as the fertilizer. The
experimental design adopted was a randomized complete block design (RCBD) with five
treatments and five replications, totaling 25 plots. Each plot consisted of 6 corn rows
(4 central rows and 2 border rows), with dimensions of 8 × 2.7 m (Figure 1). Fertilization
was conducted in a fractional way, with the application of 30 kg ha−1 of fertilizer at sowing
and the remainder divided into two equal parts distributed at vegetative growth stages
3 (V3) and 5 (V5) (Table 1).
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Table 1. Fertilization distribution.

Treatments Doses Seeding V3 V5

---- Nitrogen in kg ha−1 -----

T1 0 0 0 0
T2 60 30 15 15
T3 120 30 45 45
T4 180 30 75 75
T5 240 30 105 105

2.1.2. Acquisition of Hyperspectral Data of the Plant and Analyses of the N Content

Spectral data were measured at 25, 35, 50, and 65 days after emergence (DAE). In each
campaign, 10 leaves were acquired from each experimental unit, generating 250 readings
per campaign. For standardization purposes in spectral acquisition, fully developed leaves
were collected from the upper part of the plant, with the complete detachment of the sheath
from the membranous structure. After removal, the middle third of each leaf was cut. In
order to maintain turgor for a longer period of time [31], the leaves were placed in plastic
bags labeled with their respective identifications and transported in thermal boxes with ice,
without direct contact between the leaves and the ice. The entire process, from collection to
the readings, was carried out in a maximum of 30 min.

In the laboratory, the spectra were acquired using the spectroradiometer ASD Field-
Spec FR Spectroradiometer® (ASD–Analytical Spectral Devices Inc., Boulder, CO, USA)
by employing a LeafClip (ASD Inc., Boulder, CO, USA), a device that facilitates spectral
readings on the adaxial surface of leaves and reduces the influence of external factors. The
spectroradiometer collects data for wavelengths from 350 to 2500 nm, covering the visible
(Vis), near-infrared (NIR), and shortwave infrared (SWIR) regions. Once the readings
were obtained, the data were exported to the software ViewSpec Pro (ASD—Analytical
Spectral Devices Inc., Boulder, CO, USA), where they were converted to reflectance. A
data pre-treatment was performed by eliminating the noise from the spectra (350–449 nm),
resulting in curves from 450 to 2500 nm.

Subsequently, a composite sample was taken from each plot. The composite samples
were sent to the Plant Tissue Laboratory, a sector of the Soil Science Department at Uni-
versity of Sao Paulo (ESALQ/USP), to determine the nitrogen contents for each collection
(25, 35, 50, and 65 DAE). The results were obtained in grams of nitrogen per kilogram
(g kg−1). The average of the reflectance values corresponding to the same LNC value in
each collection (25, 35, 50, and 65 DAE) was calculated. The LNC values were organized in
ascending order according to the spectral response.

2.1.3. Spectral Vegetation Indices

Vegetation indices were selected that are sensitive to nitrogen variations, according to
the literature. The indices were calculated using the hyperspectral data collected, following
the definitions of their authors (Table 2).

Table 2. Vegetation indices tested for their ability to predict leaf nitrogen content in corn.

Index Name Formula Author

Bni Buschman and Nagel index (R750 − R500)/(R750 + R500) [32]
DCNI Double-peak canopy nitrogen index

(
R720−R700
R700−R670

)
/(R670 + 0.03) [33]

Gmi1 Gitelson and Merzlyak index 1 R750/R550 [34]
Gmi2 Gitelson and Merzlyak index 2 R750/R700 [34]

GNDVI Green normalized difference vegetation index (R801 − R550)/(R801 + R550) [35]

MCARI Modified chlorophyll absorption reflectance index
[(R700 − R670)− 0.2 × (R700 − R550)]×(

R700
R670

) [35]
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Table 2. Cont.

