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Abstract: We developed a rainfall threshold model with the objective of limiting the effects of
uncertainties typically associated with them, such as a lack of robust landslide database, the selection
of the contributing rain gauge, seasonal variations in rainfall patterns, and the effect of extreme
rainfall conditions. With the aid of gauge-corrected satellite precipitation data and a landslide
database compiled from various sources, separate rainfall thresholds were developed for two waves
of the monsoon season in the Western Ghats, India. The daily vs. antecedent rainfall distributions
for different scenarios of antecedent rainfall were analyzed for landslide occurrence. The different
scenarios considered included 1, 2, 3, 5, 10-, 20-, 30- and 40-day antecedent rainfalls along with the
monsoon antecedent defined as the cumulative rainfall from the start of the monsoon to the day
prior to landslide occurrence, and the event antecedent defined as the cumulative rainfall from the
start of a rainfall event to the day prior to landslide occurrence. A statistically defined critical value
was used to define the thresholds for extreme rainfall conditions, while ordinary least squares and
quantile regression models were compared to identify the best-fit model for the non-extreme rainfall
threshold. Receiver Operating Characteristic (ROC) analysis was performed on all these models
and the best model was chosen based on the efficiency values. The daily vs. monsoon antecedent
threshold was the best model for the first monsoon wave, and the daily vs. event antecedent model
was the best model for the second monsoon wave. A separate rainfall threshold was defined for the
entire monsoon without subdivision into separate waves, and corresponding ROC statistics were
compared with the former approach to analyze the efficacy of intra-seasonal variations in rainfall
threshold development. The results suggest that cumulative rainfall makes a significant contribution
towards landslide initiation and that intra-seasonal variations should be necessarily considered in
rainfall threshold modeling.

Keywords: rainfall threshold; ROC analysis; satellite precipitation; regression modeling; landslide
early warning

1. Introduction

Landslides are one of the most potent geohazards, with frequent incidences that cause
considerable damage to life and infrastructure. Landslides can be triggered by many
factors, including rainfall, earthquakes, and snowmelt [1], with orographic regions more
susceptible to rainfall-induced landslides. Developing countries in the tropics are one of
the major regions subjected to heavy losses in rainfall-triggered landslides, with an annual
average of 500 casualties and financial loss of about 3 billion US dollars [2]. The Western
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Ghats of India, a mountainous region that is historically a hotspot for landslides, has seen
an increase in frequency and intensity over the past few years [3–5]. The past few years
have also seen exceptionally disastrous landslides in this region that claimed hundreds
of lives [6,7]. Thus, developing a rainfall threshold for landslides is a topic of extensive
research [8–16]. Rainfall thresholds are usually defined as the minimum amount of rainfall
required to trigger a landslide, represented as a curve, defined by rainfall amounts, which
separates the failure zone from the stable zone [17]. The pioneering research in this field
was conducted by Caine [18], who established a global empirical rainfall threshold model
by developing a relationship between rainfall intensity and duration.

Rainfall threshold methods are usually classified into physical and empirical, where
physical methods consider the mechanical processes, especially the shear strength response
of slopes toward rainwater infiltration in the initiation of landslides [19–21], while empirical
methods rely on the statistical analysis of landslide-triggering rainfall amounts [22]. Such
methods require rainfall data from contributing rain gauges and a well-defined database
of historical landslides [23,24], while requiring lesser fieldwork than physical methods.
Empirical methods are advantageous especially when the required output is a large-scale
estimation of the temporal probability of landslide occurrence.

