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Abstract: The welfare of hens in cage-free systems is closely linked to their behaviors,
such as feeding, drinking, pecking, perching, bathing, preening, and foraging. To monitor
these behaviors, we developed and evaluated deep learning models based on YOLO (You
Only Look Once), an advanced object detection technology known for its high accuracy,
speed, and compact size. Three YOLO-based models—YOLOv5s_BH, YOLOv5x_BH, and
YOLOv7_BH—were created to track and classify the behaviors of laying hens in cage-free
environments. A dataset comprising 1500 training images, 500 validation images, and
50 test images was used to train and validate the models. The models successfully detected
poultry behaviors in test images with bounding boxes and objectness scores ranging
from 0 to 1. Among the models, YOLOv5s_BH demonstrated superior performance,
achieving a precision of 78.1%, surpassing YOLOv5x_BH and YOLOv7_BH by 1.9% and
2.2%, respectively. It also achieved a recall of 71.7%, outperforming YOLOv5x_BH and
YOLOv7_BH by 1.9% and 2.8%, respectively. Additionally, YOLOv5s_BH recorded a mean
average precision (mAP) of 74.6%, exceeding YOLOv5x_BH by 2.6% and YOLOv7_BH
by 9%. While all models demonstrated high detection precision, their performance was
influenced by factors such as stocking density, varying light conditions, and obstructions
from equipment like drinking lines, perches, and feeders. This study highlights the potential
for the automated monitoring of poultry behaviors in cage-free systems, offering valuable
insights for producers.

Keywords: poultry production; cage-free housing; animal welfare; precision management

1. Introduction
The traditional cage-based farming of laying hens suppresses animal natural behavior

expression; as a result, poultry welfare policies and corresponding public concerns are
increasing [1]. The way of raising birds is changing towards cage-free so that the birds
can express normal behaviors like preening, foraging, perching, and dust bathing [2–5].
There is a pressing need to enhance agricultural methods for identifying anomalies in
chicken behavior, health, and welfare while minimizing reliance on manual labor. To
achieve this, the development and implementation of automated systems are essential.
Advanced technologies like computers, sensors, cloud computing, machine learning (ML),
and artificial intelligence (AI) are revolutionizing various industries by driving substantial
improvements and efficiencies [6], For instance, these technologies enhance the profitability
and productivity of commercial poultry farming by reducing the reliance on human labor
for routine bird monitoring [7]. There is an increasing trend in computer vision and deep
learning techniques in solving various problems in hematology, cell biology or botany,
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agriculture, and livestock. Computer vision combines mathematics and computer science
to enable fully automated, non-invasive, real-time monitoring and process control in
poultry production by analyzing raw images, extracting patterns, classifying them, and
making predictions [8,9].

Six behaviors of laying hens, namely standing, sitting, sleeping, grooming, feeding,
and drinking, were classified using deep learning [10], classifying the latter two behaviors
with an accuracy of 89% [11]. The image classification methodology, developed to identify
broiler breeders’ behaviors using machine vision techniques, demonstrated a success rate of
over 70% in recognizing behaviors such as wing spreading, bristling, drinking, scratching,
resting, stretching, preening, and mounting [4]. In addition, flock behaviors (crowding
near feeders) were recognized using a CNN architecture with an accuracy of 99.17% [12].
A machine vision method proved to be a practical tool for tracking abnormal behaviors
in poultry, such as pecking [13]. The mask region-based convolutional neural network
was developed for detecting preening behaviors in birds [14]. An improved deep learning
model based on the YOLOv5 architecture was developed to monitor the spatial and floor
patterns of cage-free hens, including the real-time tracking of bird numbers in zones like
perching, feeding, drinking, and nesting, achieving an accuracy of 87% to 94% across all
chicken ages and zones [15].

