Valorization of Microcrystalline Cellulose Using Heterogeneous Protonated Zeolite Catalyst: An Experimental and Kinetics Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Catalyst Synthesis and Characterization
2.2.2. Catalytic Hydrolysis
2.2.3. Hydrolysis Product Analysis
3. Result and Discussion
3.1. Catalyst Characterization
3.1.1. FT-IR Analysis
3.1.2. XRD Analysis
3.1.3. BET Analysis
3.1.4. Ammonia-TPD Analysis
3.2. Hydrolysis of MCC
3.2.1. Mechanism of MCC Hydrolysis
3.2.2. Kinetic Modeling of MCC Depolymerization
- The first step in depolymerization of microcrystalline cellulose is the cleavage of β-(1, 4) glycosidic bonds followed by decomposition of TRS to other products, namely 5-HMF and humin.
- The reaction rate equations were developed based on the Saeman model considering all the model’s assumptions [46]. Primarily, the model assumes irreversible pseudo-homogeneous first-order reactions.
- The TRS concentration was based on MCC’s hydrolysis reaction, which includes the major depolymerization products intermediate sugars and oligomers.
- Mass transfer on the reaction kinetics was insignificant due to the complete dissolution of cellulose in [BMIM] Cl ionic liquid media before the depolymerization reaction.
- It was assumed that dissolved cellulose diffuses into the internal pores of zeolite and the glycosidic bonds of cellulose and then extends into the vicinity of Bronsted acid sites where catalytic depolymerization takes place [46].
3.2.3. Formation and Degradation of TRS
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chimentão, R.J.; Lorente, E.; Gispert-Guirado, F.; Medina, F.; López, F. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydr. Polym. 2014, 111, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Shen, Z.; Wen, Y. Hydrolysis of wheat straw by dilute sulfuric acid in a continuous mode. Chem. Eng. J. 2015, 260, 20–27. [Google Scholar] [CrossRef]
- Auxenfans, T.; Buchoux, S.; Djellab, K.; Avondo, C.; Husson, E.; Sarazin, C. Mild pretreatment and enzymatic saccharification of cellulose with recycled ionic liquids towards one-batch process. Carbohydr. Polym. 2012, 90, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, G.; Yang, F.; Zhang, S. Mn/ZSM-5 participation in the degradation of cellulose under phosphoric acid media. Polym. Degrad. Stab. 2011, 96, 863–869. [Google Scholar] [CrossRef]
- Abels, C.; Thimm, K.; Wulfhorst, H.; Christine, A.; Wessling, M. Bioresource Technology Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose. Bioresour. Technol. 2013, 149, 58–64. [Google Scholar] [CrossRef]
- Wang, J.; Xi, J.; Wang, Y. Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chem. 2015, 17, 737–751. [Google Scholar] [CrossRef]
- Verendel, J.; Church, T.; Andersson, P. Catalytic One-Pot Production of Small Organics from Polysaccharides. Synthesis 2011, 2011, 1649–1677. [Google Scholar] [CrossRef] [Green Version]
- Vo, H.T.; Widyaya, V.T.; Jae, J.; Kim, H.S.; Lee, H. Hydrolysis of ionic cellulose to glucose. Bioresour. Technol. 2014, 167, 484–489. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Fu, Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 2013, 15, 1095. [Google Scholar] [CrossRef]
- Brandt, A.; Gräsvik, J.; Hallett, J.P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013, 15, 550–583. [Google Scholar] [CrossRef] [Green Version]
- Fukaya, Y.; Hayashi, K.; Ohno, H. Cellulose dissolution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem. 2008, 1, 44–46. [Google Scholar] [CrossRef]
- Tong, X.; Ma, Y.; Li, Y. Applied Catalysis A: General Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A Gen. 2010, 385, 1–13. [Google Scholar] [CrossRef]
- Kassaye, S.; Pagar, C.; Pant, K.K.; Jain, S.; Gupta, R. Bioresource Technology Depolymerization of microcrystalline cellulose to value added chemicals using sulfate ion promoted zirconia catalyst. Bioresour. Technol. 2016, 220, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Peng, X.; Sun, S.; Zhong, L.; Wang, S.; Lu, F.; Sun, R. Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Carbohydr. Polym. 2014, 111, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-L.; Wang, H.-Q.; Xiang, M.; Yu, P.; Li, R.-Q.; Ke, Q.-P. The Effect of Ni-ZSM-5 Catalysts on Catalytic Pyrolysis and Hydro-Pyrolysis of Biomass. Front. Chem. 2020, 8, 790. [Google Scholar] [CrossRef]