Empirical rainfall threshold approaches are further classified into duration-based
approaches and antecedent rainfall-based approaches. Duration-based thresholds are
computed as the minimum amount of rainfall required in a particular duration to initiate a
landslide. The most popular duration-based approach is intensity–duration (ID), which
defines a power law curve [25–27] of the rainfall intensity over the duration. Another
duration-based approach is the Event-Duration (E-D) threshold [28–33], which is defined by
a power law curve between the cumulative rainfall in an event and the corresponding event
duration. A rainfall event is often defined using a period of separation between stretches
of continuous rainfall. While duration thresholds rely on immediate events triggering the
landslides, antecedent rainfall-based thresholds have the advantage of considering the
variation in soil water levels over a continuous period before rainfall incidence [34–42].
Furthermore, antecedent rainfall-based threshold approaches can be advantageous in areas
of sparse rainfall data and poor data records as they alleviate the need for hourly rainfall
data and records of the exact time of the occurrence of the landslide.

Rainfall threshold calculations are marred by uncertainties such as those associated
with the selection of contributing rain gauges [43,44], the availability of a robust landslide
database, and variations in rainfall patterns. In this study, we propose the use of satellite
rainfall datasets (Global Precipitation Mission Integrated MultiSatellite Retrievals for GPM
(GPM IMERG)) to counter the uncertainties related to rain gauges. The use of continuous
gridded data can considerably reduce the uncertainty in the selection of a contributing
rain gauge [45], despite the thresholds developed by such data being lower than the actual
thresholds, owing to their inherent underestimation of actual rainfall. However, this disad-
vantage can be overcome using bias-correction techniques like conditional merging [46–48],
and error models that use gauge-to-satellite rainfall ratios [49]. An often-overlooked aspect
in rainfall threshold development and a major uncertainty is the intra-seasonal variations
in rainfall and their differential contribution towards landslide initiation. A relevant so-
lution to this is to derive separate rainfall thresholds for different rainfall patterns as in
Rossi et al. [50], who used both rain gauges and satellite rainfall to derive separate thresh-
olds using three different methods: least squares, quantile regression, and non-linear least
squares. In another instance, Chikalamo et al. [51] used satellite precipitation for rainfall
threshold calculations with different thresholds calculated for different time periods within
the monsoon season to account for the variation in rainfall patterns. In this research, we
developed separate thresholds for the two waves of monsoon and also for extreme and
non-extreme rainfall conditions to account for the seasonal variations. Another important
uncertainty is the availability of a robust landslide database with accurate records of the date
and time of the occurrence of landslides. These data are often the most difficult to obtain.
Our study area, Idukki, a mountainous and landslide-marred district in the Western Ghats,
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India, also suffers from a lack of a proper landslide database. Hao et al. [52] published
an exhaustive landslide database with 2223 landslides in Idukki for a single year (2018).
However, this database lacked information about the date and time of the occurrence of
landslides. To counter this, we prepared a database from various reports and news articles
that mentioned the date of the occurrence of landslides. Furthermore, we used the an-
tecedent rainfall to develop rainfall thresholds instead of rainfall intensity–duration curves
so that the need for the exact time of the occurrence of landslides was alleviated. With
climate change being a major factor, the frequency and intensity of landslides are expected
to rise [53,54]. With rainfall being the most prominent landslide-triggering factor [55],
continued research in this field is required with focus on reducing the uncertainties and
adapting rainfall thresholds to locally specific climatic conditions and data constraints [56].
To that end, this paper focuses on addressing the uncertainties associated with rainfall
threshold development, specifically regarding rain gauge selection, rainfall parameter
selection, landslide database availability, and intra-seasonal variations in a local setting
with sparse datasets.

2. Materials and Methods
2.1. Study Area

Idukki experiences a tropical climate with a preponderance of monsoon rainfall and
plentitude of landslides and lacks appropriate rain gauges, even though this area receives
a mean annual precipitation (MAP) of about 4100 mm. Hence, we believe that this area
could be an ideal candidate to develop a rainfall threshold. The rainfall in this region is
predominantly received during the monsoon season from June to December. Figure 1a
shows the location map of Idukki. Historically, the Western Ghats are subject to landslide
activity, predominantly shallow landslides, during these months. Physiographically, the
area is divided into highlands (amsl > 75 m) and midlands (7.5–75 m amsl). The topography
consists of elevations as high as 2692 m and slopes as steep as 80◦. The regolith thickness
ranges from 0.5 to 5 m, thereby restricting most landslides to shallow translational slides
or debris flows. The primary geologic setting consists of charnockite, khondalite, and
migmatite, with clay-rich top soils.
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study period.