The automatic detection of poultry behaviors helps identify deviations from normal
behavior patterns that will notify producers in real time [16]. The early detection of un-
expected changes in activity and behaviors can benefit poultry’s well-being and welfare.
The objectives of this research were to develop a machine vision method to (1) identify
poultry behaviors in cage-free housing systems, (2) evaluate its performance in research
cage-free facilities, and (3) explore strategies to enhance the model’s detection accuracy.
In this study, we classify different poultry behaviors (Feeding, Drinking, Perching, Preen-
ing, Perching, Dust Bathing, and Foraging). We compare three deep learning models
(YOLOv5s, YOLOv5x, and YOLOv7) from multiple behavior classification. YOLOv5s
is fast and lightweight, making it suitable for real-time use, while YOLOv5x provides
higher accuracy for more detailed tasks. YOLOv7, a newer version compared to YOLOv5,
brings advanced features that improve both efficiency and accuracy, although even later
versions now exist. These models were chosen to evaluate the balance between speed,
accuracy, and resource use, which are important for behavior classification in real-time or
limited-resource settings [17–19].

2. Materials and Methods
2.1. Experimental Station

The study was carried out in a cage-free layer facility located at the University of
Georgia’s poultry research farm in Athens, Georgia. The GPS coordinates of the research
farm are approximately 33.90879373981556, −83.37708374133594. Approval for animal
use and management was granted by the University’s Institutional Animal Care and Use
Committee (IACUC; AUP# A2020 08-014-A2). We housed 800 W36 Hy-Line hens across
four separate cage-free rooms, assigning 200 birds to each room from the first day. Each
room measured 7.3 m in length, 6.1 m in width, and stood 3 m high. Before introducing
the hens, the floors were evenly covered with pine shavings at a depth of 5 cm, and the
birds were provided with unlimited access to commercial feed. The management practices
adhered to the guidelines for Hy-Line W-36 commercial layers. An automated environ-
mental control system maintained the rearing conditions, regulating the air temperature
between 21 and 23 ◦C and ensuring a light intensity of 30 lux during a photoperiod of
19 h light and 5 h dark. Additionally, the growth of the hens and the environmental param-
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eters were monitored daily in accordance with the Standard Operating Procedures of the
UGA Poultry Research Center.

2.2. Dataset Collection and Preparation

We installed six PRO-1080MSB night-vision network cameras from Swann Communi-
cations USA Inc. (Figure 1; Santa Fe Springs, CA, USA) strategically above the drinking
stations, feeders, perches, and on walls approximately three meters high to capture both
overhead and lateral video footage. The continuous monitoring of various hen behaviors
and activities was performed, with all video data being recorded on DVR-4580 digital
video recorders from the same manufacturer. The recordings were saved in .avi format at a
resolution of 1920 × 1080 pixels and a frame rate of 15 frames per second, then converted
to .jpg image files using Free Video to JPG Converter software (version 5.0).
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Figure 1. Imaging system and data collection.

2.3. Definition of Laying Hens’ Behaviors and Labeling

To develop a behavior detection and classification system (Figure 2), we manually
annotated seven distinct activities of laying hens—namely Feeding, Drinking, Perching,
Preening, Dust Bathing, Pecking, and Foraging—by drawing bounding boxes as specified
in the ethogram outlined in Table 1. This annotation process resulted in a comprehensive
dataset of 2050 images, which were divided into 1500 images for training, 500 for validation,
and 50 for testing, encompassing hens aged between 22 and 28 weeks. Utilizing the open-
source platform Makesense.AI, we meticulously created bounding boxes around each
behavior of interest within the images. The dataset was then organized into separate
directories for training and validation, each containing subdirectories labeled “Images”
and “Labels”. Ultimately, the annotations were saved in .txt format files, preparing the
dataset for effective model development.
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Table 1. Different behaviors of laying hen.

