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Abstract: Citrus yield estimation using deep learning and unmanned aerial vehicles (UAVs) is an
effective method that can potentially achieve high accuracy and labor savings. However, many
citrus varieties with different fruit shapes and colors require varietal-specific fruit detection models,
making it challenging to acquire a substantial number of images for each variety. Understanding the
performance of models on constrained or biased image datasets is crucial for determining methods
for improving model performance. In this study, we evaluated the accuracy of the You Only Look
Once (YOLO) v8m, YOLOv9c, and YOLOv5mu models using constrained or biased image datasets
to obtain fundamental knowledge for estimating the yield from UAV images of yellow maturing
citrus (Citrus junos) trees. Our results demonstrate that the YOLOv5mu model performed better than
the others based on the constrained 25-image datasets, achieving a higher average precision at an
intersection over union of 0.50 (AP@50) (85.1%) than the YOLOv8m (80.3%) and YOLOv9c (81.6%)
models in the training dataset. On the other hand, it was revealed that the performance improvement
due to data augmentation was high for the YOLOv8m and YOLOv9c models. Moreover, the impact
of the bias in the training dataset, such as the light condition and the coloring of the fruit, on the
performance of the fruit detection model is demonstrated. These findings provide critical insights
for selecting models based on the quantity and quality of the image data collected under actual
field conditions.

Keywords: data augmentation; object detection; smart agriculture; yield estimation

1. Introduction

Citrus fruits are essential crops for the global agricultural market. In 2021, citrus fruits
were the second most produced worldwide, with a total production of 161.8 million tons.
This extensive production spanned over 10.2 million hectares of agricultural land [1]. Global
production of citrus fruits has increased by 50% over the past two decades, reflecting their
growing importance in industry and people’s livelihoods. As fruit production increases,
the mechanization of cultivation also progresses. However, harvesting remains labor-
intensive, especially in regions such as Japan. In this area, citrus crops are grown on
sloping land where advanced machinery is limited in many cases [2], requiring a significant
amount of hired labor in a short period. Therefore, accurate yield estimation before
harvesting is crucial for reducing costs and optimizing labor hiring. Yield estimation is also
necessary to maximize profits through strategic marketing and to further develop smart
agriculture technology.

Studies have aimed to predict the number of fruits before harvesting using optimal
sampling strategies for decades. For example, the United States Department of Agricul-
ture [3] reported that sampling surveys of certain branches were sufficient to achieve a
coefficient of variation within 10% when estimating fruit set early in the growing season
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for early orange, Valencia orange, and grapefruit in blocks. Stout [4] observed that a survey
of two trees per orchard and four revised frame counts per tree in Temple, tangerine, and
tangelo varieties resulted in sampling errors regarding the average number of fruits per
tree ranging from 14% to 32%. Sampling methods for estimating total orchard yield have
also been developed for other fruit trees [5,6]. These sampling methods, created through
the efforts of numerous researchers, are highly accurate in estimating yields; however, the
sampling itself is labor-intensive, and more labor-saving methods are required.

Therefore, yield estimation using image processing has become the focus of recent
studies. Yield estimation using image processing is an effective method with the potential
to achieve both high accuracy and labor savings. In particular, advances in computer
technology have promoted the development of object detection methods using Artificial
Intelligence, particularly deep learning (DL). Recent studies on citrus fruit detection using
DL were reported by Zhang et al. [7], Li et al. [8], Gremes et al. [9], Jing et al. [10], and
Ang et al. [11]. These fruit detection methods demonstrate significant potential for reducing
labor in sampling for yield estimation before harvest.

Simultaneously, progress in unmanned aerial vehicles (UAVs) has made it possible
to acquire substantial amounts of image data inexpensively, reproducibly, and in a short
timeframe. Consequently, several studies have been published that combine UAV images
of fruit trees with DL. For instance, Apolo-Apolo et al. [12] with Navelina sweet orange,
Novelero et al. [13] with mature coconut, Xiong et al. [14] with litchi, Wang et al. [15] with
apple, and Arakawa et al. [16] with chestnut fruit (bur) have constructed fruit detection
models. The combination of UAVs and DL has the potential to dramatically improve yield
estimation methods.

In most of these studies, an object detection method called YOLO (You Only Look
Once) has been used for fruit detection. Object detection methods can be classified into
one- and two-stage detection models. A two-stage detection method is divided into two
steps: the extraction of the region proposal and the identification of object classes within
the region proposal. Faster R-CNN is the primary model in this category [17]. In general,
two-stage object detection shows high detection performance but slow inference speed,
limiting its use in actual scenarios. Thus, one-stage object detection, which offers both
high accuracy and fast inference speeds, is used for fruit detection in actual orchards. A
one-stage detection method is an approach that detects objects efficiently by predicting
both the location and class of objects in a single time over the entire image. The one-stage
object detection model proposed by Redmon et al. [18], called YOLO, is characterized by
its speed. YOLO was released in 2016, and YOLOv2 [19], YOLOv3 [20], YOLOv4 [21],
YOLOv5 [22], YOLOv6 [23], YOLOv7 [24], YOLOv8 [25], YOLOv9 [26], YOLOv10 [27], and
YOLO11 [28] are currently available.

Achieving good performance in object detection models requires numerous labeled
training images. However, in many cases, significant difficulties are encountered due to the
scarcity of available images. Data augmentation (DA) is a key technique for generating a
large number of images and conducting effective model training. DA includes geometric
transformation, color transformation, blurring, and noise addition [29,30]. Additionally,
advanced methods, such as CutMix [31], replace part of an image with a patch from an-
other image, whereas Random Erasing [32] erases random regions in an image to enhance
model robustness. To enhance dataset diversity, generating new images using generative
adversarial networks (GANs) and incorporating them into training data is highly beneficial.
This approach is particularly effective in scenarios in which data are scarce or when greater
variation is required. GANs, proposed by Goodfellow et al. [33], consist of two networks:
the generator aims to produce data closely resembling the training data to deceive the dis-
criminator, which in turn distinguishes between the training and generated data. Through
this adversarial process, the generator learns to generate data that aligns closely with the
training distribution. Furthermore, Pix2pix [34], a type of conditional GAN, generates
training data by mapping input images to the corresponding output images. These meth-
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ods collectively address the challenges posed by limited data availability, enhance dataset
diversity, and ultimately improve the performance of object detection models.

