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Abstract: Modern poultry and egg production is facing challenges such as dead chickens
and floor eggs in cage-free housing. Precision poultry management strategies are needed
to address those challenges. In this study, convolutional neural network (CNN) models
and an intelligent bionic quadruped robot were used to detect floor eggs and dead chick-
ens in cage-free housing environments. A dataset comprising 1200 images was used to
develop detection models, which were split into training, testing, and validation sets in a
3:1:1 ratio. Five different CNN models were developed based on YOLOv8 and the robot’s
360◦ panoramic depth perception camera. The final results indicated that YOLOv8m ex-
hibited the highest performance, achieving a precision of 90.59%. The application of the
optimal model facilitated the detection of floor eggs in dimly lit areas such as below the
feeder area and in corner spaces, as well as the detection of dead chickens within the flock.
This research underscores the utility of bionic robotics and convolutional neural networks
for poultry management and precision livestock farming.

Keywords: poultry management; robotics; computer vision; deep learning; convolutional
neural networks

1. Introduction
Animal welfare policies are receiving increased global attention. In poultry farming,

traditional battery cages severely restrict hens’ natural behaviors, leading to disuse osteo-
porosis [1]. Even with improved environments and managed activities, hens in cages are
deprived of expressing most of their natural behaviors [2]. Consequently, many countries
are actively formulating policies and trade measures to protect animal welfare in poultry
production systems [3]. The egg industry is shifting to cage-free houses to improve bird
welfare, providing sufficient space for hens to engage in natural behaviors. For example,
legislation in California mandates that all eggs sold must come from hens in cage-free
houses [4]. However, the transformation to cage-free systems presents new challenges,
including managing floor eggs and the increased time required to inspect the entire house
for deceased chickens [5,6]. Previous research has worked on improving floor egg manage-
ment. One study proposed a cost-effective method for collecting eggs from laying trays and
arranging them in a distribution tray, which helps reduce labor and cost in egg collection
and packaging [7]. Another study developed a novel device using a helical spring that
opens when it comes into contact with an egg, allowing it to collect eggs with a success rate
of 96.8% [8]. Despite these advancements, efficient management of floor eggs remains a
challenge in cage-free systems. Automatic floor egg collection and the removal of deceased
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chickens are primary concerns for egg producers who use cage-free housing. One potential
solution is to utilize robots for these tasks [9].

Mobile robot technology has been extensively developed and applied in the agri-
cultural industry [10]. Most robots utilize a two-wheeled differential drive method for
directional control. They collect environmental information via multiple sensors, enabling
target tracking and obstacle avoidance [11]. In the poultry sector, Vroegindeweij et al., (2014)
proposed a path-planning method using the PoultryBot to collect floor eggs, reducing the
need for manual egg picking [12]. Bao et al., (2021) introduced an AI-based sensor method
for monitoring dead and sick chickens using foot rings and a ZigBee network, achieving
95.6% accuracy and reducing costs by 25% over four years compared to manual inspec-
tion [13]. In the ever-evolving landscape of mobile robotics, the incorporation of advanced
object recognition technologies is pivotal in enhancing robotic capabilities and operational
efficiency, particularly in intelligent bionic quadruped robots [14]. Reese et al., (2024) in-
vestigated the integration of object recognition in autonomous quadruped robotics using
Red–Green–Blue (RGB) cameras and You Only Look Once version 8 (YOLOv8) in “Unitree
Go 1” robots, optimizing sensor use for defense, surveillance, and industrial monitoring
applications [15]. Angulo et al., (2024) explored the implementation of Chat Generative Pre-
trained Transformer (ChatGPT) with the “Unitree Go 1” Robot Dog using voice prompts.
They developed an interface that connects the ChatGPT Application Programming Interface
(API) with the Unitree Go 1 Software Development Kit (SDK), facilitating user-friendly
control and software development [16]. Our research focuses on the integration of ad-
vanced object recognition technologies within “Unitree Go 1”, a quadrupedal robotic dog.
This platform hosts a network of interconnected sensors and cameras, including Forward-
Looking Infrared (FLIR), Light Detection and Ranging (LiDAR), and a depth camera, for
both autonomous and manually controlled applications. This study explores the syner-
gistic effects of combining these technologies to enhance the capabilities and operational
efficiency of the “Unitree Go 1” [17].

