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Abstract: Mastitis is a disease that is considered an obstacle in dairy farming. Some methods of
diagnosing mastitis have been used effectively over the years, but with an associated relative cost
that reduces the producer’s profit. In this context, this sector needs tools that offer an early, safe,
and non-invasive diagnosis and that direct the producer to apply resources to confirm the clinical
picture, minimizing the cost of monitoring the herd. The objective of this study was to develop
a predictive methodology based on sequential knowledge transfer for the automatic detection of
bovine subclinical mastitis using computer vision. The image bank used in this research consisted
of 165 images, each with a resolution of 360 x 360 pixels, sourced from a database of 55 animals
diagnosed with subclinical mastitis, all of which were not exhibiting clinical symptoms at the time of
imaging. The images utilized in the sequential learning transfer were those of MammoTherm, which
is used for the detection of breast cancer in women. The optimized model demonstrated the most
optimal network performance, achieving 92.1% accuracy, in comparison to the model with manual
search (86.1%). The proposed predictive methodologies, based on knowledge transfer, were effective
in accurately classifying the images. This significantly enhanced the automatic detection of both
healthy animals and those diagnosed with subclinical mastitis using thermal images of the udders of
dairy cows.

Keywords: image analysis; dairy cattle; convolutional neural network; infrared thermography

1. Introduction

Bovine mastitis is the most devastating disease in the dairy industry worldwide.
Detection and early diagnosis of bovine mastitis can play an important role in reducing
economic losses resulting from delayed treatment of the disease. For this reason, the
development of automated mastitis detection methods is increasingly encouraged [1-3].

Subclinical mastitis is an early stage of the disease with no visible signs [4]. It is a
silent infection that manufacturers cannot detect with the naked eye, but which can be
detected through on-site diagnostic methods such as somatic cell count (SCC) and microbial
cultures [5].

The most common method is the California Mastitis Test (CMT), which is performed
in the milking room as it is a cheap, quick, and easy procedure. However, it depends on
human interpretation and can be less accurate and reliable [6]. In this context, developing
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diagnostic methods that integrate automation is crucial to minimize costs and losses, ensure
accuracy and speed in diagnosis, and promote non-invasive techniques like thermography
to enhance animal welfare.

Measuring the surface temperature of the breast skin by infrared thermography is
a noninvasive method capable of detecting temperature changes due to inflammation,
used in the diagnosis of subclinical mastitis in dairy cows [1,4,7,8]. In these studies, the
temperature intervals varied considerably, reaching a 5.3 °C difference between a healthy
animal and those with subclinical mastitis.

When subclinical mastitis occurs, it has been shown that the local inflammatory
response causes fever in the animal and changes in tissue blood flow [9,10], which can be
the origin of an increase in the surface temperature of the udder skin [11]. The udder with
mastitis has an elevated temperature even before clinical symptoms appear. In addition,
Ref. [12] reported an increase of 2 to 3 °C in the udder surface temperature of lactating cows
after inoculation with Escherichia coli in different parts of the udder. In a study carried
out by the National Institute of Animal Health (NIAH), Ref. [13] observed that udder
temperature measured using thermography can be a useful diagnostic tool for detecting
mastitis in dairy cattle. Similarly, the authors [14] used thermographic images as a tool to
detect mastitis in sheep, especially subclinical mastitis.

Screening for subclinical mastitis by measuring udder surface temperature has a high
predictive diagnostic capacity, similar to the California Mastitis Test (CMT). However,
analysis of the reliability of surface temperature by thermography among cows with
different body and physiological characteristics living in different environmental conditions
must be determined in each case [7].

In a study on dairy cows with mastitis [1], a software was developed that automatically
measures udder temperature. The research demonstrated a strong correlation between
these temperatures and the somatic cell count, which significantly facilitates the diagnosis
of clinical mastitis. The findings indicate that elevated udder temperature is a reliable
early indicator of mastitis, allowing for quicker intervention and better management of
udder health. In another study, Ref. [15] compared automatic image recognition software
with manual methods for detecting E. coli infections in cows. The results showed that the
automated system provided comparable accuracy to manual methods, with the added
benefits of increased speed and objectivity in identifying infections. This suggests that the
implementation of image recognition technology could streamline the process of infection
detection, improving both efficiency and reliability in herd management.