Index Name Formula Author

MCARI/OSAVI Modified chlorophyll absorption reflectance
index/optimized soil-adjusted vegetation index

(3×[(R700−R670)−0.2×(R700−R550)×(R700−R670)])
((R800−R670)×(1+0.16)/(R800+R670+0.16))

[36]

mND705 Modified normal difference index (R750 − R705)/(R750 + R705 − 2 × R500) [37]
MTCI MERIS terrestrial chlorophyll index (R750 − R705)/(R710 + R480) [38]
NDCI Normalized difference chlorophyll index (R762 − R527)/(R762 + R527) [39]

NDDA Double-peak areas based on REP division (R755 + R680 − 2 × R705)/(R755 − R680) [40]
NDRE Normalized difference red-edge index (R790 − R720)/(R790 + R720) [41]
NDVI Normalized difference vegetation index (R800 − R670)/(R800 + R670) [42]

PSNDa Pigment-specific normalized difference A (R800 − R680)/(R800 + R680) [43]
PSNDb Pigment-specific normalized difference B (R800 − R635)/(R800 + R635) [43]
PSNDc Pigment-specific normalized difference C (R800 − R470)/(R800 + R470) [43]
RI-half Ratio index—half R744/R708 [44]
RI-1dB Ratio index—1 dB R735/R720 [44]
RI-2dB Ratio index—2 dB R738/R720 [44]
RI-3dB Ratio index—3 dB R741/R717 [44]

2.1.4. Statistical Analysis of the Data
Partial Least Squares Regression (PLSR)

LNC prediction models were calibrated using the nonlinear interactive PLS algorithm
(NIPALS). This technique has the ability to treat correlated independent variables (spectrum
wavelengths), reducing them to a set of components while avoiding multicollinearity
to estimate a set of dependent variables (LNC) [45]. The LNC prediction models were
calibrated individually for each collection date. In parallel, a general prediction was tested,
considering the data from the four dates (25, 35, 50, and 65 DAE).

In this study, the data for generating the prediction models were divided into three
subsets: (i) from the spectra of all wavelengths (450–2500 nm); (ii) only with the response of
the spectral indices; and (iii) through the combination of the bands and vegetative indices.
Finally, the bands and spectral indices that were, in fact, relevant in the prediction were
defined. Therefore, the variable importance in projection (VIP) was calculated. The VIP
values were calculated for each band and spectral index, with only values above 0.8 being
considered relevant.

Data Validation

The models were validated using the k-fold cross-validation method. This technique
first randomly divides the dataset into k subgroups that have approximately the same
number of instances. Then, each subgroup, in turn, plays the role of testing the model
induced from the other k subgroups [46]. During model calibration, both the model with
the optimal number of factors and its respective performance were defined. The best model
presented the highest coefficient of determination (R2), the lowest root mean square error
(RMSE), and normalized root mean square error (NRMSE) which are both described in
Equations (1)–(3), respectively.

R2 =

[
∑
(

γp − γp

)
·(γo − γo)]

2

∑
(

γp − γp)
2·∑(γo − γo)

2
(1)

RMSE =

√
∑n

i=1( ŷi − yi)
2

n
(2)

NRMSE =
RMSE

y
(3)

In this study, the results were interpreted according to Saeys et al. [47], considering that
R2 values lower than 0.50 were poor; those between 0.50 and 0.65 indicated a reasonable
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model, with the possibility of discrimination between high and low concentrations of the
modeled attribute; and R2 values between 0.66 and 0.86 and above 0.86 indicated good and
excellent quantitative prediction models, respectively.

3. Results
3.1. Descriptive Analysis of LNCs

Figure 2 represents the mean N levels in each collection (25, 35, 50, and 65 DAE). The
nitrogen levels ranged from 42 to 24 g kg−1 throughout the collections, in which the highest
concentration corresponded to the first collection (25 DAE), with a reduction in the levels
as the crop age increased.
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3.2. Descriptive Analysis of the Leaf Spectrum

The complete spectrum at 25, 35, 50, and 65 DAE followed a general pattern, with
a low reflectance in the Vis region (450–700 nm), a high reflectance in the NIR region
(700–1300 nm), and two water absorption peaks (1450 and 1950 nm) in the SWIR region
(1300–2500 nm) (Figure 3A–D).

The leaf signatures exhibited a similar behavior throughout the collections, in which
the leaves with lower N concentrations exhibited a higher reflectance factor in the visible
range, while those with higher N levels showed a lower reflectance, which was more
pronounced in the green band (550 nm). This characteristic was observed in all collections
in the Vis region (450–700 nm), mainly in the green wavelength (550 nm) (Figure 3(A1–D1)).
In the red-edge region, it was possible to visualize the same particularity between the
bands corresponding to the highest and lowest content only in the first, third, and last
collections (Figure 3(A2,C2,D2)), since, in the second collection (35 DAE), the spectral
curves did not distinguish the LNCs (Figure 3(B2)). In contrast, the wavelengths related
to NIR (750–1300 nm) followed the LNC pattern only in the first and second collections
(Figure 3(A3,B3)), since they were proportional in the last two (50 and 65 DAE), considering
the LNC (Figure 3(C3,D3)). The SWIR region, in relation to the initial spectrum (Vis, red-
edge, and NIR), was the one that expressed the lowest sensitivity to N, despite presenting a
molded behavior in the contents at 35 DAE (Figure 3(B4)).
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3.3. Performance of Models Using Only Spectra, Vegetation Indices, and General Prediction
(Bands + Indices)