At the heart of our proposed system for object detection with the “Unitree Go 1” are
convolutional neural networks (CNNs) [18]. Besides the “Unitree Go 1”, some custom-
designed robots utilize robotic arms, a conveyor belt, and a storage cache to remove
deceased chickens. Additionally, a robotic bin-picking pipeline for chicken filets employs
3D reconstruction of the environment using depth data from an RGB-D camera. Both sys-
tems are based on advanced computer vision techniques and CNNs [19,20]. CNNs utilize
patterns in images to recognize objects, classes, and categories, making them suitable for
various applications [21,22]. Among these, the YOLO series stands out for its effective-
ness in precision livestock farming. These algorithms can automatically extract target
features from images, eliminating the need for manual observation and enhancing the
model’s generalizability [23]. Seo et al., (2019) [24] demonstrated improved accuracy and
processing time for real-time pig surveillance by combining YOLO object detection with
image processing techniques. They utilized infrared and depth information to effectively
separate touching pigs. Similarly, Tong introduced a real-time poultry disease detector
by integrating scale-aware modules and slide weighting loss into YOLOv5. This enhance-
ment significantly improved detection accuracy (85.0%) and health status recognition in
chickens, facilitating automated monitoring [25]. Given the high performance of YOLO in
object detection for precision livestock farming, it has the potential to detect floor eggs and
dead chickens in various cage-free housing environments. For example, one study used
an enhanced YOLOv8 algorithm, incorporating techniques such as partial convolution
and channel prior convolutional attention to more accurately and efficiently detect leg
diseases in broiler chickens’ X-ray images, achieving a precision of 90.7% and ultimately
improving poultry health and productivity [26]. By combining the YOLO detection model
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with the “robot dog”, the system could efficiently identify and collect floor eggs, as well as
remove dead chickens [27]. This integration enhances the functionality and applicability of
automated monitoring and management in livestock farming [28].

The objectives of this study were to (1) develop a detector based on YOLOv8 and
the robotic method (i.e., the Unitree Go 1 robot) for monitoring floor eggs and deceased
chickens in cage-free houses; (2) train the YOLOv8 model using images and videos of dead
hens and floor eggs collected by the robot wide-angle and RGB cameras; and (3) test the
performance of the newly developed models under various production conditions.

2. Materials and Methods
2.1. Bird Management

The robotic monitoring system was tested at the University of Georgia (UGA)’s Poultry
Research Center. Each house, measuring 7.3 m in length, 6.1 m in width, and 3 m in height,
housed 200 Lohmann White Leghorn Chickens. The houses were equipped with lights,
perches, nest boxes, feeders, and drinkers, with floors covered in pine shavings. Indoor
conditions, including light intensity and duration, ventilation rates, temperature, and
relative humidity, were managed using a Chore-Tronics Model 8 controller (CHORE-Time
Controller, Milford, IN, USA). The feed, a soy–corn mixture, was manufactured at the
UGA feed mill every two months to ensure freshness and prevent mildew. Team members
monitored the hens’ growth and environmental conditions daily, following the UGA
Poultry Research Center Standard Operating Procedure. This experiment adhered to the
animal care and use guidelines established by UGA’s Institutional Animal Care and Use
Committee (IACUC).

2.2. Robotic System for Collecting Dead Chickens and Egg Samples

In this study, we utilized the “Unitree Go1” dog (Unitree, Binjiang District, Hangzhou,
China), which is the world’s first intelligent bionic quadruped robot companion at the
consumer level. It is the first full-size general-purpose humanoid robot capable of running
and featuring 360◦ panoramic depth perception. This robot boasts an extensive joint move-
ment range with up to 34 joints, incorporating force-position hybrid control technology
to simulate human hand operations for precise tasks [29]. This capability enables it to
potentially remove dead chickens and pick up eggs in the future. Figure 1 presents its
three-dimensional view. The Go 1 is equipped with a built-in advanced AI processing unit,
comprising a 16-core top CPU and a GPU (384 cores, 1.5 TFLOPS) for deploying AI models,
such as chicken detection and chicken body weight prediction [30]. The YOLOv8 model
was integrated into the robot’s AI unit, allowing it to analyze live video feeds captured
by the robot’s cameras (RGB cameras for visual perception and depth cameras for 3D
mapping and obstacle detection) to identify dead chickens and eggs in real time (Figure 2).
We controlled the robot dog using its dedicated controller and the official application
(https://www.unitree.com/app/go1/ (accessed on 12 October 2024)). The robotic dog
was deployed twice daily, in the morning and evening, to inspect the entire poultry farm.
The inspection route was pre-set by human operators using the robot’s controller, guiding
the robot from the entrance door around the perimeter of the farm and across all sections,
ensuring comprehensive coverage of the entire facility. During data collection, the light was
around 10–30 lux, and the chicken density was around 5–9 birds/m2. Figure 3 illustrates the
experimental setup. The robotic dog demonstrates several movement patterns, including
turning, jumping, side-stepping, and more [31]. During our sample collection process, we
primarily utilized climbing when encountering steps, as well as turning and walking to
search for dead chickens and eggs and to capture sample images.

https://www.unitree.com/app/go1/
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2.3. Data Processing and Analysis

Bird and egg images were extracted from the robot dog and annotated using V7
Darwin, an online annotation tool provided by V7labs (V7, 8 Meard St, London, United
Kingdom). This tool supports various formats, including JPG, PNG, TIF, MP4, MOV, SVS,
DICOM, NIfTI, and more, enabling the consolidation of training data in one place [32].
In this study, we created two classes: dead chickens and good eggs. For each image, we
first checked the quality to ensure that it captured our target objects. Using the bounding
box tool, we created boxes around the target objects. After a final review, we marked the
images as completed (Figure 4).
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2.4. Detection Methods

