C-N, C-O and C-S Ullmann-Type Coupling Reactions of Arenediazonium o-Benzenedisulfonimides
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Informations
2.2. N-(n-Hexyl)-4-Nitroaniline (3a): Representative procedure for the Ullmann-Type Coupling Reactions of Arenediazonium o-Benzenedisulfonimides
3. Results and Discussion
Entry | Salt 1 | Amines 2 | Cu and Ligand (L) | Solvent | T (°C) | Time (h) | Products 3 and Yields (%) 1 | Literature Yields (%) |
---|---|---|---|---|---|---|---|---|
1 | 1a | n-C6H13NH2 2a | - | THF | rt | 3 | - 2 | |
2 | 1a | 2a | Cu | THF | rt | 3 | - 3 | |
3 | 1a | 2a | CuCl | THF | rt | 3 | - 4 | |
4 | 1a | 2a | CuI | THF | rt | 2 | - 5 | |
5 | 1a | 2a | Cu2O | THF | rt | 3 | - 6 | |
6 | 1a | 2a | [(MeCN)4Cu]PF6 | THF | rt | 2 | 3a; 27 7 | |
7 | 1a | 2a | [(MeCN)4Cu]PF6 | THF | 50 | 1 | - 8 | |
8 | 1a | 2a | [(MeCN)4Cu]PF6 | EtOH | rt | 2 | 3a; 34 7 | |
9 | 1a | 2a | [(MeCN)4Cu]PF6 | MeCN | rt | 3 | 3a; 30 7 | |
10 | 1a | 2a | [(MeCN)4Cu]PF6 | DMSO | rt | 2 | 3a; 48 7 | |
11 | 1a | 2a | [(MeCN)4Cu]PF6/L | DMSO | rt | 2 | 3a; 87 7,9 | 87 [55] |
12 | 1b | 2a | [(MeCN)4Cu]PF6/L | DMSO | rt | 4 | 3b; 79 10 | 94 [55] |
13 | 1b | 2b | [(MeCN)4Cu]PF6/L | DMSO | rt | 3 | 3c; 73 10 | 95 [20] |
14 | 1a | 2b | [(MeCN)4Cu]PF6/L | DMSO | rt | 3.5 | 3d; 85 10 | 91 [56] |
15 | 1c | 2a | [(MeCN)4Cu]PF6/L | DMSO | rt | 4 | 3e; 51 10 | 85 [57] |
16 | 1d | 2a | [(MeCN)4Cu]PF6/L | DMSO | rt | 2 | 3f; 86 10 | 78 [58] |
17 | 1e | 2a | [(MeCN)4Cu]PF6/L | DMSO | rt | 5 | 3g; 46 10 | 56 [59] |
18 | 1f | 2a | [(MeCN)4Cu]PF6/L | DMSO | rt | 3 | 3h; 51 10 | 98 [22] |
19 | 1g | 2a | [(MeCN)4Cu]PF6/L | DMSO | rt | 3 | 3i; 86 10 | 87 [60] |
20 | 1a | 2c | [(MeCN)4Cu]PF6/L | DMSO | rt | 2 | 3j; 79 10 | 78 [61] |
21 | 1a | 2d | [(MeCN)4Cu]PF6/L | DMSO | rt | 2 | - 11 | |
22 | 1a | 2e | [(MeCN)4Cu]PF6/L | DMSO | rt | 3 | - 11 |
Entry | Salt 1 | Alcolholates 5 or Thiolate 6 | Cu(I) and Ligand (L) | Solvent | T (°C) | Time (h) | Products 7 and 8 and Yields (%) 1 | Literature Yields (%) |
---|---|---|---|---|---|---|---|---|
1 | 1a | n-C6H13OH | - | DMSO | rt | 24 | - 2 | |
2 | 1a | n-C6H13OH | [(MeCN)4Cu]PF6/L | DMSO | rt | 24 | - 3 | |
3 | 1a | n-C6H13OH | [(MeCN)4Cu]PF6/L | DMSO | 50 | 3 | - 4 | |
4 | 1a | 5a | [(MeCN)4Cu]PF6 | DMSO | rt | 24 | 7a; 34 3 | |
5 | 1a | 5a | [(MeCN)4Cu]PF6/L | DMSO | rt | 3 | 7a; 67 5,6 | |
6 | 1b | 5a | [(MeCN)4Cu]PF6/L | DMSO | rt | 6 | 7b; 49 7 | 78 [19] |
7 | 1h | 5b | [(MeCN)4Cu]PF6/L | DMSO | rt | 4 | 7c; 64 7 | |
8 | 1h | 5b | [(MeCN)4Cu]PF6/L | EtOH | rt | 2 | 7c; 67 7 | 74 [64] |
9 | 1i | 5b | [(MeCN)4Cu]PF6/L | EtOH | rt | 4 | 7d; 66 7 | 100 [65] |
10 | 1j | 5b | [(MeCN)4Cu]PF6/L | EtOH | rt | 4 | 7e; 51 7 | |
11 | 1k | 5b | [(MeCN)4Cu]PF6/L | EtOH | rt | 3 | 7f; 60 7 | |
12 | 1a | 5c | [(MeCN)4Cu]PF6/L | DMSO | rt | 24 | - 8 | |