In a study based on convolutional networks [2], an object detector was developed
using YOLOV3 as a proposal to perform detection and provide answers about the animal’s
clinical condition, achieving an accuracy of 83.33%. The transfer of convolutional network
learning techniques was reported in a study [15], which was developed with digital images
of nipples for the classification and identification of bovine mastitis, achieving an AUC
of 0.920 or more. However, few studies have applied this technique to thermal images of
animal udders with the main objective of obtaining the best model for their classification,
since the use of optimized networks shows improvements in classification over the manual
approach.

Among many deep learning models, convolutional neural network (CNN) is the most
popular architecture. Due to its relatively simple and advanced features [16], it has been
widely applied in the development of medical image analysis systems [17]. However, one
of the main disadvantages of a convolutional neural network is that it requires a large
amount of data to be trained, which is sometimes difficult to obtain in the field.

Therefore, transfer learning has recently become a popular strategy among researchers
to solve this problem [17-21]. The current standard for transfer learning is to select and use
existing models that were originally trained using large datasets of natural images, such as
ImageNet [22], and then use limited images to model and adapt them.

Despite the advantages of CNNs, one of the main difficulties or challenges in using
CNN:ss is training or fitting a model optimally. This is due to the fact that this can lead to the
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problem of vanishing gradients, making it difficult to obtain the “best” or optimal values in
the training process [23].

Therefore, many deep learning architectures have been developed and tested recently.
A previous study compared several deep learning models and found that the ResNet50
model is the best architecture for image classification tasks with higher accuracy and
training efficiency [24].

In this sense, machine learning algorithms have specific parameters known as hyper-
parameters. To adjust them, we need to choose the best model that fits the existing data.
There are decision-theoretic methods for this, based on the concept of defining a search
space of hyperparameters and determining the best combination of them [23].

Bayesian optimization is a hyperparameter search technique that surpasses both
grid search and random search. Unlike these methods, Bayesian optimization leverages
knowledge from previous iterations to inform the search process. This approach enhances
decision-making by more effectively identifying the optimal hyperparameter settings for
evaluating a model [25,26].

The objective of this study was to develop a prediction method based on sequen-
tial knowledge transfer using ResNet50 with ImageNet weighting and Bayesian hyper-
parameter optimization for the automatic detection of subclinical mastitis in cows by
computer vision.

2. Materials and Methods

The transfer learning approach is a technique used to solve a given task using knowl-
edge gained from solving a related task (Figure 1).

system
learning 1

l

knowledge

l

Data set 2 . e system
learning 2

Dataset1 |

Figure 1. Transfer learning approach.

The deep network used in this approach utilized the ImageNet weights. This facilitates
the learning of new features associated with new classes, allowing the network to start
training optimally [27].

In order to utilize transfer learning, this study employed a sequential transfer model
with a pre-trained network for the purpose of identifying thermal images of the udder
of dairy cows. A pre-trained neural network fine-tuning technique was utilized for the
creation of a learning transfer model, the principal function of which is the transfer of
information between related domains.

The applications used in this study were characteristic extraction and transfer learning
as classifiers. In this case, in a layered architecture, a deep learning model learns different
features in multiple layers [28].
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This layered architecture allows ResNet50 not to have a final layer (FC), using convo-
lutional layers as fixed feature extractors and FC layers adapted to the classes used (healthy
and sick animals). You can use pre-trained networks [28].

2.1. Sequential Transfer Approach

The deep network used in this approach utilizes the ImageNet weights. This facilitates
the learning of new features associated with new classes and improves the generalization
of the network [29].

For the mastitis classification problem, the network was pre-trained on the first do-
main of the ImageNet database (this dataset consists of 1000 object classes and contains
1,281,167 training images, 50,000 validation images, and 100,000 test images) and then
adapted to human mammography images. Classification task (second domain). Finally, we
adjusted the presented network and trained it to classify thermal images of bovine mastitis
(the target domain) (Figure 2).

frozen convolutional Domain change frozen convolutional
layers and fine-tuning layers and fine-tuning

Iy -

q
%

Mammography Prediction Mastitis Prediction
Figure 2. The general procedure of sequential transfer learning.