Compared with the prediction per band (0.67 < R2 < 0.85 and 1.00 < RMSE < 1.77 g kg−1),
the VI prediction showed a lower performance, with a reduced R2 (between 0.55 and 0.68)
and an increased RMSE (1.13 and 1.78 g kg−1). In this study, the combination of vegetative
indices with spectral bands (450–2500 nm) (general prediction) was also tested as an
approach for constructing predictive models. The combination varied between excellent
for the first (25 DAE), with an R2 of 0.87 and an RMSE of 1.50 g kg−1, and good for the
other collections (35, 50, and 65 DAE), with an R2 of 0.74, 0.86, and 0.74 and an RMSE of
1.32, 1.00, and 1.01 g kg−1, respectively (Figure 4).
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Figure 4. Relationship between observed and predicted LNC: spectral signatures, indices, and overall
prediction (bands + indices) using partial least squares regression (PLSR) at 25, 35, 50, and 65 DAE.

The models were developed using all the collected data, resulting in inferior adjust-
ments (Figure 5) compared to the individual models according to the vegetative stages
(Figure 4). However, the combination of the spectral bands with the VIs once again gener-
ated the best results, with values of R2 = 0.62 and RMSE = 2.51.
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Figure 5. Relationship between observed and predicted LNC, including all collections: spectral signa-
tures, indices, and general prediction (bands + indices), using partial least squares regression (PLSR).

3.4. Variable Importance in Prediction (VIP) of N
3.4.1. Spectral Curves in N Prediction

Using the VIP values, it was possible to identify the most relevant bands and spectral
regions in the prediction of N. Based on the VIP threshold score, the most influential regions
of the first collection (25 DAE) included the entire Vis region (450–680 nm), with peaks
from 450 to 500 nm and at 550 nm; the red-edge region, with the highest-value peak around
700 nm (Figure 6); the NIR region, with a peak close to 1300 nm; and some SWIR bands
(1400, 1900, and 2400 nm). In the second (35 DAE) and third (50 DAE) collections, the
bands followed the same pattern of importance as the first (25 DAE) in the Vis and red-edge
regions. Nonetheless, the wavelengths corresponding to the NIR region (700–1300 nm)
did not register relevance in these collections. The importance of the SWIR bands also
decreased, with only one peak near 1550 nm at 35 DAE and two peaks (1350 nm and 1500
to 1700 nm) at 50 DAE. The VIP from the fourth collection (65 DAE) presented two peaks in
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the Vis region (450 and 550 nm), one peak in the red-edge region (700 nm), one peak in the
NIR region (1300 nm), and one peak in the shortwave infrared region at 1600 nm (Figure 6).

AgriEngineering 2024, 6 4143 
 

 

 
Figure 5. Relationship between observed and predicted LNC, including all collections: spectral sig-
natures, indices, and general prediction (bands + indices), using partial least squares regression 
(PLSR). 

3.4. Variable Importance in Prediction (VIP) of N 
3.4.1. Spectral Curves in N Prediction 

Using the VIP values, it was possible to identify the most relevant bands and spectral 
regions in the prediction of N. Based on the VIP threshold score, the most influential re-
gions of the first collection (25 DAE) included the entire Vis region (450–680 nm), with 
peaks from 450 to 500 nm and at 550 nm; the red-edge region, with the highest-value peak 
around 700 nm (Figure 6); the NIR region, with a peak close to 1300 nm; and some SWIR 
bands (1400, 1900, and 2400 nm). In the second (35 DAE) and third (50 DAE) collections, 
the bands followed the same pattern of importance as the first (25 DAE) in the Vis and 
red-edge regions. Nonetheless, the wavelengths corresponding to the NIR region (700–
1300 nm) did not register relevance in these collections. The importance of the SWIR bands 
also decreased, with only one peak near 1550 nm at 35 DAE and two peaks (1350 nm and 
1500 to 1700 nm) at 50 DAE. The VIP from the fourth collection (65 DAE) presented two 
peaks in the Vis region (450 and 550 nm), one peak in the red-edge region (700 nm), one 
peak in the NIR region (1300 nm), and one peak in the shortwave infrared region at 1600 
nm (Figure 6). 