Considering the excellent compatibility between DL-based object detection and UAV
images, further research on fruit yield estimation methods using these technologies is
expected. However, many citrus fruit varieties with different shapes and colors require
varietal-specific fruit detection models. Understanding the model performance on con-
strained or biased image datasets is crucial for determining a method for improving model
performance. In certain cases, the training results for constrained or biased image datasets
can be applied to a model for few-shot object detection.

Hence, the objective of this study was to evaluate the accuracy of the YOLOv8m,
YOLOv9c, and YOLOv5mu models of the YOLO series with constrained or biased image
datasets to obtain fundamental knowledge for estimating the yield of citrus trees based on
UAV images. Although there have been many studies of object detection in citrus fruits
with an orange color, there have not been many studies in fruits with a yellow color, such as
lemons. Therefore, we conducted this study using Citrus junos Sieb. ex Tanaka, also known
as yuzu, which is a yellow maturing citrus fruit (Figure 1). Citrus junos is a commonly
cultivated citrus cultivar in Japan, Korea, and China [35–37]. This fruit has an attractive
fragrance and is strongly acidic. In Japan, yuzu juice has traditionally been used as a
substitute for vinegar and seasoning, instead of being consumed as fresh fruit.
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Figure 1. Fruits of Citrus junos Sieb. ex Tanaka [38]. 

2. Materials and Methods 
2.1. Acquision of UAV Images 

The UAV images were acquired using Citrus junos on trifoliate orange rootstocks in 
two orchards (Orchards 1 and 2) at the Kochi Agricultural Research Center Fruit Tree Ex-
periment Station in Kochi City and two farmers’ orchards (Orchards 5 and 7) in Kami City, 
Japan. The orchard number and location were consistent with those reported by Tanimoto 
and Yoshida [38]. The UAV images were collected between October and November from 
2020 to 2023, during the yellow maturing period of the fruits. Figure 2 shows the locations 
of the experimental Citrus junos orchards, and Table 1 presents an overview of the exper-
imental orchards. 

The weather conditions for acquiring UAV images for Orchard 2 in 2020 and Orchard 
7 in 2023 were sunny, whereas images for the other orchards and other years were taken 
in cloudy conditions. Additionally, UAV images of Orchards 5 and 7 in 2023 were acquired 

Figure 1. Fruits of Citrus junos Sieb. ex Tanaka [38].

The remainder of this paper is organized as follows: Section 2 provides details on
the dataset collection and describes the methodology used for detecting Citrus junos fruit.
Section 3 presents and discusses the results. Finally, Section 4 summarizes the research and
concludes this study.

2. Materials and Methods
2.1. Acquision of UAV Images

The UAV images were acquired using Citrus junos on trifoliate orange rootstocks in
two orchards (Orchards 1 and 2) at the Kochi Agricultural Research Center Fruit Tree Experi-
ment Station in Kochi City and two farmers’ orchards (Orchards 5 and 7) in Kami City, Japan.
The orchard number and location were consistent with those reported by Tanimoto and
Yoshida [38]. The UAV images were collected between October and November from 2020
to 2023, during the yellow maturing period of the fruits. Figure 2 shows the locations of
the experimental Citrus junos orchards, and Table 1 presents an overview of the experimen-
tal orchards.
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Orchard 2 in 2020 and 2022 (Table 1). All images were cropped to 1200 × 1200 pixels from 
the center of Citrus junos trees to ensure consistency in the region of interest (Figure 3), 
and the files were in PNG format. To annotate fruits in training images, the open annota-
tion software “Labelimg” was used, and annotations were implemented carefully and ac-
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Figure 2. The locations of the experimental Citrus junos orchards. This study was conducted in two
orchards (Orchards 1 and 2) at the Kochi Agricultural Research Center Fruit Tree Experiment Station
in Kochi City and two farmers’ orchards (Orchards 5 and 7) in Kami City, Japan. This figure was
obtained from the report by Tanimoto and Yoshida [38].

Table 1. Overview of experimental Citrus junos orchards.

Train
or Test

Orchard
Number

Acquisition Date
of UAV Images Number of Trees Weather Condition

of Acquisition Date
Fruit Maturing

of Acquisition Date Harvesting Date

Train 1 2020/10/28 40 Cloudy Completely Matured 2020/11/06
Train 1 2021/10/31 45 Cloudy Completely Matured 2021/11/11
Test 1 2022/10/27 15 Cloudy Completely Matured 2022/11/08

Train 2 2020/10/30 20 Sunny Completely Matured 2020/11/04
Test 2 2021/11/05 15 Cloudy Completely Matured 2021/11/12

Train 2 2022/10/27 20 Cloudy Completely Matured 2022/11/02
Test 5 2023/10/18 15 Cloudy Under-Matured 2023/11/07
Test 7 2023/10/25 10 Sunny Under-Matured 2023/11/09

The weather conditions for acquiring UAV images for Orchard 2 in 2020 and Orchard 7
in 2023 were sunny, whereas images for the other orchards and other years were taken in
cloudy conditions. Additionally, UAV images of Orchards 5 and 7 in 2023 were acquired
when the fruit was under-matured, whereas images of the other orchards were captured
when the fruit was completely matured. The DJI Mavic Mini UAV (Da-Jiang Innovations
Science and Technology Co., Ltd., Shenzhen, China) was used to acquire images. The sensor
was a 1/2.3-inch Complementary Metal-Oxide-Semiconductor camera with a field of view
of 83◦, a focal length of 24 mm (equivalent to 35 mm in full-frame format), a focal ratio
of f/2.8, and focus from 1 m to infinity. To obtain comprehensive images for analysis, the
average flight height was between 5 m and 9 m, and individual trees were photographed
vertically. The image resolution was 4000 × 2250 pixels, and the files were in JPG format.

2.2. Dataset Construction

The training datasets included UAV images from Orchard 1 in 2020 and 2021 and
Orchard 2 in 2020 and 2022 (Table 1). All images were cropped to 1200 × 1200 pixels from
the center of Citrus junos trees to ensure consistency in the region of interest (Figure 3), and
the files were in PNG format. To annotate fruits in training images, the open annotation
software “Labelimg” was used, and annotations were implemented carefully and accurately
by double-checking. In this study, three training datasets were constructed to compare the
detection performance of the YOLOv8m, YOLOv9c, and YOLOv5mu models. Figure 4
illustrates a flowchart of the dataset preparation.