- Zhao, C.; Kasakov, S.; He, J.; Lercher, J.A. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. J. Catal. 2012, 296, 12–23. [Google Scholar] [CrossRef]
- Topsøe, N.-Y.; Pedersen, K.; Derouane, E.G. Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. J. Catal. 1981, 70, 41–52. [Google Scholar] [CrossRef]
- Kosinov, N.; Liu, C.; Hensen, E.J.M.; Pidko, E.A. Engineering of Transition Metal Catalysts Confined in Zeolites. Chem. Mater. 2018, 30, 3177–3198. [Google Scholar] [CrossRef]
- Rout, P.K.; Nannaware, A.D.; Prakash, O.; Kalra, A.; Rajasekharan, R. Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising biochemical and biofuel feedstock. Chem. Eng. Sci. 2016, 142, 318–346. [Google Scholar] [CrossRef]
- Kassaye, S.; Pant, K.K.; Jain, S. Synergistic effect of ionic liquid and dilute sulphuric acid in the hydrolysis of microcrystalline cellulose. Fuel Process. Technol. 2016, 148, 289–294. [Google Scholar] [CrossRef]
- Van der Bij, H.E.; Weckhuysen, B.M. Local silico-aluminophosphate interfaces within phosphated H-ZSM-5 zeolites. Phys. Chem. Chem. Phys. 2014, 16, 29–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, D.; Wang, X.; Yang, Y.; He, R.; Zhong, H.; Wang, Y.; Jin, F. Hydrothermal synthesis of long-chain hydrocarbons up to C24 with NaHCO3-assisted stabilizing cobalt. Proc. Natl. Acad. Sci. USA 2021, 118, e2115059118. [Google Scholar] [CrossRef] [PubMed]
- Yumura, T.; Hasegawa, S.; Itadani, A.; Kobayashi, H.; Kuroda, Y. The Variety of Carbon-Metal Bonds inside Cu-ZSM-5 Zeolites: A Density Functional Theory Study. Materials 2010, 3, 2516. [Google Scholar] [CrossRef]
- Atkins, P.W.; Atkins, P.W. Shriver & Atkins Inorganic Chemistry; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Yumura, T.; Takeuchi, M.; Kobayashi, H.; Kuroda, Y. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations. Inorg. Chem. 2009, 48, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Kostyniuk, A.; Key, D.; Mdleleni, M. Effect of Fe-Mo promoters on HZSM-5 zeolite catalyst for 1-hexene aromatization. J. Saudi Chem. Soc. 2019, 23, 612–626. [Google Scholar] [CrossRef]
- Xiao, P.; Wang, Y.; Kondo, J.N.; Yokoi, T. Consequences of Fe speciation in MFI zeolites for hydroxylation of benzene to phenol with H2O2. Appl. Catal. A Gen. 2019, 579, 159–167. [Google Scholar] [CrossRef]
- Mimura, N.; Okamoto, M.; Yamashita, H.; Oyama, S.T.; Murata, K. Oxidative dehydrogenation of ethane over Cr/ZSM-5 catalysts using CO2 as an oxidant. J. Phys. Chem. B 2006, 110, 21764–21770. [Google Scholar] [CrossRef]
- Cai, H.; Li, C.; Wang, A.; Xu, G.; Zhang, T. Applied Catalysis B: Environmental Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl. Catal. B Environ. 2012, 123–124, 333–338. [Google Scholar] [CrossRef]
- Liu, H.; Wei, H.; Xin, W.; Song, C. Differences between Zn / HZSM-5 and Zn / HZSM-11 zeolite catalysts in alkylation of benzene with dimethyl ether. J. Energy Chem. 2014, 23, 617–624. [Google Scholar] [CrossRef]
- Yang, H.; Fairbridge, C.; Ring, Z.; Hawkins, R.; Hill, J.M. Hydrogenation and mild hydrocracking of synthetic crude distillate by Pt-supported mesoporous material catalysts. In Studies in Surface Science and Catalysis; Sayari, A., Jaroniec, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 141, pp. 543–552. [Google Scholar]
- Farrauto, R.J.; Hobson, M.C. Catalyst Characterization. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 501–526. [Google Scholar]
- Arango, A.M.S.; Garcés, C.M.E.; Valderrama, J.L.A.; Monsalve, A.G.; Santos, L.A.P.; Isaza, A.E. Oligomerization of propene over ZSM-5 modified with Cr and W. Rev. Fac. Ing. 2011, 57, 57–65. [Google Scholar]