Behavior Description References

Feeding Birds approach feeders for feeding [20,21]

Drinking Birds approach drinkers to drink [21]

Perching Birds roost on the elevated structure [22]

Preening
Birds bend and twist their bodies to access their
uropygial glands, using their beaks to clean and
groom their feathers

[15]

Dust Bathing Birds crouch down to bath in the litter and use
their wings to throw dust [5]

Pecking Birds peck at the feathers of another bird [23]

Foraging Birds scratch or peck the ground [24]

2.4. You Only Look Once (YOLO) Model for Poultry Image Analysis

Introduced in 2015 by researchers Joseph Redmon and Ali Farad, YOLO (You Only
Look Once) is a pioneering single-stage object detection framework. Unlike the R-CNN fam-
ily and its faster variants, YOLO leverages single stage detectors (SSDs) to achieve superior
speed and precision by eliminating the need for a region proposal network [25]. Over the
years, YOLO has evolved into various iterations, including TinyYOLO, YOLOv2 through
YOLOv8, YOLOx, and scaled YOLOv7, each incorporating different backend enhance-
ments. Among these, YOLOv3 remains the most prevalent in industry applications, while
the Ultralytics implementations of YOLOv5 and YOLOv7 are also widely adopted [26].
Pretrained YOLO models, especially those trained on the extensive COCO dataset—which
encompasses object detection, segmentation, keypoint detection, and captioning tasks—are
readily available and straightforward to deploy. When applied to datasets focused on poul-
try behaviors, these models are annotated with bounding boxes and image segmentation
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labels for specific activities such as Feeding, Drinking, Perching, Preening, Pecking, Dust
Bathing, and Foraging. In our enhanced model, images are collected from diverse locations
and scales, prioritizing regions with high detection confidence to improve tracking and
identification accuracy. A significant advantage of YOLO over traditional classifier-based
systems is its capability to analyze the entire image in a single pass, facilitating efficient
and accurate predictions [27]. The process begins by dividing the input image into an
S × S grid. For each grid cell, K anchor boxes are generated, each predicting six values: the
coordinates (x, y) and dimensions (w, h) of the bounding box, a confidence score, and the
probability (Pr) of each behavior category. Here, Pr indicates the likelihood that a bounding
box contains the target behavior, while the confidence score reflects both the presence of an
object and the accuracy of the bounding box prediction. The confidence score is calculated
as the product of Pr and the intersection over union (IOU) between the predicted box and
the ground truth [28]. If a ground truth object resides within a grid cell, the corresponding
probability is set to 1; otherwise, it is 0. To refine the predictions and eliminate redundant
bounding boxes, the model employs non-maximum suppression. This ensures that only
the most accurate and relevant detections are retained. Consequently, each grid cell can
produce multiple bounding boxes, each associated with a specific behavior probability,
enhancing the model’s ability to accurately identify and classify various poultry behaviors
within diverse and complex environments.

2.5. Architecture of YOLOv5_BH Model (YOLOv5s_BH and YOLOv5x_BH)

We tailored the YOLOv5_BH and YOLOv5x_BH models by modifying the YOLOv5s
and YOLOv5x architectures, which are structured into three key components (Figure 3):
backbone, neck, and detection head [29]. The input stage of YOLOv5s is optimized with
mosaic data augmentation, adaptive anchor boxes, and dynamic image resizing, enhancing
feature extraction and boosting dataset performance. The backbone employs CSPDark-
Net53 to extract features at four different scales, corresponding to behaviors such as Feeding,
Drinking, Perching, Preening, Pecking, Dust Bathing, and Foraging [26,30]. This backbone
integrates the Focus, C3, and SPP modules: the Focus module reduces feature dimensions
through image slicing, the C3 module enhances computational efficiency and lowers pa-
rameter complexity with a bottleneck design, and the SPP module captures multi-scale
information by pooling and merging feature maps of varying sizes [29]. These refined
features are then passed to the Neck, which combines up-sampling and down-sampling
techniques to create a feature pyramid, thereby improving object detection accuracy by
refining the features extracted by the backbone [31,32]. The Neck utilizes Feature pyramid
networks (FPNs) and path aggregation networks (PANs) to effectively merge features,
transferring high-level semantic information to lower layers and enhancing localization by
propagating detailed features upwards [30,32]. This enriched feature set is forwarded to the
detection head, which employs a 1 × 1 convolutional layer to classify and predict outputs,
producing three distinct results per batch for final target detection [29]. The detection head
generates outputs including class probabilities, object confidence scores, and bounding box
coordinates. Additionally, the architecture incorporates Convolution-BatchNorm-Leaky
ReLU (CBL) modules for convolution, normalization, and activation, and utilizes Cross-
Stage Partial (CSP) networks within both the backbone and neck to enhance inference
speed and maintain accuracy by reducing the overall model size [33]. The Spatial Pyra-
mid Pooling (SPP) module further enhances feature integration by applying max pooling
with various kernel sizes and concatenating the resulting feature maps, thereby unifying
multiple scales into a single, cohesive representation [34]. This comprehensive design
ensures efficient feature extraction, integration, and accurate object detection, optimizing
the model’s performance for diverse applications.
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2.6. Architecture of YOLOv7_BH Model