The region is subject to high levels of chemical weathering leading to landslides with
a combination of saprock, saprolite, and soil [57]. Although a historically landslide-affected
area, the frequency and intensity of these landslides have risen in the past few years,
especially since 2018. This increase in landslide activity is coupled with a change in the
local climate [58] that has brought about more Mesoscale Cloud Burst (MCB) incidents.
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With this climatic change, more frequent and intense landslides are expected in the future.
Coupled with high population statistics (1.11 million in an area of 4366 sq.km at an average
density of about 250 per sq.km), the highlands of Idukki are becoming more vulnerable
to slope instabilities [59]. Human influences on vulnerable slopes, like land clearance and
slope modifications for agricultural and construction purposes, accentuate such instabilities.
Historically prevailing deforestation rates also contribute to changing slope dynamics. The
changing climate and increasing slope deterioration call for developing a landslide early-
warning model that utilizes rainfall measurements and slope stability analysis to forecast
future landslides and issue alerts. Thus, in our research, we considered the landslide
activity in Idukki from 2018 and beyond to develop a rainfall threshold in changing climatic
and anthropogenic conditions.

2.2. Data

Two important datasets are required for any rainfall-triggered landslide model: a
landslide database and corresponding rainfall observations. An extensive study on the
landslides of Idukki was conducted by Hao et al. [60]. However, only location information
for these landslides was available. For rainfall threshold studies, the time or date of the
occurrence of landslides is necessary. Various sources, including reports from organizations
like the Geological Survey of India (GSI) and National Remote Sensing Center (NRSC),
and newspaper articles were utilized and a landslide database of 250 landslide events was
identified for the study period of 2018 to 2021. Though the exact time of the occurrence of
these landslides could not be identified, the day of occurrence was recorded for all of them.

The rainfall data were procured from two sources: (i) rain gauge observations from
the India Meteorological Department (IMD); and (ii) satellite rainfall measurements in the
form of GPM IMERG-L. GPM is a successor mission to the TRMM and has been operational
since 2010. It is a constellation of active radar, passive microwave, and infrared imaging
on a global scale [61]. This study utilized the level 4 IMERG-L precipitation product.
However, satellite rainfall data are found to underestimate rainfall, and thus, have a lower
accuracy than rain gauges albeit having a better spatial variability. To avoid this inherent
disadvantage, the IMERG-L was merged with the rain gauge data using a process called
conditional merging. The following steps explain the conditional merging process:

(i) The rain gauge observations are interpolated to create a continuous gridded rainfall
product that provides the best linear unbiased rainfall estimate (Irg). Here, the resolu-
tion of the interpolated product is kept the same as that of the satellite product (GPM
IMERG-L, 0.1 degrees);

(ii) The satellite pixel values corresponding to the rain gauge locations are interpolated to
create a continuous gridded rainfall product (Srg);

(iii) The continuous rainfall product thus obtained (Srg) is subtracted from the original
satellite product (S). This difference (S − Srg) gives a gridded error product;

(iv) The error product obtained in step (iii) is added to the rainfall product obtained in
step (i) (Irg). The result is a rainfall-gridded product that follows the mean field of the
rain gauge interpolation while preserving the rainfall pattern of the satellite product.

The resulting conditionally merged product can be represented as:

CM = Irg + S − Srg (1)

where

CM is the conditionally merged rainfall at each grid;
Irg is the interpolation product of the rain gauge observations;
S is the satellite (gridded) product;
Srg is the interpolation product of the satellite estimations in the location of rain gauges.