AgriEngineering 2024, 6 4312

AgriEngineering 2024, 6 4312 
 

 

0.5, contrast changes of 1.5, and vertical flips, applied sequentially (Figure 5). The datasets 
with these DA images added were named the 50-image dataset, the 75-image dataset, and 
the 100-image dataset. For a dataset containing only the original images (125-image da-
taset), k-fold cross-validation was performed to assess the validity of the model’s perfor-
mance. k-fold cross-validation is a reliable method for evaluating the performance of a 
model by splitting the data into k equally sized subsets. For each of the k folds, k−1 folds 
are used to train the model, and the remaining fold is used to test the model. This process 
was repeated k times, and a different fold was used as the test set each time. Finally, aver-
age performance metrics were calculated and evaluated. In this context, five-fold cross-
validation was performed. The other datasets were trained using each of the five-fold da-
tasets, and the averages were calculated for each dataset (Figure 4a). For the subsequent 
datasets, to evaluate the performance of the fruit detection model trained using data from 
each orchard and year, contrast change of 0.5, contrast change of 1.5, and vertically flipped 
DA images were added to the datasets from each orchard and each year. The data were 
randomly divided into five parts and five-fold datasets were constructed. For each or-
chard and year dataset, five-fold cross-validation was performed to confirm the reliability 
and robustness of the model (Figure 4b). For the third dataset, we prepared one with ap-
proximately an equal number of images collected on sunny and cloudy days. Twenty im-
ages for Orchard 2 in 2020 collected under sunny conditions were expanded to 100 images 
by means of DA, with contrast changes of 0.5, contrast changes of 1.5, vertical flips, and 
horizontal flips. This method is known as oversampling with DA [29]. The data from each 
orchard and year were randomly divided into 5 parts, which were combined to generate 
5-fold datasets, each consisting of 41 images. Five-fold cross-validation was performed to 
confirm the reliability and robustness of the model (Figure 4c). 

Table 2 lists the number of images and average number of instances in each dataset. 
Based on the number of instances, the training/validation ratio was 77.5%:22.5% for the 
step-by-step DA dataset and 80.0%:20.0% for the other datasets. This ratio reflects the em-
phasis on the number of UAV images from each orchard (or year) included in each fold. 

Based on the report by Yuan [39], the test dataset was prepared, and the performance 
of the training model was evaluated. In this study, images of different orchards or differ-
ent years, separate from the training dataset, were selected for the test dataset. Specifically, 
UAV images and their annotations from Orchard 1 in 2022, Orchard 2 in 2021, and Or-
chards 5 and 7 in 2023 were used, as shown in Table 1. Each image was cropped to include 
only the tree region and then pasted onto a black image measuring 2250 × 2250 pixels, as 
illustrated in Figure 6. These test datasets minimized background complexity, containing 
only trees and fruits by removing distracting elements such as the ground, other plants, 
and shadows. This approach allowed for a more focused evaluation of the model’s fruit 
detection accuracy. The fruits in the test images were annotated using the LabelImg soft-
ware. 

 
(a) (b) (c) (d) 
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in 2022. 

Figure 3. The training dataset UAV images. (a) A tree image from Orchard 1 in 2020. (b) A tree image
from Orchard 1 in 2021. (c) A tree image from Orchard 2 in 2020. (d) A tree image from Orchard 2
in 2022.
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For the first dataset, the data (images and annotations) from each orchard and year
were randomly divided into five parts combined to generate five-fold datasets. Each dataset
consisted of 25 images (25-image dataset). Based on each 25-image dataset, step-by-step
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DA was performed to evaluate the performance of the fruit detection model using the
constrained image datasets. This process included techniques of contrast changes of 0.5,
contrast changes of 1.5, and vertical flips, applied sequentially (Figure 5). The datasets with
these DA images added were named the 50-image dataset, the 75-image dataset, and the
100-image dataset. For a dataset containing only the original images (125-image dataset),
k-fold cross-validation was performed to assess the validity of the model’s performance.
k-fold cross-validation is a reliable method for evaluating the performance of a model by
splitting the data into k equally sized subsets. For each of the k folds, k−1 folds are used to
train the model, and the remaining fold is used to test the model. This process was repeated
k times, and a different fold was used as the test set each time. Finally, average performance
metrics were calculated and evaluated. In this context, five-fold cross-validation was
performed. The other datasets were trained using each of the five-fold datasets, and the
averages were calculated for each dataset (Figure 4a). For the subsequent datasets, to
evaluate the performance of the fruit detection model trained using data from each orchard
and year, contrast change of 0.5, contrast change of 1.5, and vertically flipped DA images
were added to the datasets from each orchard and each year. The data were randomly
divided into five parts and five-fold datasets were constructed. For each orchard and year
dataset, five-fold cross-validation was performed to confirm the reliability and robustness
of the model (Figure 4b). For the third dataset, we prepared one with approximately an
equal number of images collected on sunny and cloudy days. Twenty images for Orchard 2
in 2020 collected under sunny conditions were expanded to 100 images by means of DA,
with contrast changes of 0.5, contrast changes of 1.5, vertical flips, and horizontal flips. This
method is known as oversampling with DA [29]. The data from each orchard and year
were randomly divided into 5 parts, which were combined to generate 5-fold datasets, each
consisting of 41 images. Five-fold cross-validation was performed to confirm the reliability
and robustness of the model (Figure 4c).

AgriEngineering 2024, 6 4313 
 

 

 

 

(a) (b) 

 

 
 (c) 

Figure 4. Flowchart of dataset preparation. (a) Constrained image dataset preparation process. (b) 
Biased image dataset preparation process. (c) Dataset preparation process ensuring approximately 
equal number of images collected on sunny and cloudy days. 

 
(a) (b) (c) (d) 

Figure 5. The data augmentation implemented for the model training. (a) The original image. (b) 
After a contrast change of 0.5. (c) After a contrast change of 1.5. (d) After a vertical flip. 

  

Figure 5. The data augmentation implemented for the model training. (a) The original image.
(b) After a contrast change of 0.5. (c) After a contrast change of 1.5. (d) After a vertical flip.

Table 2 lists the number of images and average number of instances in each dataset.
Based on the number of instances, the training/validation ratio was 77.5%:22.5% for the
step-by-step DA dataset and 80.0%:20.0% for the other datasets. This ratio reflects the
emphasis on the number of UAV images from each orchard (or year) included in each fold.

Based on the report by Yuan [39], the test dataset was prepared, and the performance
of the training model was evaluated. In this study, images of different orchards or different
years, separate from the training dataset, were selected for the test dataset. Specifically, UAV
images and their annotations from Orchard 1 in 2022, Orchard 2 in 2021, and Orchards 5
and 7 in 2023 were used, as shown in Table 1. Each image was cropped to include only the
tree region and then pasted onto a black image measuring 2250 × 2250 pixels, as illustrated
in Figure 6. These test datasets minimized background complexity, containing only trees
and fruits by removing distracting elements such as the ground, other plants, and shadows.
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This approach allowed for a more focused evaluation of the model’s fruit detection accuracy.
The fruits in the test images were annotated using the LabelImg software.