13 | 1a | 5c | [(MeCN)4Cu]PF6/L | DMSO | 50 | 4 | - 8 | |
14 | 1a | 5c | [(MeCN)4Cu]PF6/L | iPrOH | rt | 24 | - 8 | |
15 | 1a | n-C4H9SH | - | DMSO | rt | 24 | - 2 | |
16 | 1a | n-C4H9SH | [(MeCN)4Cu]PF6/L | DMSO | 50 | 8 | - 3 | |
17 | 1a | 6a | [(MeCN)4Cu]PF6/L | DMSO | rt | 2 | 8a; 65 7 | |
18 | 1b | 6a | [(MeCN)4Cu]PF6/L | DMSO | rt | 6 | 8b; 48 7 | 65 [66] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sperotto, E.; van Klink, G.P.M.; van Koten, G.; de Vries, J.G. The mechanism of the modified Ullmann reaction. Dalton Trans. 2010, 39, 10338–10351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, X.; Güell, I. Cu(I)/Cu(II) catalytic cycle involved in Ullmann-type cross-coupling reactions. Pure Appl. Chem. 2014, 86, 345–360. [Google Scholar] [CrossRef]
- Cahiez, G.; Moyeux, A.; Cossyc, J. Grignard Reagents and Non-Precious Metals: Cheap and Eco-Friendly Reagents for Developing Industrial Cross-Couplings. A Personal Account. Adv. Synth. Catal. 2015, 357, 1983–1989. [Google Scholar] [CrossRef]
- Neidig, M.L.; Carpenter, S.H.; Curran, D.J.; DeMuth, J.C.; Fleischauer, V.E.; Iannuzzi, T.E.; Neate, P.G.N.; Sears, J.D.; Wolford, N.J. Development and Evolution of Mechanistic Understanding in Iron-Catalyzed Cross-Coupling. Acc. Chem. Res. 2019, 52, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Diccianni, J.B.; Diao, T. Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends Chem. 2019, 1, 830–844. [Google Scholar] [CrossRef]
- Chemley, S.R. Copper catalysis in organic synthesis. Beilstein J. Org. Chem. 2015, 11, 2252–2253. [Google Scholar] [CrossRef] [Green Version]
- Antenucci, A.; Barbero, M.; Dughera, S.; Ghigo, G. Copper catalysed Gomberg-Bachmann-Hey reactions of arenediazonium tetrafluoroborates and heteroarenediazonium o-benzenedisulfonimides. Synthetic and mechanistic aspects. Tetrahedron 2020, 76, 131632. [Google Scholar] [CrossRef]
- Ullmann, F.; Bielecki, J. Ueber Synthesen in der Biphenylreihe. Chem. Ber. 1901, 34, 2174–2185. [Google Scholar] [CrossRef] [Green Version]
- Ullmann, F. Ueber eine neue Bildungsweise von Diphenylaminderivaten. Ber. Dtsch. Chem. Ges. 1903, 36, 2382–2384. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Bai, J.; Wang, H.; Zhao, B.; Li, J.; Ren, F. A mild and regioselective Ullmann reaction of indazoles with aryliodides in water. Tetrahedron 2017, 73, 172–178. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L. Immobilization of Copper(II) in Organic-Inorganic Hybrid Materials: A Highly Efficient and Reusable Catalyst for the Classic Ullmann Reaction. Synthesis 2008, 13, 2007–2012. [Google Scholar] [CrossRef]