This conditionally merged rainfall product has better coverage than the sparse rain
gauge network over the study area and a comparable accuracy. Moreover, a continuous
gridded product reduces the uncertainties associated with the choice of the contributing
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rain gauge. This calibration procedure also eliminates the effect of rain gauges falling in
different elevations. The error field in the conditional merging process is representative of
the spatial variability of rainfall, which is derived entirely from the satellite precipitation.
Thus, by adding the error field to the rain gauge interpolated product, the trend of the
spatial variability of rainfall is held true irrespective of any elevation differences.

Any landslide falling within a particular conditionally merged GPM IMERG-L grid
is attributed to a rainfall measurement corresponding to the pixel value of that grid. This
means that all landslide events from the same date falling within the same grid have
identical rainfall values. All such landslide events were considered as a single event for
threshold calculation purposes. Thus, from a database of 250 landslides, 41 such unique
events were available for the study area from 2018 to 2021 and these events were used to
model the rainfall threshold. These unique landslide points are shown in Figure 1b.

2.3. Methods
2.3.1. Rainfall Threshold Development

The landslide activity in the study period (2018–2021) was found to be spread over the
months of June to November. The rainfall distribution corresponding to the initiation of
landslides was analyzed to check for any intra-monsoon change in rainfall pattern using
box plots and a Mann–Whitney U-Test. A Mann–Whitney U-Test is used to test two or
more non-normal datasets of significant difference [62]. It was found that there was a
significant difference in the rainfall distribution between the periods from June to August
and September to November. To include this significant difference in rainfall distribution,
the entire monsoon was divided into 1st (June–August) and 2nd (September–November)
waves, and separate rainfall thresholds were computed for each wave.

The cumulative antecedent rainfall was computed for each landslide event and scatter
plots of daily vs. antecedent rainfall were developed. Apart from the typical antecedent
variables considered by the previous researchers [63,64] in the study area, like 1-, 2-, 3-, 5-,
10-, 20-, 30-, and 40-day antecedent rainfall, four other antecedent rainfall variables were
also calculated, which are defined below:

(i) Monsoon antecedent (MA): for every landslide event, the cumulative rainfall from
the beginning of the monsoon season to the day prior to the date of the landslide
was calculated;

(ii) Event antecedent (EA): for every landslide event, the cumulative rainfall from the first
day of the event to the day prior to the date of the landslide was calculated;

(iii) Monsoon antecedent average (MAA): the average monsoon antecedent rainfall was
computed for every landslide event by dividing the monsoon antecedent by the
number of days from the beginning of the monsoon to the day prior to the date of
the landslide;

(iv) Event antecedent average (EAA): the average event antecedent rainfall was computed
for every landslide event by dividing the event antecedent by the number of days
from the beginning of the event to the day prior to the date of the landslide.

The above four antecedents were calculated to reflect the continuing effect of monsoon
rainfall on the initiation of landslides. For the event-based thresholds, the beginning of each
individual event was defined as the first day of rainfall after a period of separation in con-
tinuous precipitation. For this study, a period of separation was considered to occur when
there was at least one day with less than 1 mm of rainfall in between continuous rainfall.

Once the antecedent rainfalls were computed, scatter plots for daily vs. antecedent
rainfalls were generated. Then, two stages of rainfall threshold were developed:

(i) A critical value for extreme daily and antecedent rainfall was defined with an assump-
tion that exceeding this critical value always causes a landslide;

(ii) A threshold for the non-extreme daily and antecedent rainfall was defined using a
best-fit line that represents the trend of these data.



GeoHazards 2024, 5 639

The 3rd quartile of the daily and antecedent rainfall distribution corresponding to
landslide initiation was chosen as the critical value to separate extreme events from non-
extreme events. This value was also in accordance with previous research in the study area
that defined extreme precipitation under local climatic conditions (KSCSTE, 2019). Thus,
whenever the daily or antecedent rainfall crosses this critical value, the rainfall is considered
an extreme event, and a landslide is assumed to occur. Such a threshold definition will
segregate both possible cases of extreme rainfall:

(i) When continuous rainfall occurs over several days;
(ii) A sudden rainfall of a large quantity occurs over a day.