.  
Figure 6. Wavelength variable importance in projection (VIP) scores (dashed red line) at 25, 35, 50, 
and 65 DAE. Variable relevance > 0.8. 
Figure 6. Wavelength variable importance in projection (VIP) scores (dashed red line) at 25, 35, 50,
and 65 DAE. Variable relevance > 0.8.

3.4.2. VIs in the Prediction of N

In addition to indicating the most important bands and spectral regions for N predic-
tions, it was also possible to detect the VIs that best contributed to the prediction using
the VIP values. There were alternations in the VIP score of each VI throughout the col-
lections. In the first collection (25 DAE), for example, the most relevant indices were Bni,
mND705, DCNI, NDRE, Gmi1, RI-1dB, MTCI, NDDA, MCARI/OSAVI, RI-2dB, MCARI,
Gmi2, PSNDa, PSNDc, NDVI, RI-3dB, and RI-half; in the second (35 DAE), they were Bni,
mND705, DCNI, NDRE, Gmi1, RI-1dB, MTCI, NDDA, MCARI/OSAVI, RI-2dB, MCARI,
Gmi2, PSNDa, NDVI, and PSNDb; in the third (50 DAE), they were Bni, mND705, DCNI,
NDRE, Gmi1, RI-1dB, Gmi2, PSNDa, PSNDc, NDVI, NDCI, PSNDb, RI-3dB, and GNDVI;
and, in the fourth collection (65 DAE), they were Bni, mND705, DCNI, NDRE, Gmi1, RI-1dB,
MTCI, NDDA, MCARI/OSAVI, RI-2dB, MCARI, Gmi2, and RI-half. Overall, in each spe-
cific collection, the VIs demonstrated a moderate divergence in their contribution, except in
the third (PSNDa) and fourth (Bni and nDR705) collections, which represented VIs with a
greater discrepant importance for the prediction in relation to the others (Figure 7).
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3.4.3. Validation of Band and VI Prediction by Collection

The validation process was performed on the datasets used in the prediction by band
and by VI (Figure 8). The model validation generated results similar to the prediction
by band, with the peaks and valleys basically in the same regions at 25, 35, 50, and
65 DAE (Figure 8A). On the other hand, for the validation of the VIs, all the indices
presented relevance (>0.8) in all collections; nevertheless, the divergence in the magnitude
of importance in validation was greater in relation to the VIP score, especially for the first
seven indices in the first collection (mND705, DCNI, MCARI, MCARI/OSAVI, Bni, MTCI,
and NDDA) and the first five in the second (mND705, DCNI, MCARI, MCARI/OSAVI, and
Bni). In the third collection (50 DAE), there was less variation among the VIs, and, in the
fourth collection (65 DAE), the first 10 VIs (mND705, DCNI, MCARI, MCARI/OSAVI, Bni,
MTCI, NDDA, NDRE, RI-2dB, and RI-1dB) showed prominence compared to the others
(Figure 8B).
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4. Discussion
4.1. N Content in Corn Plants

Most LNC values fell within the adequate range for corn, remaining at between 35
and 27 g kg−1 [48,49] throughout the collections. The reduction in the LNC from the first
(42 g kg−1) to the last (24 g kg−1) collection may be related to the vegetative stage of the



AgriEngineering 2024, 6 4145

plant, due to the contribution of nitrogen in the functions of the different crop stages, such
as vegetative growth, biomass production, and the transformation of solar energy [50,51].
From this same perspective, Lee et al. [52] evaluated the LNC in corn and observed a
decreasing trend in the levels throughout the cultivation period. Authors such as Davies
et al. [53] and Cummings et al. [54] have reported that, physiologically, the N concentration
in corn plants is higher at the beginning of their vegetative growth, decreasing until
senescence. Chen et al. [55] found similar results; as the corn crop grew, the value of N in
the leaves decreased. Similar downward trends have been previously published for the
leaf nitrogen curves of crops such as rice [56], winter wheat [57], and corn [58].