Table 2. Number of images and the average number of instances in each dataset. (a) Constrained
image datasets. (b) Biased image datasets. (c) Approximately equal number of images collected on
sunny and cloudy days.

(a)

Datasets
Number of Images Average Number of Instances

Train Validation Total Train Validation Total

125-Image Dataset 100 25 125 9738 2434 12,172
25-Image Dataset 19 6 25 1887 547 2434
50-Image Dataset 38 12 50 3774 1095 4869
75-Image Dataset 57 18 75 5661 1642 7303

100-Image Dataset 76 24 100 7548 2190 9738

(b)

Datasets
Number of Images Average Number of Instances

Train Validation Total Train Validation Total

Orchard 1 in 2020 Dataset 128 32 160 10,819 2705 13,524
Orchard 1 in 2021 Dataset 144 36 180 20,000 5000 25,000
Orchard 2 in 2020 Dataset 64 16 80 3510 878 4388
Orchard 2 in 2022 Dataset 64 16 80 4621 1155 5776

(c)

Datasets
Number of Images Average Number of Instances

Train Validation Total Train Validation Total

Approximately Equal Number of
Images on Sunny and Cloudy Days 164 41 205 13,248 3312 16,560
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Figure 6. The test datasets cropped to include only the tree region and then pasted onto a black 
background measuring 2250 × 2250 pixels. (a) A tree image from Orchard 1 in 2022. (b) A tree image 
from Orchard 2 in 2021. (c) A tree image from Orchard 5 in 2023. (d) A tree image from Orchard 7 
in 2023. 
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25-Image Dataset 19 6 25 1887 547 2434 
50-Image Dataset 38 12 50 3774 1095 4869 
75-Image Dataset 57 18 75 5661 1642 7303 

100-Image Dataset 76 24 100 7548 2190 9738 
(b)       

Datasets 
Number of Images Average Number of Instances 

Train Validation Total Train Validation Total 
Orchard 1 in 2020 Dataset 128 32 160 10819 2705 13524 
Orchard 1 in 2021 Dataset 144 36 180 20000 5000 25000 
Orchard 2 in 2020 Dataset 64 16 80 3510 878 4388 
Orchard 2 in 2022 Dataset 64 16 80 4621 1155 5776 
(c)       

Datasets 
Number of Images Average Number of Instances 

Train Validation Total Train Validation Total 
Approximately Equal Number of Images 
on Sunny and Cloudy Days 

164 41 205 13248 3312 16560 

2.3. Execution Environment of Deep Learning 
All model training and testing processes were executed on Google Colaboratory 

(Colab), an online platform provided by Google (Google LLC, Mountain View, CA, USA), 
using a T4 GPU. 

2.4. Overview of YOLOv5u, YOLOv8 and YOLOv9 
To compare the fruit detection performance of the various models, each dataset was 

trained using the YOLOv8m, YOLOv9c, and YOLOv5mu models. Compared to other ob-
ject detection models such as Faster R-CNN or SSD, YOLO has a faster inference speed 
and is capable of real-time detection while it maintains its mean average precision (mAP) 
[40,41]. This means that it has the potential to be particularly useful in practical applica-
tions in the field, as it allows for the efficient detection of high-resolution images such as 
UAV images. For this reason, the YOLO series model was selected in this study. 

Figure 6. The test datasets cropped to include only the tree region and then pasted onto a black
background measuring 2250 × 2250 pixels. (a) A tree image from Orchard 1 in 2022. (b) A tree image
from Orchard 2 in 2021. (c) A tree image from Orchard 5 in 2023. (d) A tree image from Orchard 7
in 2023.

2.3. Execution Environment of Deep Learning

All model training and testing processes were executed on Google Colaboratory
(Colab), an online platform provided by Google (Google LLC, Mountain View, CA, USA),
using a T4 GPU.

2.4. Overview of YOLOv5u, YOLOv8 and YOLOv9

To compare the fruit detection performance of the various models, each dataset was
trained using the YOLOv8m, YOLOv9c, and YOLOv5mu models. Compared to other object
detection models such as Faster R-CNN or SSD, YOLO has a faster inference speed and is
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capable of real-time detection while it maintains its mean average precision (mAP) [40,41].
This means that it has the potential to be particularly useful in practical applications in the
field, as it allows for the efficient detection of high-resolution images such as UAV images.
For this reason, the YOLO series model was selected in this study.

YOLOv8 is a kind of YOLO series, released in 2023, and offers an optimal balance
between accuracy and speed. For enhanced feature extraction and object detection perfor-
mance, YOLOv8 introduces state-of-the-art backbone and neck architectures. The adoption
of an anchor-free split Ultralytics head enables superior accuracy and efficient detection.
YOLOv8 offers various series for different tasks, and certain modes, such as inference,
validation, training, and export, accommodate users with different demands, thereby pro-
moting the use of YOLO [25]. YOLOv9 is one of the new YOLO series, released in 2024.
YOLOv9 adopts the programmable gradient information (PGI) concept and the advanced
architecture of the generalized efficient layer aggregation network (GELAN). The integra-
tion of PGI enables the transfer of key information to deeper network layers and improves
the accuracy of detection. The GELAN efficiently aggregates and utilizes information
from each layer to improve model performance while reducing computational costs. Con-
sequently, high performance can be achieved even with constrained resources. These
technologies enhance the accuracy and adaptability of YOLOv9 [26]. YOLOv5u is a modi-
fied version of YOLOv5 designed to achieve higher accuracy and performance than the
standard YOLOv5 model. It introduces the anchor-free split head employed in the YOLOv8
model, thereby improving the accuracy–speed trade-off in object detection [42]. In this
study, YOLOv8m, YOLOv9c, and YOLOv5mu were selected because they have similar
parameters for models trained on the Common Objects in Context (COCO) dataset. We
deemed it appropriate to compare these YOLO series with constrained or biased image
dataset scenarios (Table 2).

2.5. Model Training Execution

Based on the following hyperparameters, training was executed for the YOLOv8m,
YOLOv9c, and YOLOv5mu models: 400 epochs, stopping early at 50 epochs, a batch size
of 8, an image size of 640 × 640, the AdamW optimizer, a learning rate of 0.002, and a
momentum of 0.9 (Table 3).