2.2. Optimization of Hyperparameters

Machine learning algorithms have certain parameters, also known as hyperparam-
eters, so we need to choose the optimal setting. A decision-theoretic approach may be
employed to address this issue. This entails defining a search space of hyperparameters
and determining the optimal combination thereof [23].

The approaches used to adjust the hyperparameters in this study included manual
search and Bayesian optimization. In manual search, hyperparameter tuning consisted
of model selection based on previous experience. Then, a model was trained and evalu-
ated using these parameters. This process was repeated for different sets of values until
maximum accuracy was achieved or the model reached an optimal error.

Bayesian optimization is more accurate and faster than manual approaches. The best
model parameters are selected automatically.

The problem with using a manual approach is that adjusting these parameters can
be time-consuming and affect the final performance of the network. However, Bayesian
techniques make it easier to approximate the perfect solution. Bayesian optimization
enhances decision-making about which hyperparameter setting is best for evaluating a
model [25,26].

2.3. Data Set

The ImageNet dataset is based on a dataset of over 15 million high-resolution tagged
images from approximately 22,000 categories. The images were collected from the web and
tagged by markers using Amazon’s Mechanical Turk crowdsourcing tool [30].

To train the network and compare the model, we used a larger database with a similar
problem (detection of breast cancer in women) using thermal images. These images are
part of the MammoTherm database of the Federal University of Pernambuco. They have
640 x 480 pixels and are being used at the Hospital das Clinicas of the same institution.
This image database is public and has been made available for research on breast cancer
in women.

The training set, the test set, and the validation set consisted of 600 images from the
database (MammoTherm), considering images from the groups “No lesion” and “Benign
lesion” [31,32].

The results were subsequently transferred to a smaller database (images of healthy
cows and cows with subclinical mastitis). The percentage of images used in the training,
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testing, and validation phases was 70, 15, and 15%, respectively, for the mammography
image database, and the same percentages for the bovine mastitis image database.

The image bank used in this study comes from a preliminary study approved by the
Ethics Committee on the Use of Animals of the Federal Rural University of Pernambuco
138/2018, approved on 19 December 2018, and created from a mammary thermography
record of animals with clinical diagnosis, subclinical mastitis, and free of mastitis (healthy).
Thermal images of the udders of dairy cows from three locations (latitude: 8°36'33" S,
36°37'30” W, altitude 733° m) were obtained in different production units of the city
of Capoeiras. Additional data were collected from Pesqueira (8°21'35" S, 36°41'42" W,
652 m) in the State of Pernambuco, Brazil, provided by NEAMBE, Center for Studies of
Agricultural Atmosphere and Animal Welfare at the Federal University of Ceara.

The number of samples was determined based on the selection criteria of animals
(Giroland cows) of the same calving order, lactation stage, body score, milk production,
and quality. The clinical status of the animals was assessed using the California Mastitis
Test (CMT) before milking and after discarding the first drop of milk. The test was carried
out for each mammary quarter, with scores ranging from 0 to +++, whereby at score zero
there was no precipitate formation (healthy), at score traits there was mild precipitation
(trace infection), in score + there was moderate precipitation (subclinical mastitis), in
score ++ there was clear gel formation (subclinical mastitis), and in score +++ there was
marked gel formation (subclinical mastitis). To limit subjectivity in interpreting the results,
only those with scores between + and +++ were considered for selecting animals with
subclinical mastitis, and the sensitivity range for detecting sick animals was 93% for SCC >
500,000 cells/mL [33] (Figure 3).

CMT Score Reaction/Viscosity SCC (x 1000 cells/ml)
(1] Absent 0-200
Traits Mild 150 — 500
+ Mild/Moderate 400 — 1500
++ Moderate 800 — 5000
+++ Intense > 5000

Animal Classification

Absent (0) Level (Traits)

healthy subclinical mastitis

Figure 3. Identification of subclinical mastitis by CMT and classification of healthy animals and those
with subclinical mastitis.