- Benaliouche, F.; Boucheffa, Y.; Ayrault, P.; Mignard, S.; Magnoux, P. NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag-and Cu-exchanged X zeolites. Microporous Mesoporous Mater. 2008, 111, 80–88. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Akizuki, M.; Yoko, A.; Oshima, Y.; Soltani, M. Novel synthesis and characterization of Fe-ZSM-5 nanocrystals in hot compressed water for selective catalytic reduction of NO with NH3. Microporous Mesoporous Mater. 2020, 292, 109708. [Google Scholar] [CrossRef]
- Baek, I.G.; You, S.J.; Park, E.D. Bioresource Technology Direct conversion of cellulose into polyols over Ni/W/SiO2-Al2O3. Bioresour. Technol. 2012, 114, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Celik, F.E.; Kim, T.-J.; Bell, A.T. Effect of zeolite framework type and Si/Al ratio on dimethoxymethane carbonylation. J. Catal. 2010, 270, 185–195. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, B.; Shi, Z.; Liu, N.; Chen, B. Catalytic behaviors of chloromethane combustion over the metal-modified ZSM-5 zeolites with diverse SiO2/Al2O3 ratios. J. Mol. Catal. A Chem. 2015, 398, 223–230. [Google Scholar] [CrossRef]
- Bali, S.; Tofanelli, M.A.; Ernst, R.D.; Eyring, E.M. Chromium (III) catalysts in ionic liquids for the conversion of glucose to 5- (hydroxymethyl) furfural (HMF): Insight into metal catalyst: Ionic liquid mediated conversion of cellulosic biomass to biofuels and chemicals. Biomass Bioenergy 2012, 42, 224–227. [Google Scholar] [CrossRef]
- Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural. Science 2007, 316, 1597–1600. [Google Scholar] [CrossRef]
- Xu, H.; Miao, Z.; Zhao, H.; Yang, J.; Zhao, J.; Song, H.; Liang, N.; Chou, L. Dehydration of fructose into 5-hydroxymethylfurfural by high stable ordered mesoporous zirconium phosphate. Fuel 2015, 145, 234–240. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Z.; Xu, J.; Sun, Y.; Lin, L.; Liu, S. Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem. Eng. J. 2014, 244, 137–144. [Google Scholar] [CrossRef]
- Saeman, J.F. Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature. Ind. Eng. Chem. 1945, 37, 43–52. [Google Scholar] [CrossRef]
- Lai, Y.; Veser, G. The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization. Catal. Sci. Technol. 2016, 6, 5440–5452. [Google Scholar] [CrossRef]
- Negahdar, L.; Delidovich, I.; Palkovits, R. Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism. Appl. Catal. B Environ. 2016, 184, 285–298. [Google Scholar] [CrossRef]
- Guo, F.; Fang, Z.; Xu, C.C.; Smith, R.L. Solid acid mediated hydrolysis of biomass for producing biofuels. Prog. Energy Combust. Sci. 2012, 38, 672–690. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, G.; Tang, X.; Wu, Z.; Xu, J.; Lin, L.; Liu, S. Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid. Bioresour. Technol. 2013, 148, 501–507. [Google Scholar] [CrossRef]
Catalyst Type | BET Surface Area (m2/g) |
---|---|
H-ZSM-5 | 270.0 |
Cr/H-ZSM-5 | 248.2 |
Temperature (°C) | k1 (min−1) | k2 (min−1) |
---|---|---|
140 | 0.0010 | 0.0006 |
160 | 0.0042 | 0.0019 |
180 | 0.0094 | 0.0020 |
200 | 0.0244 | 0.0035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassaye, S.; Gupta, D.; Pant, K.K.; Jain, S. Valorization of Microcrystalline Cellulose Using Heterogeneous Protonated Zeolite Catalyst: An Experimental and Kinetics Approach. Reactions 2022, 3, 283-299. https://doi.org/10.3390/reactions3020021
Kassaye S, Gupta D, Pant KK, Jain S. Valorization of Microcrystalline Cellulose Using Heterogeneous Protonated Zeolite Catalyst: An Experimental and Kinetics Approach. Reactions. 2022; 3(2):283-299. https://doi.org/10.3390/reactions3020021
Chicago/Turabian StyleKassaye, Samuel, Dinesh Gupta, Kamal Kishore Pant, and Sapna Jain. 2022. "Valorization of Microcrystalline Cellulose Using Heterogeneous Protonated Zeolite Catalyst: An Experimental and Kinetics Approach" Reactions 3, no. 2: 283-299. https://doi.org/10.3390/reactions3020021
APA StyleKassaye, S., Gupta, D., Pant, K. K., & Jain, S. (2022). Valorization of Microcrystalline Cellulose Using Heterogeneous Protonated Zeolite Catalyst: An Experimental and Kinetics Approach. Reactions, 3(2), 283-299. https://doi.org/10.3390/reactions3020021