Table 3. Hyperparameters used for YOLOv8m, YOLOv9c, and YOLOv5mu model training.

Model YOLOv8m YOLOv9c YOLOv5mu

Parameters (Millions) 1 25.8 25.3 25.0
GFLOPs 1 78.7 102.3 64.0

Epochs 400 400 400
Early Stopping 50 50 50

Batch Size 8 8 8
Image Size 640 × 640 640 × 640 640 × 640
Optimizer AdamW AdamW AdamW

Learning Rate 0.002 0.002 0.002
Momentum 0.9 0.9 0.9

1 The performance on the COCO dataset.

2.6. Evaluation Metrics

Several crucial metrics were used to evaluate model performance. These included the
precision (P), recall (R), and F1-score, which are crucial measures of the accuracy of a model
in correctly identifying objects in an image. Additionally, the AP was used to measure the
overall performance.

Precision measures the accuracy of positive predictions made by the model. It is
defined as the ratio of true positive (TP) predictions to all positive predictions (both TPs
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and false positives (FPs)). This metric indicates the ability of the model to identify positive
instances correctly.

Precision =
TP

TP + FP
(1)

Recall measures the model’s capability to identify relevant instances and is defined as
the ratio of TP to the sum of actual positives (TPs and false negatives (FNs)). A high recall
indicates that the model successfully captured most of the actual positive instances.

Recall =
TP

TP + FN
(2)

The F1-score is the harmonic mean of the precision and recall, providing a single
measure that balances both metrics. The F1-score is highest at one (perfect precision and
recall) and lowest at zero.

F1 − score = 2 × precision × recall
precision + recall

(3)

AP evaluates the trade-off between precision and recall by calculating the area under
the precision-recall curve. This metric summarizes the model’s performance across all recall
levels and provides a comprehensive perspective of its effectiveness; a higher AP indicates
better overall performance in identifying TP while maintaining a lower FP rate. In this
study, when the overlap between the correct bounding box and the predicted bounding box
was 50% or more, it was defined as a correct prediction (IoU (intersection over union) = 50),
and the AP at this time was calculated (AP@50).

Average Precision (AP) =
∫ 1

0
P(R)dR (4)

2.7. Assessment of Constructed Models

All the model tests were conducted using the test datasets in Table 1 and Figure 6. The
batch size was set to 8 and the image size to 1200 × 1200. Additionally, a confidence score
of 0.25 was set as the minimum threshold for detections, and an IoU of 0.5 was set as the
IoU threshold for detections during non-maximum suppression (Table 4).

Table 4. Hyperparameters used for YOLOv8m, YOLOv9c, and YOLOv5mu model tests.

Model YOLOv8m YOLOv9c YOLOv5mu

Batch Size 8 8 8
Image Size 1200 × 1200 1200 × 1200 1200 × 1200

Confidence Score 0.25 0.25 0.25
IoU 0.50 0.50 0.50

3. Results and Discussion
3.1. Comparison of Training Models Using Constrained Images Datasets

To evaluate the performance of the three YOLO models trained on datasets with
step-by-step image augmentation by means of DA, we used four metrics: precision, recall,
F1-score, and AP@50. Table 5 presents a comparison of the performances of the YOLO
model trained on these different training dataset sizes. The models trained on the 125-image
dataset containing only the original images yielded the highest values for all metrics across
all training models. Among these models, the YOLOv9c model achieved the highest
performance, with a precision of 87.7%, recall of 80.0%, F1-score of 83.6%, and AP@50 of
89.0%. Among the models trained on the 25-image dataset that does not contain DA
images, the YOLOv5mu model exhibited the highest values among the three training
YOLO models, with a precision of 84.7%, recall of 74.6%, F1-score of 79.3%, and AP@50 of
85.1%. The models trained on the 50-image dataset, which added contrast change of 0.5 DA
images to the 25-image dataset, showed higher values for all evaluation metrics for the
three YOLO models compared to the 25-image dataset. Among these, the increase in the
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values of each evaluation metric for the YOLOv8m and YOLOv9c models compared to the
YOLOv5mu model was higher than the increase from the models trained on the 25-image
dataset. The models trained on the 75-image dataset, which added contrast change 1.5 DA
images to the 50-image dataset, had the same or lower evaluation metric values for all three
YOLO models, except for the recall of the YOLOv8m model. The models trained on the
100-image dataset, which added vertically flipped DA images to the 75-image dataset, had
higher evaluation metric values for all three YOLO models except for the precision of the
YOLOv8m model. The YOLOv9c model trained on the 100-image dataset had a precision
of 86.7%, F1-score of 81.7%, and AP@50 of 87.4%, which were higher than those for the
YOLOv5mu and YOLOv8m models.

Table 5. Comparison of YOLO model performance trained on datasets with step-by-step image
augmentation by means of DA.

Model
Precision

25-Image 1 50-Image 75-Image 100-Image 125-Image

YOLOv8m 78.6% ± 11.0% 86.7% ± 2.3% 85.4% ± 2.0% 85.0% ± 1.6% 87.6% ± 1.4%
YOLOv9c 80.9% ± 17.0% 85.5% ± 3.7% 84.5% ± 2.9% 86.7% ± 1.6% 87.7% ± 1.3%

YOLOv5mu 84.7% ± 1.6% 85.3% ± 1.3% 85.3% ± 2.3% 85.9% ± 1.5% 86.7% ± 1.6%

Model
Recall

25-Image 50-Image 75-Image 100-Image 125-Image

YOLOv8m 72.3% ± 7.4% 73.4% ± 2.2% 73.6% ± 3.5% 76.0% ± 3.5% 78.1% ± 2.0%
YOLOv9c 73.5% ± 5.6% 75.9% ± 2.2% 75.3% ± 4.9% 77.4% ± 4.6% 80.0% ± 1.6%

YOLOv5mu 74.6% ± 4.3% 76.2% ± 4.8% 74.9% ± 3.4% 77.5% ± 5.0% 79.0% ± 0.9%

Model
F1-score

25-Image 50-Image 75-Image 100-Image 125-Image

YOLOv8m 75.2% ± 8.7% 79.5% ± 2.1% 79.0% ± 2.4% 80.2% ± 2.3% 82.6% ± 1.5%
YOLOv9c 76.7% ± 11.3% 80.4% ± 2.5% 79.6% ± 3.1% 81.7% ± 2.8% 83.6% ± 1.0%

YOLOv5mu 79.3% ± 2.4% 80.4% ± 3.0% 79.7% ± 2.3% 81.4% ± 2.7% 82.7% ± 1.0%

Model
AP@50

25-Image 50-Image 75-Image 100-Image 125-Image

YOLOv8m 80.3% ± 9.3% 84.8% ± 2.3% 84.7% ± 3.1% 85.4% ± 2.4% 88.0% ± 1.1%
YOLOv9c 81.6% ± 12.7% 85.7% ± 2.1% 85.2% ± 2.9% 87.4% ± 2.9% 89.0% ± 0.9%

YOLOv5mu 85.1% ± 2.5% 85.9% ± 3.1% 85.2% ± 2.4% 86.7% ± 3.0% 88.0% ± 1.0%
1 The values represent the mean ± standard deviation.

