Photocatalytic Degradation Pathways of the Valsartan Drug by TiO2 and g-C3N4 Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Experiments
2.2. Photocatalytic Transformation Products and Pathways of Valsartan by UV-Vis/g-C3N4 Process
2.3. Photocatalytic Transformation Products and Pathways of Valsartan by UV-Vis/TiO2 Process
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Photocatalytic Treatment Experiments
3.3. Identification of Transformation Products by Liquid Chromatography-High Resolution Mass Spectrometry
3.4. Determination of •OH Radicals by Fluorescence Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taoufik, N.; Boumya, W.; Janani, F.Z.; Elhalil, A.F.Z.; Mahjoubi, N.B. Removal of emerging pharmaceutical pollutants: A systematic mapping study review. J. Environ. Chem. Eng. 2020, 8, 104251. [Google Scholar] [CrossRef]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Sci. Total Environ. 2014, 466–467, 421–438. [Google Scholar] [CrossRef] [PubMed]
- Kosma, C.I.; Nannou, C.I.; Boti, V.I.; Albanis, T.A. Psychiatrics and selected metabolites in hospital and urban wastewaters: Occurrence, removal, mass loading, seasonal influence and risk assessment. Sci. Total Environ. 2019, 659, 1473–1483. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale. Sci. Total Environ. 2021, 765, 144163. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Zioris, I.; Danis, T.; Bikiaris, D.; Dimitra Lambropoulou, D. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Sci. Total Environ. 2019, 694, 133565. [Google Scholar] [CrossRef] [PubMed]
- Nödler, K.; Hillebrand, O.; Idzik, K.; Strathmann, M.; Schiperski, F.; Zirlewagen, J.; Licha, T. Occurrence and fate of the Angiotensin II receptor antagonist transformation product Valsartan acid in the water cycle-A comparative study with selected β-blockers and the persistent anthropogenic wastewater indicators carbamazepine and acesulfame. Water Res. 2013, 47, 6650–6659. [Google Scholar] [CrossRef]
- Brunetto, M.R.; Contreras, Y.; Clavijo, S.; Torres, D.; Delgado, Y.; Ovalles, F.; Ayala, C.; Gallignani, M.; Estela, J.M.; Martin, V.C. Determination of losartan, telmisartan and valsartan by direct injection human urine into a column-switching liquid chromatographic system with fluorescence detection. J. Pharm. Biomed. Anal. 2009, 50, 194–199. [Google Scholar] [CrossRef]
- Zhou, S.; Paolo, C.D.; Wu, X.; Shao, Y.; Seiler, T.B. Optimization of screening-level risk assessment and priority selection of emerging pollutants–The case of pharmaceuticals in European surface water. Environ. Int. 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Castro, C.; Rodriguez, I.; Ramil, M.; Cela, R. Selective determination of sartan drugs in environmental water samples by mixed-mode solid-phase extraction and liquid chromatography tandem mass spectrometry. Chemosphere 2019, 224, 562–571. [Google Scholar] [CrossRef]
- Pena-Guzman, C.; Ulloa-Sanchez, S.; Mora, K.; Helena-Bustos, R.; Lopes-Barrera, E.; Alvarez, J.; Rodriguez-Pinzon, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J. Hazard. Mater. 2010, 179, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in Greek wastewaters. Water Res. 2015, 70, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, I.K.; Albanis, T.A. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Appl. Catal. B Environ. 2003, 42, 319–335. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018, 219, 189–207. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Bairamis, F.; Konstantinou, I.; Mantzavinos, D.; Frontistis, Z. Degradation of antihypertensive drug valsartan in water matrices by heat and heat/ultrasound activated persulfate: Kinetics, synergy effect and transformation products. CEJ Adv. 2020, 4, 100062. [Google Scholar] [CrossRef]
- Martinez-Pachon, D.; Ibanez, M.; Hernandez, F.; Torres-Palma, R.A.; Moncayo-Lasso, A. Photo-electro-Fenton process applied to the degradation of valsartan: Effect of parameters, identification degradation routes and mineralization in combination with a biological system. J. Environ. Chem. Eng. 2018, 6, 7302–7311. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Isaza-Pineda, L.; Moncayo-Lasso, A.; Ibanez, M.; Torres-Palma, R.A. Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process. Ultrason. Sonochem. 2019, 58, 104635. [Google Scholar] [CrossRef]
- Diehle, M.; Gebhardt, W.; Pinnekamp, J.; Schäffer, A.; Linnemann, V. Ozonation of valsartan: Structural elucidation and environmental properties of transformation products. Chemosphere 2019, 216, 437–448. [Google Scholar] [CrossRef]