YOLOv7, launched in July 2022 by the original YOLOv4 team, enhances single-stage
object detection by building on YOLOv4, scaled YOLOv4, and YOLO-R architectures and
integrating YOLOv5’s mosaic data augmentation, effectively balancing parameter count
and computational efficiency and achieving high speed and accuracy in detecting small
objects [19,26]. YOLOv7_BH incorporates several critical enhancements that elevate its per-
formance, including the efficient E-ELAN module, advanced re-parametrization techniques,
refined label assignment strategies, and an innovative auxiliary head training approach.
Architecturally, it features an expanded ELAN (E-ELAN) module within its backbone
that employs expansion, shuffling, and cardinality merging to boost learning capacity
without disrupting gradient flows, while group convolutions and compound model scal-
ing optimize channel capacity and feature diversity for superior overall performance [35].
The input stage of YOLOv7_BH involves preprocessing steps such as mixup and mosaic
augmentation, followed by resizing images to 640 pixels before feeding them into the back-
bone [35]. The backbone integrates BConv layers, E-ELAN modules, and MP layers. Each
BConv layer includes convolution operations, batch normalization (BN), and activation
functions [20]. These components work together to extract rich, multi-scale features from
the input images [36]. After the backbone, YOLOv7_BH’s Neck utilizes Spatial Pyramid
Pooling and Cross-Stage Partial Channel (SPPCSPC) networks to further enhance and
integrate features [36]. This involves applying multiple pooling operations with varying
kernel sizes to capture multi-scale information, which are then merged using the PANet
structure through up-sampling and down-sampling, resulting in feature maps of different
sizes that are subsequently processed by the Head. The Head of YOLOv7_BH incorporates



AgriEngineering 2025, 7, 24 7 of 21

reparameterized RepConv layers for enhanced recognition and classification, along with
an auxiliary head that assists in loss calculation during training [35]. This auxiliary head in-
troduces multi-way branching, which improves training efficiency and model performance
without increasing computational costs. Additionally, YOLOv7 utilizes bag-of-freebies
(BoF) strategies—techniques that enhance model performance without additional training
expenses—to further optimize its detection capabilities [19]. Overall, YOLOv7’s compre-
hensive design, featuring advanced modules and innovative training strategies, ensures
robust and accurate object detection across diverse applications, including poultry behavior
detection (Figure 4). Its ability to efficiently process and integrate multi-scale features,
combined with optimized computational strategies, makes YOLOv7 a leading choice for
real-time object detection tasks.
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2.7. Detection Training and Validation

The input to YOLOv5_BH and YOLOv7_BH models includes images resized
to 640 × 640 pixels [YOLO], normalized to the range [0, 1] [37] and annotated with
YOLO-compatible bounding boxes stored in .txt files. We trained the behavior dataset
utilizing pre-trained COCO weights, continuously monitoring loss metrics throughout
the training process. Each of the three models was configured with a tailored “yaml” file
that included image data and adjusted labels for both training and validation phases [38].
The training process used a batch size of 16, an initial learning rate of 0.001 and a total
of 1000 epochs. The training environment was established on Oracle Linux 7, equipped
with a Tesla V100-SXM2 GPU. Development was carried out using Python 3.8 and PyTorch
2.0 for implementing deep learning procedures. The system operated with NVIDIA driver
version 510.108.03 and CUDA version 11.6.
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2.8. Evaluation Metrics

To assess the performance of the model, we utilized precision, recall, and mean average
precision (mAP) as key evaluation indicators.