Based on these results, the generalization of these training models was tested using
four test datasets from different orchards and years. Table 6 presents a comparison of
the performance of the training models for the test datasets. For this test, AP@50 was
selected as the evaluation metric. The results showed a similar trend for all test datasets.
The model trained on the 125-image dataset achieved the highest AP@50 values among
all the YOLO models. Among these models, the YOLOv9c model achieved the highest
AP@50 values (88.7% for Orchard 1 in 2022, 87.6% for Orchard 2 in 2021, 81.5% for Orchard 5
in 2023, and 84.2% for Orchard 7 in 2023) among all orchards and years. The YOLOv5mu
model trained on the 25-image dataset exhibited the highest AP@50 values (86.1% for
Orchard 1 in 2022, 84.9% for Orchard 2 in 2021, 77.8% for Orchard 5 in 2023, and 79.5% for
Orchard 7 in 2023) among the three YOLO models. The YOLOv8m model trained on the
50-image dataset achieved the highest AP@50 values (86.2% for Orchard 1 in 2022, 79.1%
for Orchard 5 in 2023, and 81.3% for Orchard 7 in 2023) among the three YOLO models.
The models trained on the 75-image dataset showed stagnation or a decrease in AP@50,
except for the YOLOv8m model for Orchard 2 in 2021 and the YOlOv9c and YOLOv5mu
models for Orchard 5 in 2023. However, all YOLO models trained on the 100-image dataset
demonstrated a higher AP@50 compared to the models trained on the 75-image dataset.
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Table 6. Comparison of performance of YOLO models trained on datasets with step-by-step im-
age augmentation by means of DA in test datasets. (a) Results of Orchard 1 in 2022 test dataset.
(b) Results of Orchard 2 in 2021 test dataset. (c) Results of Orchard 5 in 2023 test dataset. (d) Results
of Orchard 7 in 2023 test dataset.

(a)

Model
AP@50

25-Image 1 50-Image 75-Image 100-Image 125-Image

YOLOv8m 83.9% ± 4.7% 86.2% ± 1.0% 85.8% ± 0.6% 86.8% ± 0.4% 88.5% ± 0.5%
YOLOv9c 84.4% ± 4.9% 86.2% ± 1.0% 85.4% ± 1.5% 86.8% ± 0.8% 88.7% ± 0.3%

YOLOv5mu 86.1% ± 0.8% 86.0% ± 1.0% 85.8% ± 0.6% 87.3% ± 0.3% 88.2% ± 0.7%

(b)

Model
AP@50

25-Image 50-Image 75-Image 100-Image 125-Image

YOLOv8m 81.1% ± 8.6% 84.4% ± 0.8% 84.7% ± 1.4% 85.2% ± 0.7% 87.6% ± 0.7%
YOLOv9c 81.8% ± 7.3% 85.1% ± 1.3% 85.0% ± 1.9% 85.6% ± 1.0% 87.6% ± 0.3%

YOLOv5mu 84.9% ± 1.1% 85.1% ± 1.5% 84.5% ± 0.8% 85.8% ± 1.0% 87.4% ± 0.3%

(c)

Model
AP@50

25-Image 50-Image 75-Image 100-Image 125-Image

YOLOv8m 71.1% ± 11.6% 79.1% ± 2.4% 77.5% ± 2.4% 80.8% ± 2.4% 80.0% ± 1.0%
YOLOv9c 74.0% ± 7.5% 77.7% ± 1.2% 78.0% ± 3.1% 78.7% ± 1.6% 81.5% ± 1.3%

YOLOv5mu 77.8% ± 3.5% 78.0% ± 3.0% 79.7% ± 2.1% 80.2% ± 2.4% 80.9% ± 2.2%

(d)

Model
AP@50

25-Image 50-Image 75-Image 100-Image 125-Image

YOLOv8m 76.5% ± 9.1% 81.3% ± 1.6% 80.2% ± 1.7% 81.9% ± 1.4% 83.2% ± 1.5%
YOLOv9c 77.0% ± 6.1% 80.2% ± 1.8% 79.7% ± 2.3% 80.6% ± 0.8% 84.2% ± 1.2%

YOLOv5mu 79.5% ± 1.8% 80.4% ± 2.0% 80.3% ± 1.5% 81.4% ± 1.2% 82.2% ± 2.8%
1 The values represent the mean ± standard deviation.

There are several studies on the effect of the type and combination of DA on the object
detection performance of training models. Shijie et al. [43] reported the effects of different
types and combinations of DA on image classification tasks. They confirmed that cropping,
flipping, Wasserstein GAN, and rotation produced better performance improvements than
the other augmentation methods, which were more pronounced for small datasets. They
also reported that combinations of DA improved or worsened performance in certain
cases. Alin et al. [44] compared various types of DA for drone object detection using the
YOLOv5 model. Their results indicated that mosaic augmentation achieved the highest
precision-recall value of 0.993 compared with the other augmentation types. In addition,
Fu et al. [45] reported that the YOLOv5-AT model developed for the detection of green
fruits showed a decrease in the mAP of the training model as the number of images in the
training dataset decreased, whereas the detection performance of the model improved with
the same number of images in the training dataset by incorporating DA images. In our
study, the detection performance of the YOLOv8m and YOLOv9c models trained on the
50-image dataset improved significantly compared to the models trained on the 25-image
dataset. On the other hand, the results for the models trained on the 50-image dataset and
the models trained on the 75-image dataset showed that there was almost no change in
detection performance for the same combination of DA methods (contrast change of 0.5 and
1.5). When vertically flipped images, representing a different type of DA method to contrast
change, were added, the detection performance improved again for all YOLO models.
Therefore, it was considered that combining different types of DA methods would also be
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effective for improving the performance of fruit detection from UAV images of Citrus junos.
In addition, it was revealed that the performance improvement due to DA was high for the
YOLOv8m and YOLOv9c models. It was considered that lower detection performance of
YOLOv8m and YOLOv9c in the 25-images dataset was due to overfitting caused by the too
small amount of training data. Also, the enhancement in detection performance observed
in the models was attributed to the increased training data generated through DA, which
allowed the models to fully leverage their inherent feature extraction capabilities.