The condition for landslide occurrence due to extreme precipitation is thus given as:

If (D > Dt OR A > At): landslide, else: no landslide (2)

where

D is the rainfall on any day;
Dt is the critical value for extreme daily rainfall;
A is the nth antecedent rainfall, where n corresponds to the number of days of antecedent
rainfall;
At is the critical value for extreme antecedent rainfall.

Such a definition of rainfall threshold divides the daily vs. antecedent rainfall scatter
plot into four quadrants. Quadrant 1 represents the condition where the antecedent critical
value for extreme rainfall is exceeded, quadrant 2 where both the daily and antecedent
critical values for extreme rainfall are exceeded, quadrant 3 where the critical value for daily
extreme rainfall is exceeded, and quadrant 4 where neither the daily nor the antecedent
critical value for extreme rainfall is exceeded. Quadrants 1, 2, and 3 all correspond to
extreme rainfall events where a landslide is always considered to occur. Quadrant 4, which
is below both the daily and antecedent critical values, was separated from the remaining
data and regression modeling was performed to find a best-fit line to define the rainfall
threshold that represents the trend of the distribution. Figure 2 shows an example of the
division of a scatter plot of daily vs. 10-day antecedent rainfall.
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2.3.2. Regression Modeling

Regression modeling is a commonly applied technique to find a best-fit estimate
between two or more related parameters. Its simplicity and effectiveness have led to
wide-spread application in rainfall threshold modeling problems [65–67]. In this study, in
the 4th quadrant, regression modeling was used to predict the daily rainfall required to
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initiate a landslide, given the rainfall over n-antecedent days. The linear model has the
following form:

y = mx + c (3)

where

y is the daily rainfall;
x is the expected antecedent rainfall;
m is the slope;
c is the y-axis intercept.

Two kinds of regression modeling were attempted for the data separated out in the
4th quadrant:

(i) Ordinary least square regression (OLS);
(ii) Quantile regression (QR).

OLS minimizes the sum of the squared residuals to estimate the conditional mean [68],
whereas QR asymmetrically minimizes the weighted absolute residuals, thereby estimating
the conditional median and other quantiles [69]. We computed the Least Absolute Deviation
(LAD) or 50th quantile (median), 5th quantile, and 95th quantile for the data in the 4th
quadrant. The 5th and 95th quantiles represent the 5% and 95% non-exceedance thresholds,
respectively. The best model between OLS and QR was chosen using ROC analysis and
was used to derive the threshold for daily rainfall required to initiate landslides under
non-extreme rainfall conditions.

At the end of the regression model, three sets of threshold equations were developed
for each wave of monsoon rainfall:

(i) The critical daily rainfall above which a landslide always occurs, represented in the
form y = x;

(ii) The critical antecedent rainfall above which a landslide always occurs, represented in
the form x = y;

(iii) The model for predicting landslide initiation in cases of non-extreme daily and an-
tecedent rainfall, represented in the form y = mx +c.

Based on these thresholds, three scenarios for issuing landslide warnings are possible:

(i) The forecasted daily rainfall on a particular day is above the daily critical rainfall;
(ii) The forecasted antecedent rainfall for a particular day is above the antecedent criti-

cal rainfall;
(iii) Both daily and antecedent rainfall forecasts for a particular day are below the corre-

sponding critical rainfalls, but the forecasted daily rainfall is above the daily rainfall
value predicted by the regression model developed from the 4th quadrant.