- Lo, Q.A.; Sale, D.; Braddock, D.C.; Davies, R.P. Mechanistic and Performance Studies on the Ligand-Promoted Ullmann Amination Reaction. ACS Catal. 2018, 8, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Clavè, G.; Garel, C.; Renard, C.P.B.-L.; Olszewski, T.-K.; Lange, B.; Shutcha, M.; Faucon, M.-P.; Grison, C. Ullmann reaction through ecocatalysis: Insights from bioresource and synthetic potential. RSC Adv. 2016, 6, 59550–59564. [Google Scholar] [CrossRef]
- Ferlin, F.; Trombettoni, V.; Luciani, L.; Fusi, S.; Piermatti, O.; Santoro, S.; Vaccaro, L. A waste-minimized protocol for copper-catalyzed Ullmann-type reaction in a biomass derived furfuryl alcohol/water azeotrope. Green Chem. 2018, 20, 1634–1639. [Google Scholar] [CrossRef]
- Yashwantrao, G.; Saha, S. Sustainable strategies of C–N bond formation via Ullmann coupling employing earth abundant copper catalyst. Tetrahedron 2021, 97, 132406. [Google Scholar] [CrossRef]
- Zuo, Z.; Kim, R.S.; Watson, A.D. Synthesis of Axially Chiral 2,2′-Bisphosphobiarenes via a Nickel-Catalyzed Asymmetric Ullmann Coupling: General Access to Privileged Chiral Ligands without Optical Resolution. J. Am. Chem. Soc. 2021, 143, 1328–1333. [Google Scholar] [CrossRef]
- Dai, L. Ullmann Reaction, A Centennial Memory and Recent Renaissance Related Formation of Carbon Heteroatom Bond. Prog. Chem. 2018, 30, 1257–1297. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chen, H.-H. 1,1,1-Tris(hydroxymethyl)ethane as a New, Efficient, and Versatile Tripod Ligand for Copper-Catalyzed Cross-Coupling Reactions of Aryl Iodides with Amides, Thiols, and Phenols. Org. Lett. 2006, 8, 5609–5612. [Google Scholar] [CrossRef]
- Altman, R.A.; Shafir, A.; Lichtor, P.A.; Buchwald, S.L. An Improved Cu-Based Catalyst System for the Reactions of Alcohols with Aryl Halides. J. Org. Chem. 2008, 73, 284–286. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Yao, Q.; Ma, D. CuI/DMPAO-Catalyzed N-Arylation of Acyclic Secondary Amines. Org. Lett. 2012, 14, 3056–3059. [Google Scholar] [CrossRef]
- Zhou, W.; Fan, M.; Yin, J.; Jiang, Y.; Ma, D. CuI/Oxalic Diamide Catalyzed Coupling Reaction of (Hetero)Aryl Chlorides and Amines. J. Am. Chem. Soc. 2015, 137, 11942–11945. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Bhunia, S.; Wang, K.; Gan, L.; Xia, S.; Ma, D. Discovery of N-(Naphthalen-1-yl)-N′-alkyl Oxalamide Ligands Enables Cu-Catalyzed Aryl Amination with High Turnovers. Org. Lett. 2017, 19, 2809–2812. [Google Scholar] [CrossRef] [PubMed]
- Quivelli, A.F.; Vitale, P.; Perna, F.M.; Capriati, V. Reshaping Ullmann Amine Synthesis in Deep Eutectic Solvents: A Mild Approach for Cu-Catalyzed C-N Coupling Reactions with No Additional Ligands. Front. Chem. 2019, 7, 723. [Google Scholar] [CrossRef] [PubMed]