Precision measures the accuracy of the positive predictions made by the model, de-
fined as the ratio of correctly identified positive instances (behaviors: Feeding, Drink-
ing, Perching, Preening, Dust Bathing, Pecking, and Foraging) to the total number of
positive predictions.

Precision =
True Postive

True Positive + False Positive
(1)

Recall quantifies the model’s ability to identify all relevant positive instances. It is
calculated by dividing the number of correctly detected positive instances by the total
number of actual positive instances in the dataset—behaviors (Feeding, Drinking, Perching,
Preening, Dust Bathing, Pecking and Foraging).

Recall =
True Postive

True Positive + False Negative
(2)

Mean average precision (mAP) provides a comprehensive measure of the model’s
accuracy across different classes. It is computed by summing the precision values at each
recall level and multiplying by the incremental change in recall.

mAP =
N

∑
i=1

P(i) ∗ ∆R (i) (3)

P(i) is the precision, and ∆R(i) is the change in recall from the ith detection. For all the
above metrics, a value closer to 100% reflects the better performance of the detectors.

Higher values for precision, recall, and mAP, approaching 100%, indicate the superior
performance of the detection model.

3. Results and Discussion
3.1. Model Performance in Computing System Use

Figure 5 illustrates the attributes of YOLOv5s, YOLOv5x, and YOLOv7 models, in-
cluding their usage of GPU memory, model size, and the duration of their training time.
Regarding the duration of the training process, YOLOv5s_BH required nearly 5 h, whereas
YOLOv5x_BH and YOLOv7_BH had a longer training time of 12.5 h and 14 h, respectively.
YOLOv5x_BH is the biggest model, measuring 173.1 mb, while YOLOv7_BH comes in
second with a size of 74.8 mb, and YOLOv5s_BH is the smallest with a size of 14.4 mb.
YOLOv5s_BH stands out as the most efficient model regarding both time and GPU usage,
but it has the smallest size among the three models. YOLOv5x_BH, on the other hand,
is the largest model with the highest GPU usage, while YOLOv7_BH requires less GPU
usage compared to YOLOv5x_BH. This information is crucial as it can affect the selection
of computer systems and the speed of data analysis.
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3.2. Performance of Behavior Detection Models in Data Training and Validation

(a) Total training loss
All three models’ full training loss function decreased while running in 1000 epochs

(Figure 6). The total loss in the YOLO model is the sum of three loss functions
(box/localization loss, classification loss, and objectness loss) used to optimize the model’s
performance. In addition, the total loss is used to update the model weights during back-
propagation to minimize the loss and improve the model’s accuracy on the training data.
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tions. It measures the accuracy of the detection algorithm. Figure 7 shows the precision of
the model on a poultry behavior classification over 1000 epochs of training.
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(d) Mean average precision
mAP (mean average precision) is a measure that combines both precision and recall. It

is the average precision calculated at various levels of recall. Figure 9 shows the mAP of
the model on a poultry behavior classification over 1000 epochs of training.
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3.3. Models’ Performance Curves After Training

The precision, recall, and PR curve (precision × recall) were tested concerning confi-
dence scores.

(a) Precision Curves
The precision plots demonstrate that the YOLOv5s_BH model initially exhibits lower

behavior detection precision, which steadily improves as the confidence score increased.
Specifically, as shown in Figure 10a, precision achieves 100% at a confidence score of 0.875.
Similarly, the YOLOv5x_BH model in Figure 10b reaches 100% precision when the confi-
dence score is 0.9. Additionally, the YOLOv7_BH model depicted in Figure 10c gradually
increass its precision to 100% at a confidence score of 0.979.
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(b) Recall Curves
In Figure 11a, the YOLOv5s_BH model initially achieves a recall of 93% for the