2.3.3. Validation

Validation of the computed models was carried out with the help of ROC analysis. Six
days of rainfall were considered as validation samples for each landslide. These included
the rainfall on the day of the landslide and from 5 days prior to the landslide. A confusion
matrix was developed to represent four possible outcomes of prediction by comparing
the predicted daily rainfall with the actual rainfall. If an actual landslide occurred on the
day of a landslide prediction, then it was recorded as a true positive (TP). If no landslide
occurred on a day of no landslide prediction, it was recorded as a true negative (TN). If for
a particular day, a landslide was predicted to occur, but no landslide occurred, then it was
a false positive (FP). If for a particular day, no landslide occurrence was predicted, but a
landslide occurred, then it was a false negative (FN). Based on the ROC analysis, the model
sensitivity, specificity, efficiency, and false positive rates were computed.

Sensitivity is defined as (TP)/(TP + FN);
Specificity is defined as (TN)/(TN + FP);
Efficiency is defined as (TP + TN)/(TP + FP + FN + TN);
False positive rate is defined as (FP)/(FP + TN).
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Separate ROC analyses were performed for extreme and non-extreme events and later
the statistics were combined to assess the total performance of each type of antecedent
rainfall. A scenario where the entire monsoon was considered without subdivision into
two waves was also considered for threshold development. Here, the same approach
of computing different thresholds for extreme and non-extreme rainfalls was followed.
The ROC analysis for this approach was compared with that of the thresholds for the
separate waves to assess the significance of intra-seasonal variations of rainfall patterns in
threshold definition.

3. Results
3.1. Understanding the Variations in Intra-Seasonal Rainfall

The Mann–Whitney U-Test was performed to assess the statistical difference between
the two monsoon waves. For the Mann–Whitney U-Test, the null and alternate hypotheses
were defined as follows: H0—the median difference for rainfall between the two waves of
monsoon is zero; H1—the median difference for rainfall between the two waves of monsoon
is not zero. If the p-value for the test is less than 0.05, the null hypothesis will be rejected.
Here, a p-value of 2.294 × 10−7 was obtained, thereby rejecting the null hypothesis. Thus, a
significant difference in landslide-triggering rainfall was observed between the two waves
of monsoon. While the median rainfall for the 1st wave of rainfall was 123.59 mm, the 2nd
wave had a value of just 4.08 mm. Figure 3 shows the box plot of the rainfall distribution in
the two monsoon waves.
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3.2. Rainfall Threshold Calculation for the First Wave of Monsoon

Out of the 41 distinct landslide events considered, 25 belonged to the 1st wave of
monsoon and 16 to the 2nd wave. The critical values for daily and antecedent extreme
rainfall separated these landslides into four quadrants, out of which the 1st, 2nd, and 3rd
quadrants represent the landslides occurring due to extreme events and the 4th quadrant
represents the landslides occurring due to non-extreme events. Table 1 shows the confusion
matrix of the various threshold models for quadrants 1, 2, and 3 of the 1st waves of
monsoon. Moreover, 10–12 out of these 25 landslide events had daily and antecedent
rainfall values above the corresponding critical rainfall value. This means that about
40–48% of the total landslides that occurred in the 1st wave of monsoon were associated
with extreme precipitation. Also, such landslides were predicted with sensitivity values of 1
in all models. Out of the 12 threshold models considered, the daily vs. monsoon antecedent
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performed the best, with an efficiency of 0.88 and a false positive rate of just 0.15. Even
though none of the models were perfect as all of them reported false positives in varying
frequencies, MA had an acceptable specificity of 0.84, which can be considered the best
model for the 1st monsoon wave.

Table 1. Confusion matrix for quadrants 1, 2, and 3 for the first monsoon wave.