- Quivelli, A.F.; Marinò, M.; Vitale, P.; Álvarez, J.G.; Perna, F.M.; Capriati, V. Ligand-Free Copper-Catalyzed Ullmann-Type C O Bond Formation in Non-Innocent Deep Eutectic Solvents under Aerobic Conditions. ChemSusChem 2022, 15, e202102211. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Chen, X.; Zhang, F.; Xu, Z.; Wang, D.; He, Y.; Xia, X.; Zhang, X.; Liang, Y. CuI/2-Aminopyridine 1-Oxide Catalyzed Amination of Aryl Chlorides with Aliphatic Amines. Org. Lett. 2020, 22, 7486–7490. [Google Scholar] [CrossRef]
- van Emelen, L.; Henrion, M.; Lemmens, R.; de Vos, D. C–N coupling reactions with arenes through C–H activation: The state-of-the-art versus the principles of green chemistry. Catal. Sci. Technol. 2022, 12, 360–389. [Google Scholar] [CrossRef]
- Ji, R.; Jie, X.; Zhou, Y.; Wang, Y.; Li, B.; Liu, X.; Zhao, J. Light-Assisted Ullmann Coupling of Phenols and Aryl Halides: The Synergetic Effect Between Plasmonic Copper Nanoparticles and Carbon Nanotubes from Various Sources. Chem. Eur. J. 2022, 28, e202103703. [Google Scholar] [CrossRef]
- Rajabzadeh, M.; Najdi, N.; Zarei, Z.; Khalifeh, R. CuI Immobilized on Tricationic Ionic Liquid Anchored on Functionalized Magnetic Hydrotalcite (Fe3O4/HT-TIL-CuI) as a Novel, Magnetic and Efficient Nanocatalyst for Ullmann-Type C–N Coupling Reaction. J. Inorg. Organomet. Polym. Mater. 2022, 1–16. [Google Scholar] [CrossRef]
- Quivelli, A.F.; Rossi, F.V.; Vitale, P.; Álvarez, J.G.; Perna, F.M.; Capriati, V. Sustainable and Scalable Two-Step Synthesis of Thenfadil and Some Analogs in Deep Eutectic Solvents: From Laboratory to Industry. ACS Sust. Chem. Eng. 2022, 10, 4065–4072. [Google Scholar] [CrossRef]
- Sawant, S.Y.; Somani, R.S.; Cho, M.H.; Bajaj, H.C. A low temperature bottom-up approach for the synthesis of few layered graphene nanosheets via C–C bond formation using a modified Ullmann reaction. RSC Adv. 2015, 5, 46589–46597. [Google Scholar] [CrossRef]
- Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions. Chem. Rev. 2006, 106, 4622–4643. [Google Scholar] [CrossRef] [PubMed]
- Felpin, F.-X.; Sengupta, S. Biaryl synthesis with arenediazonium salts: Cross- coupling, CH-arylation and annulation reactions. Chem. Soc. Rev. 2019, 48, 1150–1193. [Google Scholar] [CrossRef] [PubMed]
- Cepanec, I.; Litvic, M.; Udikovic, J.; Pogorelic, I.; Lovric, M. Copper(I)-catalysed homo-coupling of aryldiazonium salts: Synthesis of symmetrical biaryls. Tetrahedron 2007, 63, 5614–5621. [Google Scholar] [CrossRef]
- Sheng, M.; Frurip, D.; Gorman, D. Reactive chemical hazards of diazonium salts. J. Loss Prev. Process Ind. 2015, 38, 114–118. [Google Scholar] [CrossRef]
- Antenucci, A.; Bonomo, M.; Ghigo, G.; Gontrani, L.; Barolo, C.; Dughera, S. How do arenediazonium salts behave in deep eutectic solvents? A combined experimental and computational approach. J. Mol. Liq. 2021, 339, 116743. [Google Scholar] [CrossRef]