4.2. Dynamic Changes in the Leaf Spectrum of Corn Under Different N Levels and at
Different Stages

The variability among the curves, especially at 550 nm (green), found in the Vis
region (450–700 nm) is strongly linked to leaf pigments and biochemical characteristics [59],
while the rest of the spectrum (near-infrared—700 to 1300 nm—and mid-infrared—1300 to
2400 nm) reflects the leaf structural parameters (for instance, dry matter content and leaf
thickness) and the water content, respectively [11,60]. This explains the little variation in
these bands in response to N. Vis wavelengths are known for their sensitivity to variations
in leaf N, indicating that the corn LNC can be observed using reflectance spectroscopy and
corroborating previous works in sugarcane [7,16,61,62] and corn [63].

In this study, the red-edge was considered to be between 700 and 750 nm. The domain
between the specific bands of the beginning and end of the red-edge may vary depending
on the purpose of the analysis, because this band of the spectrum, known in the literature
as the inflection point in vegetation reflectance, is the ramp that leads to the rapid increase
in reflectance at the final red-edge and initial near-infrared edge [64,65]. For example,
Ferwerda, Skidmore [66] observed a change in the position of the red-edge in the deficiency
of different nutritional elements (N, P, Ca, K, Na, and Ma). For Barros et al. [61], who
evaluated N in sugarcane leaves, the inflection point was determined to be between 710
and 720 nm. Sun et al. [67] reported that the red band is the spectrum most affected by
chlorophyll (Chl), which, in turn, undergoes changes according to the supply of N [68],
since this is where the maximum Chl absorption occurs; however, this band becomes
saturated at high Chl values, which results in a shift in the red-edge domain.

Although the red-edge demonstrated a visibly lower sensitivity compared to the Vis re-
gion in response to N in this study, the recognition of this spectral band is noticeable, mainly
regarding the highest and lowest LNC (Figure 3(A2–D2)). According to Liang et al. [69]
and Peng et al. [70], as with the Vis region, the red-edge characteristics of the vegetation
are closely related to the physical and chemical properties, and they contain important
information about the vegetation. Authors such as Zhao et al. [71] found bands sensitive to
nitrogen in the range between 500 and 710 nm. In the same perspective, Gitelson et al. [72]
found that the region with a strong relationship with the chlorophyll and nitrogen levels
was 550 nm (green), and this spectral band showed increasing differences throughout their
collections, as also observed by Fiorio et al. [7]. Liu et al. [73] evaluated nitrogen in corn
using spectral reflectance, but at the canopy level; they reported that the most sensitive
bands for monitoring the N concentration were 762 and 726 nm.

In the NIR region (750–1300 nm), which is a spectral range that is related to leaf structure
and that indicates whether the plant is gaining biomass in response to nitrogen fertilization [60],
both contents reflected values of 35 to 45% in all collections (Figure 3(A3–D3). According
to Li et al. [74], the plant’s behavior of generating a large difference in absorption and
reflectance occurs as protection mechanisms, so that the leaf maintains its energy balance,
does not overheat, and avoids chlorophyll malnutrition. Gates et al. [75] reported that the
leaf reflectance in this region is the result of the interaction of incident energy with the
mesophyll structure. The authors explain that this structure can be modified according
to changes in the water–air relationship in the mesophyll due to water availability, thus
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altering leaf reflectance, and the lacunosity of the internal leaf structure influences the
internal scattering of incident radiation, generating a greater reflectance.

Some studies have reported that internal scattering is influenced by N availability, in-
dicating that higher amounts of N result in a higher reflectance in the NIR region [55,76,77].
Nonetheless, although obvious differences have been observed between the average re-
flectance levels of a higher and lower content throughout the collections (Figure 3(A3–D3)),
in this study, the increase in the average hyperspectral reflectance of corn leaves in the NIR
region (750–1300 nm) was lower under low N rates only in the last two collections (50 and
65 DAE). The opposite occurred at the beginning of crop development (25 and 35 DAE).
The divergence in the absorption of the mean curves between the first two and the last two
collections may be related to the LNC values in the crop at the beginning of development,
which were considered to be above the recommended level and which may have caused
stress due to the excess of N in the plant. These results provide a theoretical basis that
paves the way for further investigation regarding the quantitative relationship between the
LNC and the reflectance spectra in the NIR region at different growth stages.