In our detection tasks, identifying small targets like chickens and eggs presents chal-
lenges such as limited feature availability and a low proportion of annotated areas for small
targets. Additionally, the challenge is exacerbated by the limited dataset of 300 original
images. To address these challenges, we first employed data augmentation methods like
copy–paste enhancement, which involves randomly duplicating small targets multiple
times within the image (pure cropping) or copying a region containing multiple small
targets (cropping with background context), applying various transformations (scaling,
flipping, rotating, etc.) during pasting. Additionally, we used over-sampling by duplicat-
ing the same image file multiple times and applying scaling and stitching techniques to
combine multiple image files into one [33]. These data augmentation methods expanded
the dataset size and increased its diversity, artificially boosting the proportion of small
targets in the dataset to ensure the network can effectively learn their features. After data
augmentation, we obtained 1200 images, which we split into training, testing, and valida-
tion sets in a 3:1:1 ratio to ensure sufficient data for model training while also maintaining
a balanced representation for testing and validating the model’s performance. In this
study, we adapted You Only Look Once version 8 (YOLOv8) to detect dead chickens and
eggs, utilizing one of the five most used models for object detection within the YOLOv8
family (i.e., YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, and YOLOv8x) [34]. The backbone
network, which is the foundation of the model, is responsible for extracting features from
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the input image, and these features are the basis for subsequent network layers to perform
object detection. In YOLOv8, the backbone network uses a structure similar to Cross Stage
Partial Darknet (CSPDarknet) [35]. The head network is the decision-making part of the
object detection model, responsible for producing the final detection results, while the neck
network lies between the backbone and head networks, playing a role in feature fusion
and enhancement. Other modules include the ConvModule, which contains convolutional
layers, batch normalization (BN), and activation functions (e.g., Sigmoid Linear Unit (SiLU)
for feature extraction; DarknetBottleneck, which increases network depth through residual
connections while maintaining efficiency; and the CSP layer, a variant of the Cross Stage
Partial structure that improves model training efficiency through partial connections [36]).
The design of the YOLOv8 network is shown in Figure 5.
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2.5. Model Evaluation

To benchmark the performance of classifiers, we focused on precision, recall,
mean average precision (mAP), frames per second (FPS), and loss function values
(Equations (1)–(3)). Precision measures the accuracy of detected objects, indicating the
proportion of correct detections, while recall assesses the model’s ability to identify all
instances of objects in the images. The mAP, which evaluates the model’s bounding box
predictions on the validation dataset, is determined by plotting precision and recall values
at different confidence thresholds [37]. Additionally, FPS is used to evaluate the speed of
the methods, providing a measure of their efficiency. Finally, the loss function serves as a
metric indicating how well the algorithms train the neural network model based on the
dataset and achieve optimal results, tying together the overall performance evaluation.

Precision =
TP

(TP + FP)
(1)

Recall =
TP

(TP + FN)
(2)
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mAP =
1
n ∑k=n

k=1 APk (3)

APk denotes the average precision for class k, where n is the number of classes. In
chicken detection, True Positive (TP) correctly identifies a chicken, False Positive (FP)
incorrectly identifies a non-chicken as a chicken, and False Negative (FN) fails to identify a
chicken. mAP@0.5 refers to the mean average precision calculated at an Intersection over
Union (IoU) threshold of 0.5. A loss function measures how well a model accomplishes
its task by comparing its predicted dead chickens and eggs to the actual output. “lcls”
measures the discrepancy between the predicted class probabilities and our labels, while
“lobj” measures the confidence score assigned to each predicted bounding box, indicating
whether it contains an object or not, as determined using Equations (4)–(6).

loss f unction = lcls + lobj (4)

lcls = λclass ∑S2

i=0 ∑B
j=0 Iobj

i,j ∑C∈classes Pi(c) log( p̂l(c)) (5)

lobj = λnoobj ∑S2

i=0 ∑B
j=0 Inoobj

i,j
(
ci − Ĉl

)2
+ λobj ∑S2

i=0 ∑B
j=0 Iobj

i,j
(
ci − Ĉl

)2 (6)

In the equations, Iobj
i,j indicates whether the targets are located at the anchor box (i, j),

Pi(c) represents the probability of the target class c, and p̂l(c) denotes the actual value of
the class. The summation across these terms encompasses the total number of classes C.

3. Results and Discussion
3.1. The Influence of Robotics on Chicken Activity

In this study, we recorded the entire process of chickens’ interactions with a robotic
entity over the course of one hour. The observation focused on the chickens’ initial reactions
and subsequent behavior changes, documenting phases of fear, curiosity, intimacy, and
normalization [38]. The robot was positioned in our observation area, which included
half a drinking line, two feeders, and one nesting box, representing a typical section of a
cage-free house. We recorded the number of chickens around the robot in this area. Upon
first encountering the robot, the chickens exhibited immediate flight responses, resulting in
widespread panic within the flock, accompanied by dust and feathers flying. Initially, only
two chickens remained at the edge of the observation area. Within 20 min, the chickens’
panic subsided, and curiosity began to dominate. Consequently, the number of chickens in
the observation area rapidly increased from 2 to 37. This number continued to rise steadily,
reaching 51 chickens by the 40 min mark. After 40 min, more interactive behaviors, such
as jumping and pecking at the robot, were observed [39]. Gradually, the chickens began
to treat the robot as a normal object in their environment, with approximately 57 chickens
present in the observation area by the end of the hour. This observation illustrates the
process by which chickens overcome their initial fear and the time required for a flock
to acclimate to the presence of a robotic entity. These findings can inform researchers
aiming to integrate robotics into poultry environments, highlighting the optimal time
frame for chickens to become comfortable interacting with robots while maintaining their
welfare (Figure 6).
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3.2. Model Comparison