- Park, H.; Kim, H.I.; Moon, G.H.; Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 2016, 9, 411–433. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.E.; Summers, R. Product studies of the mutual termination reactions of sec-alkylperoxy radicals: Evidence for non-cyclic termination. Can. J. Chem. 1974, 52, 1377–1379. [Google Scholar] [CrossRef]
- Von Sonntag, C.; Schuchmann, H.P. The Elucidation of Peroxyl Radical Reactions in Aqueous Solution with the Help of Radiation-Chemical Methods. Angew. Chem. Int. Ed. Engl. 1991, 30, 1229–1253. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Nguyen, T.H.; Zheng, N. The chemistry of amine radical cations produced by visible light photoredox catalysis. Beilstein J. Org. Chem. 2013, 9, 1977–2001. [Google Scholar] [CrossRef]
- Dey, G.R.; Naik, D.B.; Kishore, K.; Moorthy, P.N. Pulse radiolysis study of 5-amino tetrazole in aqueous solutions. Radiat. Phys. Chem. 1996, 47, 559–562. [Google Scholar]
- Hayon, E.; Ibata, T.; Lichtin, N.N.; Simic, M. Sites of attack of hydroxyl radicals on amides in aqueous solution. J. Am. Chem Soc. 1970, 92, 3898–3903. [Google Scholar] [CrossRef]
- Madhavan, V.; Levanon, H.; Neta, P. Decarboxylation by SO4− Radicals. Radiat. Res. 1978, 76, 15–22. [Google Scholar] [CrossRef]
- Shah Ravi, P.; Sahu, A.; Singh, S. Identification and characterization of degradation products of irbesartan using LC–MS/TOF, MSn on-line H/D exchange and LC–NMR. J. Pharm. Biomed. Anal. 2010, 51, 1037–1046. [Google Scholar] [CrossRef]
- Romanucci, V.; Siciliano, A.; Guida, M.; Libralato, G.; Luongo, G.; Previtera, L.; Di Fabio, G.; Zarrelli, A.; Saviano, L. Disinfection by-products and ecotoxic risk associated with hypochlorite treatment of irbesartan. Sci. Total Environ. 2020, 712, 135625. [Google Scholar] [CrossRef]
- Bairamis, F.; Konstantinou, I.; Petrakis, D.; Vaimakis, T. Enhanced Performance of Electrospun Nanofibrous TiO2/g-C3N4 Photocatalyst in Photocatalytic Degradation of Methylene Blue. Catalysts 2019, 9, 880. [Google Scholar] [CrossRef] [Green Version]
VLS/TPs | (M + H)+/(M + Na)+ (M − H)−* | Formula | Δ(ppm) | RDB |
---|---|---|---|---|
VLS | 436.2336 458.2145 | C24H30O3N5 C24H29O3N5Na | −1.619 | 12.5 |
GCN-TP1 | 392.2437 414.2253 | C23H30ON5 C23H29ON5Na | −2.083 | 11.5 |
GCN-TP2 | 406.2227 428.2045 | C23H28O2N5 C23H27O2N5Na | −2.712 | 12.5 |
GCN-TP3 | 450.2148 * | C24H28O4N5 | 2.664 | 13.5 |
GCN-TP4 | 450.2144 * | C24H28O4N5 | −0.506 | 13.5 |
GCN-TP5 | 364.1759 386.1574 | C20H22O2N5 C20H21O2N5Na | −2.475 | 12.5 |
GCN-TP6 | 336.1810 358.1628 | C19H22ON5 C19H21ON5Na | −2.727 | 11.5 |
GCN-TP7 | 356.1341 378.1161 | C17H18O4N5 C17H17O4N5Na | −3.483 | 11.5 |
GCN-TP8 | 267.0868 289.0685 | C14H11O2N4 C14H10O2N4Na | −3.228 | 11.5 |
GCN-TP9 | 400.1238 422.1057 | C18H18O6N5 C18H17O6N5Na | −3.523 | 12.5 |
GCN-TP10 | 202.1433 224.1249 | C10H20O3N C10H19O3NNa | −2.523 | 1.5 |
TPs | (M + H)+/(M + Na)+ | Formula | Δ(ppm) | RDB |
---|---|---|---|---|
T-TP1 | 406.2225 428.2044 | C23H28O2N5 C23H27O2N5Na | −3.081 | 12.5 |
T-TP2 | 362.1599 384.1419 | C20H20O2N5 C20H19O2N5Na | −3.345 | 13.5 |
T-TP3 | 364.1759 386.1575 | C20H22O2N5 C20H21O2N5Na | −2.475 | 12.5 |
T-TP4 | 350.1600 372.1418 | C19H20O2N5 C19H19O2N5Na | −3.374 | 12.5 |
T-TP5 | 380.1706 402.1523 | C20H22O3N5 C20H21O3N5Na | −2.962 | 12.5 |
T-TP6 | 376.1392 398.1211 | C20H18O3N5 C20H17O3N5Na | −3.180 | 14.5 |
T-TP7 | 336.1810 358.1629 | C19H22ON5 C19H21ON5Na | −2.727 | 11.5 |
T-TP8 | 378.1550 400.1368 | C20H20O3N5 C20H19O3N5 | −2.819 | 13.5 |
T-TP9 | 278.1028 300.0847 | C15H12ON5 C15H11ON5 | −2.864 | 12.5 |
T-TP10 | 198.1273 | C14H16N | −1.848 | 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bairamis, F.; Konstantinou, I. Photocatalytic Degradation Pathways of the Valsartan Drug by TiO2 and g-C3N4 Catalysts. Reactions 2022, 3, 160-171. https://doi.org/10.3390/reactions3010012
Bairamis F, Konstantinou I. Photocatalytic Degradation Pathways of the Valsartan Drug by TiO2 and g-C3N4 Catalysts. Reactions. 2022; 3(1):160-171. https://doi.org/10.3390/reactions3010012
Chicago/Turabian StyleBairamis, Feidias, and Ioannis Konstantinou. 2022. "Photocatalytic Degradation Pathways of the Valsartan Drug by TiO2 and g-C3N4 Catalysts" Reactions 3, no. 1: 160-171. https://doi.org/10.3390/reactions3010012
APA StyleBairamis, F., & Konstantinou, I. (2022). Photocatalytic Degradation Pathways of the Valsartan Drug by TiO2 and g-C3N4 Catalysts. Reactions, 3(1), 160-171. https://doi.org/10.3390/reactions3010012