In the SWIR (1300–2500 nm), there were absorption peaks near 1450, 1950, and 2500 nm
(Figure 3(A4–D4)), attributes that are related to the presence of water in the leaf [78,79].
According to Rodriguez-Perez et al. [80], the water content in the plant generates absorption
in all bands of the spectrum; however, in the shortwave infrared spectrum, these charac-
teristics are more pronounced, mainly around 1450 and 1950 nm. According to Berger
et al. [60], the use of spectral data to estimate the N in crops focuses on the Vis and NIR
spectral domains, thus neglecting the N related to proteins and nitrogen reallocation for
non-photosynthetic behaviors. Nevertheless, in this study, the SWIR region in relation
to the initial spectrum (Vis, red-edge, and NIR) was the one that expressed the lowest
sensitivity to N, in which the mean signatures overlapped without dissonance between
the contents. However, at 35 DAE (Figure 3(B4)), the behavior of the curves was shaped
(Figure 3(B4)), with a tendency to increase the reflectance of the lowest content in the
other collections.

4.3. Prediction of N by Spectral Band and by VI

The R2 values were interpreted according to Saeys et al. [47]. The prediction by band
generated results that were considered good in all the collections (25, 35, 50, and 65 DAE),
with R2 values ranging from 0.67 to 0.85 and an RMSE between 1.00 and 1.77 g kg−1.
However, the prediction by VI was considered reasonable, since the R2 decreased to 0.59,
0.55, 0.68, and 0.58 and the RMSE increased to 1.70, 1.78, 1.13, and 1.46 g kg−1 at 25, 35, 50,
and 65 DAE, respectively. An exception was the third collection (50 DAE), which presented
the highest R2 (0.68) and the lowest RMSE (1.13 g kg−1); these values were considered
good (Figure 4).

The PLSR proved to be favorable in the prediction using hyperspectral data and
vegetation indices, since it resulted in an R2 > 0.54 and an RMSE < 1.79 g kg−1 (Figure 4).
Nevertheless, the performance patterns of the predictive models revealed variations, which
were intrinsically associated with the specific vegetative stage of the crop and the datasets
used in the modeling. For example, at the stage of 25 DAE (V4), the models (R2 = 0.85)
exhibited a better adaptability when built only with the spectral bands (450 to 2500 nm).
On the other hand, for the other collection dates (35, 50, and 65 DAE), the models exhibited
similar R2 values (0.74, 0.69, and 0.67, respectively). This fact may be correlated with the
LNC of the crop, since the highest levels (Figures 2 and 3A) were found in the first collection
(25 DAE), while the rates at 35, 50, and 65 DAE were similar. According to Davies et al. [53],
the N consumption by corn plants during the initial vegetative stages was low, increasing
rapidly as the plant developed, which explains the variation in the LNC.

Fan et al. [81] succeeded (R2 = 0.77) in applying the same method (PLSR) for predicting
the N concentration using spectral curves acquired from corn plants. Other researchers
have also evaluated the prediction of leaf characteristics, including the N concentration
in corn, and achieved an R2 of 0.96 [17]. However, in this study, different periods of corn
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development were evaluated (25, 35, 50, and 65 DAE), of which the collection performed at
65 DAE (V10) resulted in the lowest R2 (0.67) in the prediction by band (Figure 4). This is
an event that may be linked to the crop phase in this collection (beginning of flowering)
when the tassel appears, indicating that the plant has reached its maximum height, with
nutrients being reallocated for grain production [82]. In this phase, the remobilization of
the reserves present in the stem and leaves occurs to adequately and successively support
the next cycles (flowering and grain filling) [83], which explains the reduction in the LNC
at the end of the cycle.

In the models based on the VI responses, the development stage V10 (50 DAE) pre-
sented the best adaptation (R2 = 0.68), which was characterized by the accumulation of as
much N as possible for later reallocation according to the subsequent phenological stages
(between V10 and V14) [84]. This explains the highest R2 at this stage. In addition, the
index prediction generated the lowest R2 values (0.59, 0.55, 0.68, and 0.58, respectively)
and the highest RMSE values (1.70, 1.78, 1.13, and 1.46, respectively) for the collections
(25, 35, 50, and 65 DAE) when compared to the band prediction (Figure 4). Overall, the
performance of the VI may be related to the fact that the VI calculation considers only a
few spectral bands, and ends up losing information hidden in other wavelengths. Mahajan
et al. [85] reported that the use of a few wavelengths in vegetation spectral indices for
nutrient predictions offers a simple way to model any parameter, but, at the same time, it
does not give attention to information that may be present in other bands of the spectrum.
Yang et al. [86] used PLSR to predict the canopy nitrogen in several crops and found an
R2 = 0.97 for the bands and an R2 = 0.96 for VIs in corn plants. This corroborates the results
demonstrated here, in which the prediction by VI was lower. Peng et al. [87] evaluated
several VIs and found an R2 > 0.50 when studying N in shrubs and grasses. Xia et al. [88]
estimated the N status by VI and found an R2 between 0.56 and 0.65 at the growth stages
V7 and V10; their results are similar to those of this research.