- Ghigo, G.; Bonomo, M.; Antenucci, A.; Reviglio, C.; Dughera, S. Copper-Free Halodediazoniation of Arenediazonium Tetrafluoroborates in Deep Eutectic Solvents-like Mixtures. Molecules 2022, 27, 1909–1924. [Google Scholar] [CrossRef]
- Firth, J.D.; Fairlamb, J.S. A Need for Caution in the Preparation and Application of Synthetically Versatile Aryl Diazonium Tetrafluoroborate Salts. Org. Lett. 2020, 22, 7057–7059. [Google Scholar] [CrossRef]
- Xie, C.; Yuan, Y.; Wang, B.; Du, L. Research on the decomposition kinetics and thermal hazards of aniline diazonium salt. Thermochim. Acta 2022, 709, 179156. [Google Scholar] [CrossRef]
- Oger, N.; Le Grognec, E.; Felpin, F.-X. Handling diazonium salts in flow for organic and material chemistry. Org. Chem. Front. 2015, 2, 590–614. [Google Scholar] [CrossRef]
- Barbero, M.; Crisma, M.; Fochi, I.D.R.; Perracino, P. New Dry Arenediazonium Salts, Stabilized to an Exceptionally High Degree by the Anion of o-Benzenedisulfonimide. Synthesis 1998, 1171–1175. [Google Scholar] [CrossRef]
- Barbero, M.; Degani, I.; Dughera, S.; Fochi, R. Halodediazoniations of Dry Arenediazonium o-Benzenedisulfonimides in the Presence or Absence of an Electron Transfer Catalyst. Easy General Procedures to Prepare Aryl Chlorides, Bromides, and Iodides. J. Org. Chem. 1999, 64, 3448–3453. [Google Scholar] [CrossRef] [PubMed]
- Artuso, E.; Barbero, M.; Degani, I.; Dughera, S.; Fochi, R. Arenediazonium o-benzenedisulfonimides as efficient reagents for Heck-type arylation reactions. Tetrahedron 2006, 62, 3146–3157. [Google Scholar] [CrossRef]
- Dughera, S. Palladium-Catalyzed Cross-Coupling Reactions of Dry Arenediazonium o-Benzenedisulfonimides with Aryltin Compounds. Synthesis 2006, 2006, 1117–1123. [Google Scholar] [CrossRef]
- Barbero, M.; Cadamuro, S.; Dughera, S.; Giaveno, C. Reactions of Dry Arenediazonium o-Benzenedisulfonimides with Triorganoindium Compounds. Eur. J. Org. Chem. 2006, 2006, 4884–4890. [Google Scholar] [CrossRef]
- Barbero, M.; Cadamuro, S.; Dughera, S. Palladium-Catalyzed Cross-Coupling Alkylation of Arenediazonium o-Benzenedisulfonimides. Synthesis 2008, 2008, 474–478. [Google Scholar] [CrossRef]
- Barbero, M.; Cadamuro, S.; Dughera, S.; Ghigo, G. Reactions of Arenediazonium o-Benzenedisulfonimides With Aliphatic Triorganoindium Compounds. Eur. J. Org. Chem. 2008, 2008, 862–869. [Google Scholar] [CrossRef]
- Barbero, M.; Cadamuro, S.; Dughera, S. Negishi cross-coupling of arenediazonium o-benzenedisulfonimides. Tetrahedron 2014, 70, 8010–8016. [Google Scholar] [CrossRef]
- Barbero, M.; Cadamuro, S.; Dughera, S. Copper- and Phosphane-Free Sonogashira Coupling of Arenediazonium o-Benzenedisulfonimides. Eur. J. Org. Chem. 2014, 2014, 598–605. [Google Scholar] [CrossRef]
- Barbero, M.; Cadamuro, S.; Dughera, S. Copper-free Sandmeyer cyanation of arenediazonium o-benzenedisulfonimides. Org. Biomol. Chem. 2016, 14, 1437–1441. [Google Scholar] [CrossRef]