Threshold TP FP FN TN Sensitivity Specificity Efficiency FP Rate

1-day 11 17 0 38 1.00 0.69 0.74 0.31

2-day 12 19 0 41 1.00 0.68 0.74 0.32

3-day 12 27 0 33 1.00 0.55 0.63 0.45

5-day 12 39 0 21 1.00 0.35 0.46 0.65

10-day 11 9 0 46 1.00 0.84 0.86 0.16

20-day 12 11 0 49 1.00 0.82 0.85 0.18

30-day 10 11 0 39 1.00 0.78 0.82 0.22

40-day 10 8 0 42 1.00 0.84 0.87 0.16

MA 11 8 0 47 1.00 0.85 0.88 0.15

EA 12 14 0 46 1.00 0.77 0.81 0.23

MAA 12 11 0 49 1.00 0.82 0.85 0.18

EAA 11 16 0 39 1.00 0.71 0.76 0.29

Since MA was the best-performing model, the 4th quadrant of the daily vs. MA plot
was subjected to regression modeling. Figure 4 shows the model fitting in the 4th quadrant.
Both OLS and LAD had a similar efficiency. While OLS had a higher specificity rate, it came
at the price of capturing very few landslide points. The 50th quantile (median) captured
more landslides than OLS without adding many more false positives. The lower quantile
captured all the landslides, but since rainfall values of less than 10 mm were associated with
landslide initiation, 100% landslide detection led to overfitting with unacceptable numbers
of false positives. Thus, in the case of 1st wave of monsoon, the quantile regression model
provided a better prediction of landslides. However, the accuracy of prediction in the
4th quadrant was less than that in the other three quadrants and can be attributed to the
landslides triggered by lower rainfall values. Table 2 shows the confusion matrix of the 4th
quadrant of daily vs. MA rainfall for various regression fits.
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Table 2. Confusion matrix of thresholds for the regression models in the fourth quadrant of the 1st
wave for the daily vs. MA rainfall. The table also shows the combined statistics of all four quadrants
of MA in the final row.

Threshold TP FP FN TN Sensitivity Specificity Efficiency FP Rate

OLS 5 10 9 60 0.36 0.86 0.77 0.14

LAD 8 13 6 57 0.57 0.81 0.77 0.19

LQ 12 39 2 31 0.86 0.44 0.51 0.56

UQ 2 2 12 68 0.14 0.97 0.83 0.03

MA Total (Quadrants 1,
2, 3 and 4) 19 21 6 104 0.76 0.83 0.82 0.17

Combining the extreme and non-extreme events, the following criteria for landslide
prediction were developed for the 1st monsoon wave:

(i) The critical values for extreme daily and extreme monsoon antecedent rainfall are
213 mm and 2921 mm, respectively, and whenever the daily or antecedent rainfall
forecast is above these values, a landslide is predicted to occur;

(ii) For non-extreme rainfall, a landslide is predicted if the daily rainfall forecast is above
the value given by the model:

y = 0.0212x + 51.0556 (4)

where

y is the predicted daily rainfall;
x is the corresponding monsoon antecedent rainfall.

Combining the results of all four quadrants gives a model that captures 76% of the
total landslide occurrences, with a low false positive rate of 0.17 and a high efficiency of
0.82. The confusion matrix for this combined result is shown in the last row of Table 2.

3.3. Rainfall Threshold Calculation for the Second Wave of Monsoon

For the 2nd wave of monsoon, the landslides were initiated by far smaller quantities
of rainfall. In total, 16 of the 41 distinct landslide events occurred in the 2nd wave. The
same method adopted for the 1st wave was followed for modeling landslides in this wave
as well. Using the critical values for daily and antecedent rainfall, the scatter plots were
divided into four quadrants. Table 3 shows the results of the corresponding ROC analysis.
Here, 7–10 out of 16 landslide events fell above the critical rainfall value for extreme rainfall.
However, the false positive rate was higher for all thresholds when compared with those
of the 1st wave. This indicates the highly erratic nature of the 2nd monsoon waves and
indicates the compounding effect of the 1st wave of monsoon on the soil moisture content.
The event antecedent (EA) threshold had the best efficiency rate out of all the models
considered for the 2nd monsoon wave.