Images were acquired using a FLIR i60 thermal imaging camera with a focal length of
1 m and emissivity (¢) of 0.98 specified for biological tissue [8]. Images were obtained be-
tween 05:00 and 07:00 of the morning shift, before the first milking of the animal, including
left anterolateral, right anterolateral, and posterior images, 3 images per animal (Figure 4).

A total of 165 labeled images, each with a resolution of 360 x 360 pixels, were extracted
from a database comprising 55 cattle. These images were classified into two distinct groups:
‘Healthy’ and “Subclinical Mastitis”, based on CMT, which were used as training, testing,
and validation data sets.
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(B) ©
Figure 4. Thermal images of the right (A), left (B), and posterior (C) anterolateral frames.

2.4. Image Preprocessing

In the pre-processing, we resized all the udder images of dairy cattle to 224 x 224 pixels
and used a data augmentation technique to enlarge the dataset. The same number of images
was used for each class in all image banks. For this, some transformations were performed
only once to generate surplus images for the network. This is commonly used to avoid
overfitting and increase the strength of the system [15].

In machine learning, the performance of the algorithm can be improved depending on
the amount of data available. This almost never happens. Data Augmentation (DA) uses
computational techniques to augment a supervised training set to obtain an algorithm with
higher predictive power and consequently better results [34].

In this step, a geometry method was used, which consisted of transformations that
changed the shape of the image by mapping individual pixel values to new destinations.
The basic shape of the layer represented in the image is maintained but modified to new
positions and orientations. Rotation of 30°, magnification of 20°, cropping of 10°, and
random horizontal and vertical displacement of 20° were used, and 1500 new images were
created (Figure 5).

Figure 5. Image results after using data augmentation.

2.5. Hyperparameter Fitting Using Bayesian Optimization

An action that balances the choice between exploring the entire search space and
exploring strong regions of the search space. Figure 6 shows the optimization process.
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Figure 6. Bayesian optimization in the developed system.
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Bayesian optimization treats parameters as random variables associated with prob-
ability distributions. In this case, an observation is the complete training of the CNN
model with the hyperparameters chosen for that observation. For each iteration, a set
of hyperparameters was selected and observations were made. The validation accuracy
was used to evaluate the observations. The set of hyperparameters was chosen based
on the detection bias. In this case, an observation is the complete training of the CNN
model with the hyperparameters chosen for that observation. For each iteration, a set of
hyperparameters was selected and observations were made. A Gaussian process with
radial basis function cores was used, such that the model is optimized based on a single
accuracy measure on the validation dataset.

Bayesian optimization implemented in the Python GPyOpt 1.2.6 library was used
to develop the system. This allows for different parameters that affect the performance
of the optimization. The default parameters provided by the library were used because
of the interest in the possible performance improvement in combination with sequential
transfer learning.

This approach was used in two phases, with two sets of hyperparameters, one for
each training phase. Two separate Bayesian optimization runs were performed. First, the
classification block was optimized for mammography images and then the best model was
used in the second step.

The hyperparameter tuning procedures target some of the most important parameters
such as the number of units in densely connected layers, the learning rate, and the activation
function [28]. We added other important network regularization parameters such as the 12
parameter and the dropout rate for densely connected layers using the RMSprop optimizer
(Table 1).

Table 1. Hyperparameters and search space.

Parameter Search Space Description
Number of neurons in the 64,128, 256, 512 To introduce nonlinearity in
custom dense layer the output of the neurons
To determine the step size in
Learning Rate 0.01; 0.001; 0.0001 each iteration while

minimizing the loss function

12 0.1; 0.01; 0.001 Regularization
Activation Function Relu, Elu, and Tanh To introduce nonlinearity in
the output of neurons
To ensure that the model is
Dropout rate 0.3;0.5;0.7 robust to the loss of any

individual evidence
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Training and test accuracy

2.6. Evaluation Metrics

Following the same performance metrics in the references related by [35-37], the net-
work performance was evaluated based on the following metrics: accuracy (Equation (1)),
F1 score (Equation (2)), and visualization by the confusion matrix.