- Barbero, M.; Dughera, S. Gold catalyzed Heck-coupling of arenediazonium o-benzenedisulfonimides. Org. Biomol. Chem. 2018, 16, 295–301. [Google Scholar] [CrossRef]
- Barbero, M.; Dughera, S. Gold catalysed Suzuki-Miyaura coupling of arenediazonium o-benzenedisulfonimides. Tetrahedron 2018, 74, 5758–5769. [Google Scholar] [CrossRef]
- Kritchenkov, I.S.; Shakirova, J.R.; Tunik, S.P. Efficient one-pot green synthesis of tetrakis(acetonitrile)copper(I) complex in aqueous media. RSC Adv. 2019, 9, 15531–15535. [Google Scholar] [CrossRef] [Green Version]
- Zollinger, H. Diazochemistry: Aromatic and Heteroaromatic Compounds; Wiley-VCH: Weinheim, Germany, 1994. [Google Scholar] [CrossRef]
- Saunders, K.H.; Allen, R.L.M. Aromatic Diazo Compounds; Edward Arnold: London, UK, 1985. [Google Scholar]
- Wang, D.; Zheng, Y.; Yang, M.; Zhang, F.; Mao, F.; Yu, J.; Xia, X. Room-temperature Cu-catalyzed N-arylation of aliphatic amines in neat water. Org. Biomol. Chem. 2017, 15, 8009–8012. [Google Scholar] [CrossRef]
- Yang, H.; Xi, C.; Miao, Z.; Chen, R. Cross-Coupling Reactions of Aryl Halides with Amines, Phenols, and Thiols Catalyzed by an N,N′-Dioxide–Copper(I) Catalytic System. Eur. J. Org. Chem. 2011, 2011, 3353–3360. [Google Scholar] [CrossRef]
- Yang, K.; Qiu, Y.; Li, Z.; Wang, Z.; Jiang, S. Ligands for Copper-Catalyzed C-N Bond Forming Reactions with 1 Mol% CuBr as Catalyst. J. Org. Chem. 2011, 76, 3151–3159. [Google Scholar] [CrossRef] [PubMed]
- F Y Kwong, S.B. Mild and Efficient Copper-Catalyzed Amination of Aryl Bromides with Primary Alkylamines. Org. Lett. 2003, 5, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-S.; Man, Q.-S.; Pan, P.; Pan, Z.-Q.; Xu, H.-J. CuCl-catalyzed formation of C–N bond with a soluble base. Tetrahedron Lett. 2009, 50, 2585–2588. [Google Scholar] [CrossRef]
- Yang, M.; Liu, F. An Ullmann Coupling of Aryl Iodides and Amines Using an Air-Stable Diazaphospholane Ligand. J. Org. Chem. 2007, 72, 8969–8971. [Google Scholar] [CrossRef]
- Costa, M.V.; Viana, G.M.; de Souza, T.M.; Malta, L.F.B.; Aguiar, L.C.S. Copper-catalyzed C–N cross-coupling reactions for the preparation of aryl diamines applying mild conditions. Tetrahedron Lett. 2013, 54, 2332–2335. [Google Scholar] [CrossRef]
- DeTar, D.F.; Turetzky, M.N. The Mechanisms of Diazonium Salt Reactions. I. The Products of the Reactions of Benzenediazonium Salts with Methanol. J. Am. Chem. Soc. 1955, 77, 1745–1750. [Google Scholar] [CrossRef]
- Shriver, J.A.; Flaherty, D.P.; Herr, C.C. Aryl Ethers from Arenediazonium Tetrafluoroborate Salts: From Neat Reactions to Solvent-mediated Effects. J. Iowa Acad. Sci. JIAS 2009, 116, 27–35. [Google Scholar]
- Huang, J.; Chen, Y.; Chan, J.; Ronk, M.L.; Larsen, R.D.; Faul, M.M. An Efficient Copper-Catalyzed Etherification of Aryl Halides. Synlett 2011, 10, 1419–1422. [Google Scholar] [CrossRef]