behavior classes, which then declines as the confidence score approaches 1. Similarly,
Figure 11b illustrates that the YOLOv5x_BH model starts with a recall of 89%, mirroring
the YOLOv5s_BH model, and gradually sees a decrease in recall as the confidence score
increases to 1. In Figure 11c, the YOLOv7_BH model begins with a recall of 79%, which
progressively diminishes as the confidence score rose to 1.
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(c) Precision–Recall Curves
The precision–recall curves were analyzed to assess the behavior detection perfor-

mance of all three models as confidence scores varied for each class. This evaluation method
helps determine the models’ ability to maintain high precision while increasing recall. As
shown in Figure 12a–c, the combined precision × recall values and mean average precision
(mAP) for all behavior classes are 75.3% for YOLOv5s_BH, 72.7% for YOLOv5x_BH, and
66.3% for YOLOv7_BH.
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3.4. Testing Results of New Models in Detecting Laying Behaviors

After training, the optimized model was employed to identify laying hen behaviors
in new, unlabeled images. Examples of automatic behavior detection are depicted in
Figure 13a–d. Table 2 provides a comparative overview of the YOLOv5s_BH, YOLOv5x_BH,
and YOLOv7_BH models: the YOLOv5s_BH achieves a precision of 78.1%, a recall of 71.7%,
and a mean average precision (mAP) of 75.3%; the YOLOv5x_BH attains a precision
of 76.2%, a recall of 69.8%, and an mAP of 72.7%; and the YOLOv7_BH reaches a precision
of 75.9%, a recall of 68.9%, and an mAP of 66.3%. Overall, the YOLOv5s_BH model
outperformed both the YOLOv5x_BH and YOLOv7_BH models in terms of precision,
recall, and mAP.

Table 2. Results of comparing YOLOv5s_BH, YOLOv5x_BH and YOLOv7_BH models for behavior
detection.

Model YOLOv5s_BH YOLOv5x_BH YOLOv7_BH

Parameters 7.1 million 86.1 million 37 million
Layers 157 322 -
Class Precision Recall mAP@50 Precision Recall mAP@50 Precision Recall mAP@50

Behaviors 0.781 0.717 0.753 0.762 0.698 0.727 0.759 0.689 0.663
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Figure 13. Performance of all three models in test dataset. (a) Feeding, Foraging, Perching and
Drinking behaviors were detected. (b) Feeding and Foraging behaviors were detected. (c) Detection
(Perching, Feeding and Drinking) of behaviors in an image affected by dust. (d) Perching behaviors
detected by our models.
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3.5. Evaluation Metrics of All Three Models in Detecting Laying Behaviors

Precision: Precision measures how accurate our behavior detector is when it predicts
the presence of a behavior. It is calculated as the ratio of true positives (correctly predicted
behaviors) to the sum of true positives and false positives (incorrectly predicted behaviors).
From Figure 14, we can see that the highest precision is achieved for Dust Bathing with
YOLOv5s_BH (0.887), followed by Feeding with YOLOv5s_BH (0.877) and Dust Bathing
with YOLO7_BH (0.867). On the other hand, the lowest precision is achieved for Preening
with YOLOv7_BH (0.542).
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Figure 14. Precision of all models in Behavior detection.

Recall: Recall measures how well the behavior detector can detect all the behaviors
in an image. It is calculated as the ratio of true positives to the sum of true positives and
false negatives (missed behaviors). From Figure 15, we can see that the highest recall is
achieved for all Feeding behaviors with YOLOv5x_BH (0.858), YOLOv5s_BH (0.854) and
YOLOv7_BH (0.849). On the other hand, the lowest recall is achieved for Preening with
YOLOv7_BH (0.43).
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Mean average precision: Object detection models often use the mean average
precision (mAP) metric to balance precision and recall. The mAP is the average of the
precision–recall curve over all the behavior categories in the dataset. From Figure 16, we
can see that the highest mAP is achieved for Feeding with YOLOv5s_BH (0.901), followed
again by Feeding with YOLOv5x_BH (0.883) and Drinking with YOLOv5s_BH (0.868). On
the other hand, the lowest mAP is achieved for Preening with YOLOv7_BH (0.4).
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Feeding and Dust Bathing behavior monitoring showed the highest precision, recall,
and mAP across all models. This can be attributed to their distinct postures and movements,
which made them easier for the models to detect and classify. Additionally, these behaviors
had a relatively higher number of labeled samples in the training dataset, contributing to
better model performance. On the other hand, Preening and Foraging behaviors exhibited
the lowest performance metrics, likely due to the subtlety of movements in Preening and
the increased complexity of detecting Foraging behaviors in crowded environments. The
overlapping of birds and environmental factors such as dust may have further contributed
to the challenges in detecting these behaviors accurately.