Five individual experiments (YOLOv8s, YOLOv8n, YOLOv8m, YOLOv8l, and
YOLOv8x) were conducted to identify the optimal detector for floor egg and dead chicken
detection. The selection of these YOLOv8 variants was based on their varying trade-offs be-
tween model size, speed, and accuracy. The suffixes “s,” “n,” “m,” “l,” and “x” in YOLOv8
refer to different versions of the model, with varying numbers of layers and computational
requirements. Specifically, “s” represents the smallest model with the fewest layers and
parameters, while “x” denotes the largest model with the most layers and parameters.
The “n,” “m,” and “l,” versions fall between these two extremes, corresponding to nano,
medium, and large models, respectively [40]. All experiments were trained for 100 epochs
using Python 3.7 and the PyTorch deep learning library, on hardware equipped with an
NVIDIA-SMI (16 GB) graphics card. A summary of the model comparison is presented
in Table 1.

Table 1. The summary of model validation comparison for dead chicken and egg detection.

Model Precision (%) Recall (%) FPS mAP@0.5 Class_loss Box_loss

YOLOv8s 85.39 79.32 74 85.08 0.94 2.01
YOLOv8n 85.49 79.89 69 85.17 0.90 1.98
YOLOv8m 90.59 79.34 63 85.40 0.92 2.02
YOLOv8l 88.10 80.72 48 86.29 0.88 2.05
YOLOv8x 87.97 78.52 41 85.31 0.89 2.01

In terms of accuracy, YOLOv8m achieved 90.59%, outperforming all other models.
This superior performance can be attributed to the small size of floor eggs and chickens in
our images, which cover less than 10% of the image area [41]. Lower-stride models like
YOLOv8m generally perform better with small objects because they retain more detail from
the input image, which is crucial for accurate detection and classification. Consequently,
YOLOv8m is more effective for detecting floor eggs and deceased chickens [42]. In terms of
recall, the values ranged from 78.52% to 80.52%, showing only a 2% maximum difference
among the five models. This minimal variation in recall indicates that all models are
similarly effective at identifying the presence of floor eggs and deceased chickens [43].
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For FPS, YOLOv8s demonstrated the highest speed due to its fewer layers and reduced
number of parameters compared to the other models [44]. In addition, mAP@0.5 shows the
precision–recall trade-off at an IoU threshold of 0.5. YOLOv8l, YOLOv8m, and YOLOv8x
have the top three mAP@0.5 scores, at 86.29%, 85.40%, and 85.31%, respectively. Although
YOLOv8n and YOLOv8s have slightly lower mAP@0.5 values, all models perform rea-
sonably well in detecting the bounding boxes for floor eggs and dead chickens. As for
Class_loss and Box_loss, all models have Class_loss values close to 0.90 and Box_loss values
close to 2.00. This indicates that their ability to classify floor eggs and deceased chickens, as
well as the errors in the predicted bounding box locations, are similar [45]. These findings
demonstrate that YOLOv8m achieved the best performance in detecting floor eggs and
deceased chickens (see Figures 7–11).
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3.3. YOLOv8m Algorithm Detection

In this study, the YOLOv8m detector demonstrated the best performance in detecting
floor eggs and dead chickens compared to other models. Consequently, a further investiga-
tion was conducted using the YOLOv8m model in conjunction with the robot in cage-free
houses. In cage-free houses, floor eggs are primarily found in dark areas such as below
the feeder area and in corner spaces. YOLOv8m, when paired with the robot, performs
well in detecting floor eggs in these dimly lit areas. This is because these areas are not
completely dark but have lower-than-normal light intensity, which does not hinder the
model’s detection capability [6]. Additionally, the robustness of the YOLOv8m model
allows it to detect floor eggs effectively as long as the images capture the eggs. However,
there are some misdetections when the robot is too far from the eggs, such as eggs lo-
cated under perches where the robot cannot reach. To mitigate this, it is recommended
to either remove the perches or design higher perches on the first layer to accommodate
the robot’s detection capabilities [46]. Regarding the detection of dead chickens, there is
no particular location where dead birds are commonly found. However, dead chickens
often become mixed with the floor litter after death, which does not affect the model’s
detection performance [5]. When chickens die, their bodies and feet become stiff, and
their heads often lie in the litter, creating unique features that make it easier to detect dead
chickens. Consequently, the model can detect dead chickens using the robot. Nonetheless,
occlusions can sometimes occur, such as when a dead chicken carcass is covered by other
chickens [47,48]. Therefore, the robot should inspect the entire house at least once daily to
prevent carcass decomposition and address animal biosecurity concerns. Figures 12 and 13
illustrate the detection results using the robot in cage-free houses.
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3.4. Comparison with Related Research