The synergy between the spectral bands and the VIs (general prediction) acted as a
complement, resulting in significant improvements in the values of R2 > 0.73 and in the
reduction in the RMSE < 1.51 g kg−1. This indicates that the model (PLSR) responded better
when combining the variables, which is in agreement with the results of Chemura et al. [89],
who found results of R2 = 0.78 and RMSE = 0.23 in the same combination when evaluating
the N in coffee. Finally, models were developed using all the data collected, resulting in
inferior fits (Figure 4) compared to the individual models by vegetative stages (Figure 3).
However, the combination of the spectral bands with the vegetative indices demonstrated
the best results once again, with values of R2 = 0.62 and RMSE = 2.51, highlighting the
effectiveness of the combination of spectral bands with additional variables.

4.4. Potential of the Evaluated Models

The most important spectral zones (Vis, red-edge, NIR, and SWIR) according to the
VIP variable in the first collection (25 DAE) were observed from 450 to 500 nm and at 550,
700, 1300, 1400, 1900, and 2400 nm. At 35 and 50 DAE, the signatures followed a pattern of
importance similar to the first collection; however, the wavelengths corresponding to the
NIR region (700–1300 nm) did not register relevance in these collections. The importance
of the SWIR bands also decreased, with only one peak close to 1550 nm at 35 DAE and
two peaks (1350 nm and 1500 to 1700 nm) at 50 DAE. In the fourth collection (65 DAE),
the VIP presented two peaks in the Vis region (450 and 550 nm), one peak in the red-edge
region (700 nm), one peak in the NIR region (1300 nm), and two peaks in the shortwave
infrared region at 1600 nm (Figure 6). This panorama highlights the importance of the
Vis (450–700 nm) and red-edge (700–750 nm) bands in the prediction by band, since they
represent the amplitude of importance in all collections. These results corroborate those
found by Fiorio et al. [7], who evaluated the leaf nitrogen in sugarcane; in their study, the
authors reported that the most important spectral bands were in the visible and red-edge
regions. Authors such as Shiratsuchi et al. [90] emphasize that red-edge is a powerful and
temporally stable region that directly contributes to the estimation of the N status of a crop.
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Azadnia et al. [91] found bands of greater importance in estimating the leaf N content in
the visible region (510–540 nm and 670–690 nm).

The importance of different VIs varied according to the growth stages and N status
indicators. The magnitude of the indices in the VIP score throughout the collections can
be influenced by many factors, including crop growth stages [13]. According to Hatfield,
Hatfield and Prueger [92], and Gnyp et al. [93], the growth stage can strongly interfere
with the sensitivity and performance of different VIs to estimate crop parameters. The
reduction in or appearance of particles on the leaf throughout the life of the crop alters the
reflectance [94]. For example, in the first two collections (25 and 35 DAE) of the 20 VIs tested
in this study, none highlighted a discrepancy in the predictions. Even when presenting a
relevance above 0.8, both generated similar performances (between 1.0 and 1.4), except for
those that did not contribute in the first (NDCI, PSNDb, and GNDVI) or second (PSNDc,
NDCI, and RI-3db) collection (Figure 7). This indicates difficulty in choosing a VI to
estimate N in the initial growth stages.

Nevertheless, from the third collection onwards, the VIs showed a greater divergence
in their contribution, with an emphasis on PSNDa in the third and Bni and nDR705 in
the fourth collection. Li et al. [77] obtained similar results when evaluating the use of
hyperspectral vegetation indices to estimate the nitrogen content in wheat at different
growth stages. The authors emphasized that, in the initial growth stages of the plant
(between V4 and V7), the VIs generated a lower efficiency. According to Haboudane
et al. [36], in the initial stages, leaf development is greater and can mask the effects of
chlorophyll and N, since the aim in these periods is plant development. In the later stages,
these effects may decrease, since the aim is grain development.