3.2. Comparison of Training Models Using Biased Images Datasets

We compared the performances of the three YOLO models using biased datasets
constructed solely from the data for each year and for each orchard. Table 7 lists the model
performance metrics based on these biased image datasets. Compared to the models trained
on the 125-image dataset, all three YOLO models had equivalent or higher performance
when trained on the Orchard 1 in 2020 dataset, while the performance of the models trained
on the other datasets was equivalent or lower.

Table 7. Comparison of YOLO models’ performance when trained on biased training datasets.

Model
Precision

125-Image 1 Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 87.6% ± 1.4% 87.7% ± 1.5% 86.1% ± 1.9% 85.1% ± 2.3% 83.5% ± 2.4%
YOLOv9c 87.7% ± 1.3% 89.2% ± 1.1% 87.4% ± 1.4% 85.9% ± 3.1% 88.0% ± 3.7%

YOLOv5mu 86.7% ± 1.6% 87.8% ± 1.5% 86.6% ± 1.5% 87.7% ± 3.5% 86.3% ± 5.3%

Model
Recall

125-Image Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 78.1% ± 2.0% 79.0% ± 1.6% 76.0% ± 2.5% 77.8% ± 2.8% 77.2% ± 5.2%
YOLOv9c 80.0% ± 1.6% 80.6% ± 1.6% 77.7% ± 3.5% 80.1% ± 3.0% 78.4% ± 3.3%

YOLOv5mu 79.0% ± 0.9% 79.8% ± 1.8% 77.3% ± 2.6% 78.5% ± 3.6% 77.8% ± 2.8%

Model
F1-score

125-Image Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 82.6% ± 1.5% 83.1% ± 1.2% 81.9% ± 3.6% 81.3% ± 2.5% 80.1% ± 3.2%
YOLOv9c 83.6% ± 1.0% 84.7% ± 1.3% 82.2% ± 2.1% 82.9% ± 2.9% 82.9% ± 3.2%

YOLOv5mu 82.7% ± 1.0% 83.6% ± 1.1% 81.7% ± 2.0% 82.8% ± 3.1% 81.8% ± 3.2%

Model
AP@50

125-Image Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 88.0% ± 1.1% 88.2% ± 1.0% 86.6% ± 1.9% 86.1% ± 2.1% 85.9% ± 3.4%
YOLOv9c 89.0% ± 0.9% 89.2% ± 1.0% 87.7% ± 2.1% 87.5% ± 3.1% 87.6% ± 2.8%

YOLOv5mu 88.0% ± 1.0% 88.6% ± 1.5% 87.1% ± 2.1% 87.1% ± 2.9% 87.0% ± 3.7%
1 The values represent the mean ± standard deviation.

The generalizability of these training models was assessed using four test datasets
from various orchards and years. Table 8 presents the comparative performance of these
models based on the test datasets, with AP@50 selected as the evaluation metric. Based
on the test datasets (taken on cloudy days) for Orchard 1 in 2022 and Orchard 2 in 2021,
the model trained on the Orchard 2 in 2020 dataset (taken on sunny days) had a lower
AP@50 than the model trained on the other datasets. Based on the Orchard 5 in 2023 test
dataset (including under-matured fruit) and the Orchard 7 in 2023 test dataset (including
under-matured fruit), all YOLO models except the YOLv5mu model trained on the Orchard
2 in 2020 dataset had an AP@50 that was equal to or lower than the models trained on
the 125-image dataset. There was no consistent trend in detection performance among the
YOLO models.
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Table 8. Comparison of performance of YOLO models trained on biased training datasets based on
test datasets. (a) Results of Orchard 1 in 2022 test dataset. (b) Results of Orchard 2 in 2021 test dataset.
(c) Results of Orchard 5 in 2023 test dataset. (d) Results of Orchard 7 in 2023 test dataset.

(a)

Model
AP@50

125-Image 1 Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 88.5% ± 0.5% 86.8% ± 0.9% 87.6% ± 0.6% 83.3% ± 0.9% 86.6% ± 0.4%
YOLOv9c 88.7% ± 0.3% 87.7% ± 0.8% 87.9% ± 0.5% 84.0% ± 1.2% 87.6% ± 0.6%

YOLOv5mu 88.2% ± 0.7% 86.5% ± 0.8% 87.9% ± 0.5% 84.3% ± 0.7% 87.6% ± 0.6%

(b)

Model
AP@50

125-Image Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 87.6% ± 0.7% 85.8% ± 0.9% 86.6% ± 0.4% 82.7% ± 0.5% 84.1% ± 1.0%
YOLOv9c 87.6% ± 0.3% 86.9% ± 1.0% 87.2% ± 0.7% 82.4% ± 2.0% 85.1% ± 0.8%

YOLOv5mu 87.4% ± 0.3% 85.7% ± 1.0% 87.3% ± 0.6% 83.4% ± 0.9% 85.4% ± 0.7%

(c)

Model
AP@50

125-Image Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 80.0% ± 1.0% 74.6% ± 1.8% 76.9% ± 1.3% 78.5% ± 2.5% 77.9% ± 1.5%
YOLOv9c 81.5% ± 1.3% 77.4% ± 1.4% 79.6% ± 1.6% 77.8% ± 2.2% 78.2% ± 2.5%

YOLOv5mu 80.9% ± 2.2% 75.5% ± 1.7% 81.0% ± 0.5% 80.8% ± 1.4% 80.1% ± 1.2%

(d)

Model
AP@50

125-Image Orchard 1 in 2020 Orchard 1 in 2021 Orchard 2 in 2020 Orchard 2 in 2022

YOLOv8m 83.2% ± 1.5% 77.0% ± 1.4% 77.4% ± 1.4% 81.3% ± 0.5% 80.0% ± 1.7%
YOLOv9c 84.2% ± 1.2% 76.9% ± 2.1% 77.0% ± 2.0% 82.4% ± 0.8% 78.5% ± 2.2%

YOLOv5mu 82.2% ± 2.8% 75.3% ± 2.3% 79.5% ± 0.6% 83.6% ± 0.3% 78.6% ± 1.2%
1 The values represent the mean ± standard deviation.