Accuracy = TP+ TN @
YT TP+ TNFP+FN
- 2 x precision x recall @

precision + recall

where: TP—True Positive; TN—True Negative; FP—False Positive; FN—False Negative.

3. Results

In this section, the performance of the network using Bayesian optimization on the
task of mastitis image classification is presented. The accuracy and loss curves for the
training and test classification results of the images obtained from the transfer learning
networks are presented in Figure 7.

A. STL-ResNet50
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Figure 7. Accuracy and loss curves in training and testing for the fitted models.

The optimized model exhibited the most optimal network performance, achieving a
92.1% accuracy in comparison to the model that utilized a manual search (88.03%).

3.1. Classification Performance with Bayesian Optimization

By obtaining the optimization plots (Figure 8), it is possible to visualize the exploratory
space of the Bayesian model, which starts by testing a wide range of distant hyperparame-
ters in search of the best performance, with the most satisfactory accuracy range.
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iteration.

Figure 8A shows how convergence to the minimum value of an objective function is
performed with respect to the number of different attempts of hyperparameter combina-
tions. The x-axis shows the number of calls to the objective function, and the y-axis shows
the minimum value of the objective function after several calls. There was less distance in
the evaluations from the thirteenth iteration, as the evaluations were very close, showing
that the network found the optimal values of the hyperparameters, ending the training. The
same did not occur between some iterations, such as the sixth and tenth, as they presented
a greater distance between them (Figure 8A).

3.2. Model Performance in Classification and Set of Hyperparameters

The performance of the models in the task of classification of thermal images of the
udder of dairy cows (healthy animals and animals with subclinical mastitis) was compared
using the visualization of the confusion matrix (Figure 9).

A. 5TL Bayesian-ResNet30 B. STL-ResNet30

- 15 — 18 - 15

- 10 10

s 19 "
3 1

Figure 9. Confusion matrices of the four models employed in the classification of the images
(0—healthy animal; 1—an animal with subclinical mastitis).

Based on the results of the confusion matrix showing the number of correctly classified
images, the model had 19 correctly classified images and two incorrectly classified images
for the two classes of healthy animals and animals with subclinical mastitis.

The best set of hyperparameters and best set of weights for training the network
conferred from the Bayesian surrogate model are shown in Table 2.

The number of neurons in the customized dense layer was 64 and the learning rate for
training on the image set was 0.0001. The rate used in 12 regularization was 0.001, with an
activation function of elu, and a dropout rate of 0.5.
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Table 2. The best set of hyperparameters inferred by the Bayesian surrogate model.

Parameter Search Space
Number of neurons in the custom dense layer 64
Learning Rate 0.0001
12 0.001
Activation Function Elu
Dropout 0.5

4. Discussion

ImageNet weights were used in the system because they are more efficient in trans-
mitting relatively small datasets, speeding up the technique compared to training from
scratch. The images used are different from those in the ImageNet domain but resemble
natural images in terms of color, contrast, and lighting. These common image features were
important for classification. This latter accuracy was obtained in 100 seasons, which did
not occur with the optimized model, with the best performance obtained in 11 seasons.

The F1 scores showed values of 90 and 85.5%. This comprehensively considers accu-
racy and recovery, with the results being able to better reflect the superior performance of
the model along with accuracy. This is because reducing false negatives helps with health
management, increases confidence in diagnosis, reduces costs, and ensures a higher value
for the milk paid to producers. In general, increased accuracy allows producers to act more
quickly to treat subclinical mastitis and prevent it from progressing to a more chronic stage,
maintaining milk production, reducing waste, and improving the health and well-being of
the herd.

As can be seen in Figure 8A, the distances represented in the graph explain which
regions represent the most accurately punctuated search space. This means that these areas
can provide better results and be closer to the ideal. In this case, the results displayed after
the 10th attempt allowed the algorithm to reach the highest accuracy value.

The precision values of the 34 trials performed by the algorithm remained constant
and were above 90% between the 2nd and 22nd iterations. After that, the algorithm reached
the best value (92.1%) without changing anything in the next run (Figure 8B).