A very interesting phenomenon found in this study is that the wavelengths that
composed the most effective VIs in the first (Bni, mND705, DCNI, NDRE, Gmi1, RI-1dB,
MTCI, NDDA, MCARI/OSAVI, RI-2dB, MCARI, Gmi2, PSNDa, PSNDc, NDVI, RI-3dB, and
RI-half), second (Bni, mND705, DCNI, NDRE, Gmi1, RI-1dB, MTCI, NDDA, MCARI/OSAVI,
RI-2dB, MCARI, Gmi2, PSNDa, NDVI, and PSNDb), third (Bni, mND705, DCNI, NDRE,
Gmi1, RI-1dB, Gmi2, PSNDa, PSNDc, NDVI, NDCI, PSNDb, RI-3dB, and GNDVI), and
fourth (Bni, mND705, DCNI, NDRE, Gmi1, RI-1dB, MTCI, NDDA, MCARI/OSAVI, RI-2dB,
MCARI, Gmi2, and RI-half) collections, selected using the VIP variable, were basically
consistent with the most important spectral bands in the per-band prediction, indicating
that these wavelengths are the most important for both predictions.

4.5. Prediction Quality

The adopted validation method returned similar predictions according to the configu-
ration defined by the model (PLSR) when predicting the LNC in corn. The configurations
are indicative of the importance of spectral bands and VIs in predicting this agronomic
variable. Nonetheless, the performance of the data was better evaluated in the synergy
of the attributes (general prediction) when considering different stages (25, 35, 50, and
65 DAE), as discussed. This characteristic occurs mainly because, when combining spec-
tral bands and VIs, a prominence is verified in some characteristics related to biological
variables, such as the chlorophyll content and biomass, demonstrating a lesser degree of
performance when modeled individually [95]. This type of evaluation is important because
it allows the input variables that are most suitable for modeling the problem to be indicated,
resulting in a more accurate estimate [95]. The accuracy of PLSR models in estimating N is
extremely powerful, since this method explores and evaluates the relationship between
scales of nutrient characteristics, resolves multicollinearity problems between variables,
and performs a principal component analysis on the matrices of independent and depen-
dent variables [96]. Some studies have reported that the predictive power of PLSR is strong
and robust, shedding light on approaches related to N predictions [81,96,97].
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4.6. Limitations and Future Work

This study showed promising results for CLN prediction using spectroscopy, but
some issues still need to be addressed. Inferring plant N status from leaf or canopy data
alone can be problematic. N interactions in soil-plant systems are complex and directly
related to many physiological processes, including respiration, structural growth, and
storage capacity building [98]. In corn, N is stored in vegetative tissues (leaves and
stalks) during the growth phase but is partially translocated to ears and grains during
the reproductive phase [99]. Depending on the crop phenological stage in which the
leaves/canopy spectra are measured, their relationship with corn N status might not be
consistent. Previous studies [11] indicated that even multi-temporal vegetation indices
cannot describe relationships between spectral data and N translocation in crops. Once
that remotely sensed data cannot detect N translocation into the grain, the grain protein
content is also not reliably predicted from canopy spectral measurements. Therefore, the
dynamic nature of N in soil-plant systems adds a complexity in accurately assessing the
crop N status using canopy remotely sensed data, and, consequently, developing effective
N management strategies for in-season correction [98].

Another issue is the validation of our prediction models. In our case, we used 10-fold
cross-validation (CV), which is statistically sound and has been extensively described in
the statistical and environmental literature [100]. However, some recent studies claim that
accuracy indices obtained using CV are biased because calibration points are not statistically
independent of validation points [101]. Ideally, these models should be evaluated with
an independent dataset and their performance assessed against data from different years,
phenological stages, or sites with different environmental conditions. This type of validation
simulates conditions that are closer to reality in a crop field, where pre-calibrated models
would be used to predict N under unknown conditions [7]. Unfortunately, in our study, we
were not able to replicate the field experiments across multiple sites and years. Future work
should focus on testing N prediction models under different environmental conditions and
in years with different climatic conditions.

5. Conclusions

In this study, the potential of using Vis-NIR-SWIR spectral data as the input variable to
predict the LNC in corn plants was investigated. The results showed that the combination of
spectral bands and VIs (overall prediction) resulted in an efficient prediction (R2 > 0.74 and
reduced RMSE < 1.50 g kg−1) by the specific crop stage, compared to individual predictions
(bands or VIs). Additionally, this study demonstrates how hyperspectral data offer a new
opportunity to monitor the leaf nitrogen content. This could assist the development of
techniques for large-scale nutrient management, mainly in the spectral bands from 450 to
750 nm, since these were the bands that were most sensitive to N.
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