To compare our research with previous work, we selected some recent studies on using
robotics to detect eggs and deceased chickens. For egg collection, there are two primary
methods: CNN and traditional sensing systems. One study featured a robot equipped with
a YOLOV3-based deep learning egg detector, a robotic arm, a two-finger gripper, and a
hand-mounted camera. The YOLOV3 detected eggs on a simulated litter floor in real-time,
providing coordinates and dimensions for accurate gripper manipulation [49]. Another
study introduced the PoultryBot, which utilizes various sensing systems, including a laser
scanner with a 20 m depth and 270-degree view, a digital camera for area visualization, and
wheel encoders to measure rotation and movement. The localization technique involves
a particle filter that estimates the robot’s pose using prediction, update, and resampling
phases [50]. Both systems demonstrated more than 90% accuracy in floor egg detection.
However, when it came to picking up eggs, the sensing systems achieved only 43% success,
while the CNN maintained a high accuracy of 93% in egg collection [51]. In our study,
we also employed CNN to detect eggs, aiming to advance egg collection development
using the robot. Compared to previous studies in broiler facilities [6,21], this study was
conducted in a cage-free layer facility, an emerging egg production system in the USA
and EU countries [2]. Regarding the detection of deceased chickens, CNN remains the
mainstream method. Studies utilizing YOLOv3 and YOLOv4 for detecting dead broilers
have achieved detection accuracy as high as 99%, though these studies were conducted in
stacked-cage broiler houses and sometimes required multiple robotics combinations for
high precision [52,53]. In cage-free houses, our study can detect both deceased chickens and
floor eggs simultaneously using an intelligent bionic quadruped robot. This comprehensive
solution addresses the challenges of cage-free environments, such as floor eggs and the
increased time required to inspect the entire house for deceased chickens. Therefore,
employing CNN with a quadruped robot like “Unitree Go 1” has the potential to efficiently
collect floor eggs and remove deceased chickens in a single system.

3.5. Future Studies

Despite the significant advancements in detecting floor eggs and deceased chickens,
the robotic ability to pick up eggs and remove dead chickens remains an ongoing area of
research. For egg collection, most studies integrate computer vision with mechanical arms.
One common approach involves using a soft suction mechanism to pick up eggs. This
design ensures that the eggs are handled delicately to prevent breakage during collection.
Additionally, soft rubber grippers are employed to gently grasp and lift the eggs without
causing damage. Once the eggs are picked up, they need to be stored in a tank within the
robot for later retrieval [1,51]. Therefore, an additional mechanical arm and a storage tank
can be incorporated into the robot dog system to facilitate the collection and storage of
floor eggs. On the other hand, removing dead chickens presents a more complex challenge
due to their greater weight and size compared to floor eggs [51,52]. A stronger mechanical
arm, or, alternatively, a separate robot equipped with a multi-target path routing scheme,
can be utilized [53]. This secondary robot would collect the dead chickens using location
data provided by the robotic system. Future improvements could focus on enhancing
the mobility and strength of robotic arms to handle larger or heavier chickens, as well as
incorporating AI to improve the identification of dead chickens from other objects in the
environment [54]. Additionally, integrating more advanced sensors could allow the robot
to avoid obstacles and navigate tighter spaces within the poultry house more efficiently.
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4. Conclusions
In this study, a multiple detector for floor eggs and dead chickens was developed based

on YOLOv8 networks embedded in a robotic system for detecting eggs and identifying
dead chickens in cage-free facilities. The results show that the average accuracy of each
detector ranges from 85.39% to 90.59%, with the best model being YOLOv8m, which
achieved a precision of 90.59%. The detector can effectively recognize various floor eggs
on the litter or under feeders and detect dead chickens in corners or around healthy
chickens. This detector can be further combined with mechanical arms, such as soft suction
mechanisms or soft rubber grippers, to pick up floor eggs. It can also be equipped with
a secondary robot to remove dead chickens using location information provided by the
robot. While the YOLOv8 model performed well in detecting floor eggs and dead chickens,
there were some limitations. The robot struggled with detecting eggs in low light or when
blocked by obstacles. Additionally, factors like flock density and occlusions could affect
detection accuracy. The results provide an actionable approach to detecting floor eggs and
dead chickens in cage-free houses using a single system without intrusion. This study
demonstrates the potential of using intelligent bionic quadruped robots to address the issues
of floor eggs and dead chickens in cage-free houses. These advancements provide valuable
information for using robotics to help improve the management of cage-free chickens.

Author Contributions: Conceptualization, L.C. and G.L.; Methodology, X.Y., G.L. and L.C.; Software,
X.Y.; Formal analysis, X.Y., J.Z. and J.L.; Investigation, X.Y., J.Z., B.P., J.L., R.B.B., G.L. and L.C.;
Resources, G.L. and L.C.; Data curation, J.Z.; Writing–original draft, X.Y., J.Z., B.P., J.L., R.B.B., G.L.
and L.C.; Project administration, L.C. and G.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was sponsored by the USDA-NIFA AFRI (2023-68008-39853), Georgia Research
Alliance (Venture Fund), Oracle America (Oracle for Research Grant, CPQ-2060433), and Seed Grant
from UGA Institute for Integrative Precision Agriculture.