Mirhaji et al. [46] constructed orange fruit detection models for YOLOv2, YOLOv3,
and YOLOv4 using images taken on cloudy and sunny days and at nighttime using 72 W
LED lights. Xu et al. [47] reported that the detection performance of the fruit detection
model for citrus fruits constructed using HPL-YOLOv4, which applies the lightweight
feature extraction network GhostNet to YOLOv4, was higher than that of YOLOv3 and
YOLOv4, even in cases where there was leaf and branch occlusion, light condition changes,
and blurry images. We constructed the training model using a dataset for each orchard with
biased light conditions (cloudy or sunny). Although there was a certain level of detection
performance for all YOLO models, the detection performance tended to decrease when the
light conditions of the training dataset and the test dataset did not match. In addition, the
detection performance of all YOLO models was low for the detection dataset that included
under-matured fruit, which was not included in the training dataset. These results show
the impact of bias in the training dataset, such as the light conditions and the coloring of
the fruit, on the performance of the fruit detection model.

3.3. Comparison of Models Trained Using Equal Number of Images Collected on Sunny and
Cloudy Days

We compared the performances of the three YOLO models trained on datasets con-
taining an equal number of images collected on sunny and cloudy days. Table 9 presents
the model performance metrics for these training datasets. The YOLOv9c and YOLOv5mu
models trained on an equal number of images showed higher precision, with increases of
1.0% and 0.9%, respectively, than the models trained on the 125-image dataset. Additionally,
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the YOLOv8m model trained on an equal number of images exhibited a 1.0% higher recall
than the model trained on the 125-image dataset. However, there were no differences in
the F1-score and AP@50 between the models trained on an equal number of images and
those trained on the 125-image dataset.

Table 9. Comparison of performance of YOLO models trained on an equal number of images captured
on sunny and cloudy days.

Model
Precision Recall

125-Image 1 Equal Images 125-Image Equal Images

YOLOv8m 87.6% ± 1.4% 86.9% ± 1.5% 78.1% ± 2.0% 79.1% ± 1.6%
YOLOv9c 87.7% ± 1.3% 88.7% ± 0.9% 80.0% ± 1.6% 79.7% ± 1.4%

YOLOv5mu 86.7% ± 1.6% 87.7% ± 2.1% 79.0% ± 0.9% 78.6% ± 0.8%

Model
F1-score AP@50

125-Image Equal Images 125-Image Equal Images

YOLOv8m 82.6% ± 1.5% 82.8% ± 1.5% 88.0% ± 1.1% 88.1% ± 1.4%
YOLOv9c 83.6% ± 1.0% 84.0% ± 0.8% 89.0% ± 0.9% 89.1% ± 0.7%

YOLOv5mu 82.7% ± 1.0% 82.9% ± 0.8% 88.0% ± 1.0% 88.3% ± 0.6%
1 The values represent the mean ± standard deviation.

Table 10 shows the comparison of the performance of YOLO models trained on an
equal number of images collected on sunny and cloudy days in the test datasets. For
Orchard 5 in the 2023 test dataset, the AP@50 values of the YOLOv8m and YOLOv5mu
models trained on a dataset with an equal number of images taken on cloudy and sunny
days were 1.2% and 1.6% higher than those of the models trained on the 125-image dataset,
respectively. For Orchard 7 in the 2023 test dataset, the AP@50 of the YOLOv9c model
trained on a dataset with an equal number of images taken on cloudy and sunny days was
0.8% lower than that of the model trained on the 125-image dataset, whereas that of the
YOLOv5mu training model was 1.9% higher.

Table 10. Comparison of YOLO models’ performance when trained on equal number of images
captured on sunny and cloudy days in test datasets.

Model
Orchard 1 in 2022 Orchard 2 in 2021

125-Image 1 Equal Images 125-Image Equal Images

YOLOv8m 88.5% ± 0.5% 87.9% ± 0.9% 87.6% ± 0.7% 87.1% ± 0.9%
YOLOv9c 88.7% ± 0.3% 88.3% ± 0.9% 87.6% ± 0.3% 87.4% ± 0.6%

YOLOv5mu 88.2% ± 0.7% 88.4% ± 0.3% 87.4% ± 0.3% 87.4% ± 0.4%

Model
Orchard 5 in 2023 Orchard 7 in 2023

125-Image Equal Images 125-Image Equal Images

YOLOv8m 80.0% ± 1.0% 81.2% ± 1.5% 83.2% ± 1.5% 83.5% ± 1.8%
YOLOv9c 81.5% ± 1.3% 81.4% ± 1.2% 84.2% ± 1.2% 83.4% ± 1.3%

YOLOv5mu 80.9% ± 2.2% 82.5% ± 0.5% 82.2% ± 2.8% 84.1% ± 1.0%
1 The values represent the mean ± standard deviation.

Buda et al. [48] reported that class imbalance has a negative impact on classification
performance. In our results, even when there was a bias in the light conditions at the time
of acquiring the training dataset, the detection performance of the three YOLO models was
almost the same as when there was no bias in the training dataset. Based on these results,
it was considered that, even if the light conditions of the images included in the training
dataset were unbalanced, the effect on detection performance would be small.
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4. Conclusions

In this study, we evaluated the performance of three YOLO models using UAV images
of yellow maturing citrus fruits. The results indicated that YOLOv5mu exhibited superior
detection performance for the constrained image dataset, whereas it was revealed that the
performance improvement due to DA was high for the YOLOv8m and YOLOv9c models.
Moreover, the impact of bias in the training dataset, such as the light conditions and the
coloring of the fruit, on the performance of the fruit detection model was evaluated. In our
results, it was considered that, even if the light conditions of the images included in the
training dataset were unbalanced, the effect on detection performance would be small.

Our study employed simple DA methods, such as contrast changes and vertical
flipping, to evaluate model performance. None of the evaluation metrics reached 90% with
their highest value. However, these findings provide critical insights for selecting models
based on the quantity and quality of the image data collected under actual field conditions.
It is desirable to incorporate advanced augmentation techniques such as Pix2pix, which
can introduce more diversity into the dataset and enhance model robustness in the case of
actual model training.

Detecting yellow maturing fruits, such as Citrus junos, poses a greater challenge than
detecting orange maturing fruits due to their visual similarity to yellow leaves and the
ground surface. Limited research has been conducted on the detection of these specifically
colored fruits. Furthermore, under-matured fruits are difficult to distinguish even with the
naked eye because their color is similar to that of branches and leaves. Further improvement
is required to resolve these issues. For instance, it is necessary to examine the differences
in model performance under specific conditions (direct light or shadow). We believe that
this study will contribute significantly to advancing research on the detection of fruits by
providing valuable insights and recommendations for model selection and DA strategies.
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