Therefore, the algorithm converged quickly to a set of hyperparameters and achieved
high accuracy with only small incremental improvements. These results show the efficiency
with which the Bayesian model can converge to identify the optimal set of hyperparameters
for the main classifier based on the pre-trained CNN ResNet50.

Compared to the model without Bayesian optimization, it presented 18 correctly
classified images for healthy animal classes, resulting in better performance, but the same
percentage for animals with subclinical mastitis.

In Figure 9A, STL_Bayesian—ResNet50 has a higher identification rate (true positive
rate and true negative rate). The identification rate reached 92% in healthy animals and
animals with subclinical mastitis. The results of this study showed that the ability to detect
subclinical mastitis was superior to the research carried out by [2], where the accuracy of
the mastitis classification algorithm was 83.33%. This is mainly due to the use of fine-tuning
as an optimization of hyperparameters in the training images. We first adapted the network
to the new class used and then adapted the network to the mastitis image to achieve good
performance. Similar results were achieved by the study carried out by [38] to detect
subclinical mastitis using a deep learning model based on Convolutional Neural Networks
(CNN) using 7615 udder thermograms from 40 Murrah buffaloes and had training accuracy
and validation accuracy of 0.970 and 0.943, respectively. Thus, the improved deep learning
CNN models efficiently predicted cases of subclinical mastitis.

A higher percentage of errors (false positives and false negatives) was observed in the
STL—ResNet50 model (14% and 8%) (Figure 9B). This is mainly due to manual fitting, so
the values of the selected hyperparameters affect the quality of models, as well as their
ability to learn and generalize.
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In this context, it is possible to infer that infrared thermography was a technique
capable of mapping the udder surface temperature of dairy cattle, identifying changes
resulting from the clinical picture of bovine mastitis. When combined with image analysis
techniques, it enabled the accurate diagnosis of subclinical mastitis through deep machine
learning, minimizing the cost of having to test the entire herd through CMT.

Deep learning and sequential knowledge transfer were used to improve the classifica-
tion accuracy of thermal images associated with the clinical picture of dairy cattle, which
contributed significantly to the automatic detection of healthy animals and animals with
subclinical mastitis. This predictive methodology contributes significantly to reducing false
positives by only referring animals with an alert indication for subclinical mastitis to the
CMT test.

The use of Bayesian optimization, whose motivation is linked to the choice of the
best parameters for a deep learning model, interfered with the performance of the models.
Compared to the manual choice of parameters, it represents a time saver because the
manual choice is laborious. The mechanisms of attention applied to computer vision
tasks are inspired by human visual capacities, more precisely attention, which consists
of focusing on a certain object in a scene. When applied to deep learning models, they
improve their performance by highlighting discriminative characteristics in the image,
helping with classification.

The results of this study indicate that image processing techniques applied to thermal
images were able to extract characteristics that helped classify the images; however, more
studies need to be carried out involving convolution networks and their techniques in
order to obtain new results that help producers make decisions. In terms of detection time,
the proposed predictive methodology is faster and more objective, directing animals to the
CMT test. In relation to SCC, Electronic Somatic Cell Count, and other laboratory methods
(such as microbial culture), the proposed methodology can also support the identification
of animals that will have their milk samples tested.

5. Conclusions

The predictive model STL_Bayesian—ResNet50 correctly classified the images, obtain-
ing an accuracy of 92.1%.

Compared to the STL model, ResNet50 achieved a 6% higher performance and con-
verged in a significantly lower number of epochs (11 epochs).

The implementation of Bayesian optimization enhanced the functionality of the net-
work, identifying the optimal set of parameters that significantly contributed to the auto-
mated detection of healthy animals and those exhibiting subclinical mastitis from thermal
images of the udder of dairy cows.

Follow-Up Research Plan

The results of the present study indicate that the processing techniques of images
applied to thermal images aiming at the early diagnosis of mastitis were able to extract
characteristics that helped in the classification of images. However, more studies are needed
involving convolutional networks and their techniques in order to obtain new results that
assist the producer in decision-making.
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