Data Availability Statement: The datasets generated, used and/or analyzed during the current study
will be available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chang, C.-L.; Xie, B.-X.; Wang, C.-H. Visual Guidance and Egg Collection Scheme for a Smart Poultry Robot for Free-Range

Farms. Sensors 2020, 20, 6624. [CrossRef] [PubMed]
2. Hewson, C.J. What is animal welfare? Common definitions and their practical consequences. Can. Vet. J. 2003, 44, 496–499.
3. Shields, S.; Duncan, I. A Comparison of the Welfare of Hens in Battery Cages and Alternative Systems; Impacts on Farm Animals Report;

The Humane Society Institute for Science and Policy: Potomac, MD, USA, 2009.
4. Mullally, C.; Lusk, J.L. The Impact of Farm Animal Housing Restrictions on Egg Prices, Consumer Welfare, and Production in

California. Am. J. Agric. Econ. 2018, 100, 649–669. [CrossRef]
5. Bist, R.B.; Subedi, S.; Yang, X.; Chai, L. Automatic Detection of Cage-Free Dead Hens with Deep Learning Methods. AgriEngineer-

ing 2023, 5, 1020–1038. [CrossRef]
6. Yang, X.; Chai, L.; Bist, R.B.; Subedi, S.; Wu, Z. A Deep Learning Model for Detecting Cage-Free Hens on the Litter Floor. Animals

2022, 12, 1983. [CrossRef]
7. Sheela, A.; Prithivi, K.; Nivesh, N.S.; Pavithran, A.; Pradeep, C.; Babu, K.P. Automation in egg collecting system in poultry farms.

In Proceedings of the 4th National Conference on Current and Emerging Process Technologies e-CONCEPT-2021, Erode, India,
20 February 2021; AIP Publishing: Melville, NY, USA, 2021; Volume 2387.

8. Vroegindeweij, B.A.; Kortlever, J.W.; Wais, E.; Henten, E. Development and test of an egg collecting device for floor eggs in loose
housing systems for laying hens. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland,
6–10 July 2014.

9. Ren, G.; Lin, T.; Ying, Y.; Chowdhary, G.; Ting, K.C. Agricultural robotics research applicable to poultry production: A review.
Comput. Electron. Agric. 2020, 169, 105216. [CrossRef]

https://doi.org/10.3390/s20226624
https://www.ncbi.nlm.nih.gov/pubmed/33228034
https://doi.org/10.1093/ajae/aax049
https://doi.org/10.3390/agriengineering5020064
https://doi.org/10.3390/ani12151983
https://doi.org/10.1016/j.compag.2020.105216


AgriEngineering 2025, 7, 35 14 of 15

10. Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications.
Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839596. [CrossRef]

11. Gopalakrishnan, B.; Tirunellayi, S.; Todkar, R. Design and development of an autonomous mobile smart vehicle: A mechatronics
application. Mechatronics 2004, 14, 491–514. [CrossRef]

12. Vroegindeweij, B.A.; van Willigenburg, G.L.; Koerkamp, P.W.G.; van Henten, E.J. Path planning for the autonomous collection of
eggs on floors. Biosyst. Eng. 2014, 121, 186–199. [CrossRef]

13. Bao, Y.; Lu, H.; Zhao, Q.; Yang, Z.; Xu, W. Detection system of dead and sick chickens in large scale farms based on artificial
intelligence. Math. Biosci. Eng. 2021, 18, 6117–6135. [CrossRef]

14. Hentout, A.; Aouache, M.; Maoudj, A.; Akli, I. Human–robot interaction in industrial collaborative robotics: A literature review
of the decade 2008–2017. Adv. Robot. 2019, 33, 764–799. [CrossRef]

15. Reese, R.; Kovarovics, A.; Charles, A.; Koduru, C.; Tanveer, M.H.; Voicu, R.C. Optimizing Data Capture Through Object
Recognition for Efficient Sensor and Camera Management with a Quadruped Robot. In Proceedings of the Southeast Con 2024,
Atlanta, GA, USA, 15–24 March 2024; IEEE: New York, NY, USA, 2024; pp. 1125–1130.

16. Martinez Angulo, A.; Henry, S.; Tanveer, M.H.; Voicu, R.; Koduru, C. The Voice-To-Text Implementation with ChatGPT in Unitree
Go1 Programming. In Proceedings of the 28th Symposium of Student Scholars, Kennesaw, GA, USA, 17–19 April 2024.

17. Sharma, A.; Singh, P.K.; Khurana, P. Analytical review on object segmentation and recognition. In Proceedings of the 2016 6th
International Conference—Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; IEEE: New
York, NY, USA, 2016; pp. 524–530.

18. Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN feature based graph convolutional network for weed and crop
recognition in smart farming. Comput. Electron. Agric. 2020, 174, 105450. [CrossRef]

19. Liu, H.-W.; Chen, C.-H.; Tsai, Y.-C.; Hsieh, K.-W.; Lin, H.-T. Identifying Images of Dead Chickens with a Chicken Removal System
Integrated with a Deep Learning Algorithm. Sensors 2021, 21, 3579. [CrossRef]

20. Jonker, L.M. Robotic Bin-Picking Pipeline for Chicken Fillets with Deep Learning-Based Instance Segmentation Using Synthetic
Data. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2023. Available online: https://essay.utwente.nl/94881/
(accessed on 6 July 2024).