Using deep learning and machine vision techniques in classifying and analyzing
poultry behaviors has yielded substantial advancements in our understanding of avian
welfare and husbandry practices. Six behaviors of laying hens—standing, sitting, sleeping,
grooming, feeding, and drinking—were also classified [10]. Our research also uses a single-
stage detector (YOLO) to classify the different behaviors in the laying hens. There have
been works on classifying feeding, drinking, and resting behavioral behavior using deep
learning with the addition of different zones and interference, and we attempted to classify
other behaviors expressed by the birds [21]. The volume of the training dataset also plays
an important role in obtaining high evaluation metrics. The evaluation metrics for some
behaviors are not high. The reason could be the small training data for that behavior.
Our attempt to detect multiple classes of laying behaviors was challenging due to the
complexity of the data with precision, recall, and mAP values of 78.1%, 71.7%, and 75.3%,
which are higher than the 70% success rate of broiler’s behavioral detection [4]. Behaviors
were classified using different zones like perching, feeding, drinking, and nesting [21]
are different than using specific images of behaviors as the posture of birds showcasing
the behaviors plays an important role in detection. The detection of individual poultry
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behaviors is different than using a collective class of different behaviors of birds in a
cage-free setting. The task was quite challenging due to the environment with high dust
affecting the data quality in images and the overcrowding of birds, making the task harder
for behavior detection.

In summary, the YOLOv5s_BH model seems to perform better than YOLOv5x_BH
and YOLOv7_BH models for most behaviors. Feeding and Dust Bathing are the behaviors
with the highest overall performance in terms of precision, recall, and mAP. Preening
and Foraging are the behaviors with the lowest overall performance in terms of precision,
recall, and mAP. The efficiency of the model is impacted by the density of the stock, as
overcrowding can increase the likelihood of errors in detecting objects. This is because in
environments with higher stocking densities, there is a greater probability of flock crowding,
which can result in increased detection errors. In cage-free environments, whether in
experimental or commercial settings, the overlapping of the head and body is frequent.

4. Conclusions
Precision poultry farming technology is necessary to detect laying hen behaviors

automatically. An advanced object detection technology (i.e., the YOLO model) was used
as the model structure. In this study, three new deep learning models, the “YOLOv5s_BH”,
“YOLOv5x_BH”, and “YOLOv7_BH” networks, were developed to detect and classify
behaviors in four research study cage-free facilities at the University of Georgia. Our
model automatically detects and classifies behaviors in cage-free facilities. Furthermore,
the smallest model, YOLOv5s_BH, performed well in terms of precision, recall and mAP
compared to YOLOv5x_BH and YOLOv7_BH. The YOLOv5s_BH model had a 1.9%, 1.9%,
and 2.6% higher performance in precision, recall, and mAP than the YOLOv5x_BH model,
respectively. Also, the YOLOv5s_BH model had a 2.2%, 2.8%, and 9% higher performance
in precision, recall, and mAP than the YOLOv7_BH model, respectively. The better per-
formance of YOLOv5s_BH is likely due to its smaller architecture, which helps prevent
overfitting on the smaller datasets often used in behavioral research. Its lightweight design
allows for faster training and inference, making it more effective for detecting laying hen
behaviors with high precision. In contrast, the larger YOLOv5x_BH and YOLOv7_BH
models, built for more complex tasks, may add unnecessary complexity and computational
demands, which can slightly lower their performance in this context. This study provides a
reference for cage-free producers that poultry behaviors could be monitored automatically.
Future studies are guaranteed to test the system in commercial houses.
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