- Murru, S.; Mondal, P.; Yella, R.; Patel, B.K. Copper(I)-Catalyzed Cascade Synthesis of 2-Substituted 1,3-Benzothiazoles: Direct Access to Benzothiazolones. Eur. J. Org. Chem. 2009, 2009, 5406–5413. [Google Scholar] [CrossRef]
- Sakai, N.; Maeda, H.; Ogiwara, Y. Copper-Catalyzed Three-Component Coupling Reaction of Aryl Iodides, a Disilathiane, and Alkyl Benzoates Leading to a One-Pot Synthesis of Alkyl Aryl Sulfides. Synthesis 2019, 51, 2323–2330. [Google Scholar] [CrossRef]
- Kochi, J.K. Organometallic Mechanisms and Catalysis; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Barbero, M.; Degani, I.; Diulgheroff, N.; Dughera, S.; Fochi, R.; Migliaccio, M. Alkyl- and Arylthiodediazoniations of Dry Arenediazonium o-Benzenedisulfonimides. Efficient and Safe Modifications of the Stadler and Ziegler Reactions to Prepare Alkyl Aryl and Diaryl Sulfides. J. Org. Chem. 2000, 65, 5600–5608. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Yamajala, K.D.B.; Banerjee, S. Efficient synthetic route to aromatic secondary amines via Pd/RuPhos/TBAB-catalyzed cross coupling. New J. Chem. 2017, 41, 6523–6529. [Google Scholar] [CrossRef]
- Petricci, E.; Santillo, N.; Castagnolo, D.; Cini, E.; Taddei, M. Iron-Catalyzed Reductive Amination of Aldehydes in Isopropyl Alcohol/Water Media as Hydrogen Sources. Adv. Synth. Catal. 2018, 360, 2560–2565. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, F.; Deng, G.-J.; Gong, H. Amination of Aromatic Halides and Exploration of the Reactivity Sequence of Aromatic Halides. J. Org. Chem. 2019, 84, 181–190. [Google Scholar] [CrossRef]
- Meo, P.L.; D’Anna, F.; Gruttadauria, M.; Riela, S.; Noto, R. Thermodynamics of binding between α- and β-cyclodextrins and some p-nitroaniline derivatives: Reconsidering the enthalpy–entropy compensation effect. Tetrahedron 2004, 60, 9099–9111. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antenucci, A.; Dughera, S. C-N, C-O and C-S Ullmann-Type Coupling Reactions of Arenediazonium o-Benzenedisulfonimides. Reactions 2022, 3, 300-311. https://doi.org/10.3390/reactions3020022
Antenucci A, Dughera S. C-N, C-O and C-S Ullmann-Type Coupling Reactions of Arenediazonium o-Benzenedisulfonimides. Reactions. 2022; 3(2):300-311. https://doi.org/10.3390/reactions3020022
Chicago/Turabian StyleAntenucci, Achille, and Stefano Dughera. 2022. "C-N, C-O and C-S Ullmann-Type Coupling Reactions of Arenediazonium o-Benzenedisulfonimides" Reactions 3, no. 2: 300-311. https://doi.org/10.3390/reactions3020022
APA StyleAntenucci, A., & Dughera, S. (2022). C-N, C-O and C-S Ullmann-Type Coupling Reactions of Arenediazonium o-Benzenedisulfonimides. Reactions, 3(2), 300-311. https://doi.org/10.3390/reactions3020022