21. Yang, D.; Cui, D.; Ying, Y. Development and trends of chicken farming robots in chicken farming tasks: A review. Comput.
Electron. Agric. 2024, 221, 108916. [CrossRef]

22. Yang, X.; Bist, R.B.; Paneru, B.; Chai, L. Deep Learning Methods for Tracking the Locomotion of Individual Chickens. Animals
2024, 14, 911. [CrossRef]

23. Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and Applications of Convolutional Neural
Network-Based Computer Vision Systems in Animal Farming: A Review. Sensors 2021, 21, 1492. [CrossRef]

24. Seo, J.; Sa, J.; Choi, Y.; Chung, Y.; Park, D.; Kim, H. A YOLO-based Separation of Touching-Pigs for Smart Pig Farm Applications.
In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang,
Republic of Korea, 17–20 February 2019; IEEE: New York, NY, USA, 2019; pp. 395–401.

25. Tong, Q.; Zhang, E.; Wu, S.; Xu, K.; Sun, C. A real-time detector of chicken healthy status based on modified YOLO. Signal Image
Video Process. 2023, 17, 4199–4207. [CrossRef]

26. Zhang, X.; Zhu, R.; Zheng, W.; Chen, C. Detection of Leg Diseases in Broiler Chickens Based on Improved YOLOv8 X-Ray Images.
IEEE Access 2024, 12, 47385–47401. [CrossRef]

27. Yang, X.; Dai, H.; Wu, Z.; Bist, R.B.; Subedi, S.; Sun, J.; Lu, G.; Li, C.; Liu, T.; Chai, L. An innovative segment anything model for
precision poultry monitoring. Comput. Electron. Agric. 2024, 222, 109045. [CrossRef]

28. Gunaratnam, A.; Thayananthan, T.; Thangathurai, K.; Abhiram, B. Computer vision in livestock management and production. In
Engineering Applications in Livestock Production; Tarafdar, A., Pandey, A., Gaur, G.K., Singh, M., Pandey, H.O., Eds.; Academic
Press: Cambridge, MA, USA, 2024; pp. 93–128. ISBN 978-0-323-98385-3.

29. Kim, M.; Shin, U.; Kim, J.-Y. Learning Quadrupedal Locomotion with Impaired Joints Using Random Joint Masking. arXiv 2024,
arXiv:2403.00398. [CrossRef]

30. Roh, S.G. Rapid Speed Change for Quadruped Robots via Deep Reinforcement Learning. In Proceedings of the 2023 IEEE
International Conference on Development and Learning (ICDL), Macau, China, 9–11 November 2023; IEEE: New York, NY, USA,
2023; pp. 473–478.

31. Long, J.; Wang, Z.; Li, Q.; Cao, L.; Gao, J.; Pang, J. Hybrid Internal Model: Learning Agile Legged Locomotion with Simu-
lated Robot Response. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria,
7–11 May 2024.

32. Vidal, P.L.; de Moura, J.; Novo, J.; Ortega, M. Multi-stage transfer learning for lung segmentation using portable X-ray devices for
patients with COVID-19. Expert Syst. Appl. 2021, 173, 114677. [CrossRef]

33. Zou, K.; Chen, X.; Wang, Y.; Zhang, C.; Zhang, F. A modified U-Net with a specific data argumentation method for semantic
segmentation of weed images in the field. Comput. Electron. Agric. 2021, 187, 106242. [CrossRef]

https://doi.org/10.1177/1729881419839596
https://doi.org/10.1016/j.mechatronics.2003.10.003
https://doi.org/10.1016/j.biosystemseng.2014.03.005
https://doi.org/10.3934/mbe.2021306
https://doi.org/10.1080/01691864.2019.1636714
https://doi.org/10.1016/j.compag.2020.105450
https://doi.org/10.3390/s21113579
https://essay.utwente.nl/94881/
https://doi.org/10.1016/j.compag.2024.108916
https://doi.org/10.3390/ani14060911
https://doi.org/10.3390/s21041492
https://doi.org/10.1007/s11760-023-02652-6
https://doi.org/10.1109/ACCESS.2024.3382193
https://doi.org/10.1016/j.compag.2024.109045
https://doi.org/10.48550/arXiv.2403.00398
https://doi.org/10.1016/j.eswa.2021.114677
https://doi.org/10.1016/j.compag.2021.106242


AgriEngineering 2025, 7, 35 15 of 15

34. Safaldin, M.; Zaghden, N.; Mejdoub, M. An Improved YOLOv8 to Detect Moving Objects. IEEE Access 2024, 12, 59782–59806.
[CrossRef]

35. Sohan, M.; Sai Ram, T.; Rami Reddy, C.V. A Review on YOLOv8 and Its Advancements. In Data Intelligence and Cognitive
Informatics; Jacob, I.J., Piramuthu, S., Falkowski-Gilski, P., Eds.; Springer Nature: Singapore, 2024; pp. 529–545.

36. Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and
Industrial Defect Detection. Machines 2023, 11, 677. [CrossRef]

37. Vroegindeweij, B.A.; Blaauw, S.K.; IJsselmuiden, J.M.M.; van Henten, E.J. Evaluation of the performance of PoultryBot, an
autonomous mobile robotic platform for poultry houses. Biosyst. Eng. 2018, 174, 295–315. [CrossRef]

38. Wu, T.; Dong, Y. YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition. Appl. Sci. 2023, 13, 12977.
[CrossRef]

39. Rekavandi, A.M.; Xu, L.; Boussaid, F.; Seghouane, A.-K.; Hoefs, S.; Bennamoun, M. A Guide to Image and Video based Small
Object Detection using Deep Learning: Case Study of Maritime Surveillance. arXiv 2022, arXiv:2207.12926. [CrossRef]

40. Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer
Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [CrossRef]

41. Juba, B.; Le, H.S. Precision-Recall versus Accuracy and the Role of Large Data Sets. Proc. AAAI Conf. Artif. Intell. 2019,
33, 4039–4048. [CrossRef]

42. Held, D.; Thrun, S.; Savarese, S. Learning to Track at 100 FPS with Deep Regression Networks. In Computer Vision—ECCV 2016;
Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 749–765.

43. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073.
[CrossRef]

44. Bist, R.B.; Subedi, S.; Chai, L.; Regmi, P.; Ritz, C.W.; Kim, W.K.; Yang, X. Effects of Perching on Poultry Welfare and Production:
A Review. Poultry 2023, 2, 134–157. [CrossRef]

45. Bist, R.B.; Yang, X.; Subedi, S.; Chai, L. Mislaying behavior detection in cage-free hens with deep learning technologies. Poult. Sci.
2023, 102, 102729. [CrossRef]

46. Subedi, S.; Bist, R.; Yang, X.; Chai, L. Tracking pecking behaviors and damages of cage-free laying hens with machine vision
technologies. Comput. Electron. Agric. 2023, 204, 107545. [CrossRef]

47. Li, G.; Chesser, G.D., Jr.; Huang, Y.; Zhao, Y.; Purswell, J.L. Development and Optimization of a Deep-Learning-Based Egg-
Collecting Robot. Trans. ASABE 2021, 64, 1659–1669. [CrossRef]

48. Vroegindeweij, B.A.; IJsselmuiden, J.; van Henten, E.J. Probabilistic localisation in repetitive environments: Estimating a robot’s
position in an aviary poultry house. Comput. Electron. Agric. 2016, 124, 303–317. [CrossRef]

49. Hao, H.; Fang, P.; Duan, E.; Yang, Z.; Wang, L.; Wang, H. A Dead Broiler Inspection System for Large-Scale Breeding Farms Based
on Deep Learning. Agriculture 2022, 12, 1176. [CrossRef]

50. Lei, T.; Li, G.; Luo, C.; Zhang, L.; Liu, L.; Gates, R.S. An informative planning-based multi-layer robot navigation system as
applied in a poultry barn. Intell. Robot. 2022, 2, 313–332. [CrossRef]

51. Wang, C.-H.; Xie, B.-X.; Chang, C.-L. Design and Implementation of Livestock Robot for Egg Picking and Classification in the
Farm. In Proceedings of the 2019 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh City,
Vietnam, 10–12 October 2019; IEEE: New York, NY, USA, 2019; pp. 161–165.

52. Zhang, D.; Zhou, F.; Yang, X.; Gu, Y. Unleashing the Power of Self-Supervised Image Denoising: A Comprehensive Review.
arXiv 2023, arXiv:2308.00247. [CrossRef]

53. Zhou, F.; Fu, Z.; Zhang, D. High Dynamic Range Imaging with Context-aware Transformer. In Proceedings of the 2023
International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; IEEE: New York, NY, USA,
2023; pp. 1–8.

54. He, P.; Chen, Z.; Yu, H.; Hayat, K.; He, Y.; Pan, J.; Lin, H. Research Progress in the Early Warning of Chicken Diseases by
Monitoring Clinical Symptoms. Appl. Sci. 2022, 12, 5601. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2024.3393835
https://doi.org/10.3390/machines11070677
https://doi.org/10.1016/j.biosystemseng.2018.07.015
https://doi.org/10.3390/app132412977
https://doi.org/10.48550/arXiv.2207.12926
https://doi.org/10.3390/make5040083
https://doi.org/10.1609/aaai.v33i01.33014039
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.3390/poultry2020013
https://doi.org/10.1016/j.psj.2023.102729
https://doi.org/10.1016/j.compag.2022.107545
https://doi.org/10.13031/trans.14642
https://doi.org/10.1016/j.compag.2016.04.019
https://doi.org/10.3390/agriculture12081176
https://doi.org/10.20517/ir.2022.18
https://doi.org/10.48550/arXiv.2308.00247
https://doi.org/10.3390/app12115601

	Introduction 
	Materials and Methods 
	Bird Management 
	Robotic System for Collecting Dead Chickens and Egg Samples 
	Data Processing and Analysis 
	Detection Methods 
	Model Evaluation 

	Results and Discussion 
	The Influence of Robotics on Chicken Activity 
	Model Comparison 
	YOLOv8m Algorithm Detection 
	Comparison with Related Research 
	Future Studies 

	Conclusions 
	References