We performed OLS and QR on the 4th quadrant of the daily vs. EA threshold since it
had the best efficiency among all the threshold types. Figure 5 shows the best-fit regression
lines in the 4th quadrant. Only three models are shown in Figure 5, as the 5th quantile
is the line almost parallel to the x-axis with a slope and intercept value of almost 0. This
is owing to the record of landslides on days with little to no recorded rainfall (less than
1 mm). However, all such landslides were preceded with heavy rainfall until a day before,
and this wetting of the soil is the reason for their eventual failure. Also, the 50th quantile
shows no further improvement in capturing landslides than OLS, while its placement far
below the latter contributed to the prediction of more false positives. Table 4 shows the
confusion matrix of the 4th quadrant.
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Table 3. Confusion matrix for quadrants 1, 2, and 3 for the second monsoon wave.

Threshold TP FP FN TN Sensitivity Specificity Efficiency FP Rate

1-day 8 23 0 17 1 0.43 0.52 0.58

2-day 8 29 0 11 1 0.28 0.40 0.73

3-day 8 33 0 7 1 0.18 0.31 0.83

5-day 8 29 0 11 1 0.28 0.40 0.73

10-day 8 26 0 14 1 0.35 0.46 0.65

20-day 8 25 0 15 1 0.38 0.48 0.63

30-day 8 31 0 9 1 0.23 0.35 0.78

40-day 8 30 0 10 1 0.25 0.38 0.75

MA 9 33 0 12 1 0.27 0.39 0.73

EA 7 18 0 17 1 0.49 0.57 0.51

MAA 10 43 0 7 1 0.14 0.28 0.86

EAA 9 33 0 12 1 0.27 0.39 0.73
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Figure 5. Model fitting in the 4th quadrant for the second wave of monsoon for the event antecedent
rainfall and daily rainfall.

Table 4. Confusion matrix of thresholds for the regression models in the fourth quadrant of the 2nd
wave for the daily vs. EA rainfall. The table also shows the combined statistics of all four quadrants
of EA in the final row.

Threshold TP FP FN TN Sensitivity Specificity Efficiency FP Rate

OLS 4 28 5 17 0.44 0.38 0.39 0.62

LAD 4 36 5 9 0.44 0.20 0.24 0.80

EA Total
(Quadrants 1, 2, 3 and 4) 11 46 5 34 0.69 0.43 0.47 0.58

The best-fit lines in the 4th quadrant of the 2nd wave have a negative slope, meaning
that, with the increase in antecedent rainfall, the amount of daily rainfall required to trigger
landslides decreased. However, this is not the case in the 1st wave (see Figure 4) where all
the models follow a positive slope. This further points to the cumulative effect of the 1st
wave on the 2nd wave. It can be reasonably argued that the soil was left adequately wet
during the 1st monsoon wave thereby increasing the chance of the occurrence of landslides
in the 2nd wave. The lesser rainfall values required to initiate landslides in the 2nd wave



GeoHazards 2024, 5 645

may also be the result of this cumulative effect. This points to the need for considering
seasonal variations in rainfall patterns while developing rainfall thresholds.

However, the larger number of false positives made landslide prediction in the 2nd
wave of monsoon difficult. The last row of Table 4 shows the confusion matrix of all four
quadrants combined for the daily vs. event antecedent threshold. The efficiency of the
model was under 0.5, thereby contributing to half of all predictions being wrong, with a
higher chance of false positives. From the study period, the critical values for daily and
the event antecedent rainfalls for the 2nd wave were identified as 17 mm and 365 mm,
respectively. OLS in the 4th quadrant is given by Equation (5):

y = −0.00237x + 1.7648 (5)

where

y is the daily rainfall threshold required to trigger a landslide;
x is the corresponding monsoon antecedent rainfall.

In the case of the 2nd wave of monsoon, the threshold models returned too many false
positives. However, in both waves, the number of false negatives was less and, thus, points
to the overall conservative nature of the models developed. In summary, the approach
chosen in this study proved efficient in the case of the 1st monsoon wave, while in the case
of the 2nd monsoon wave, factors other than the immediate rainfall affected the initiation
of landslides. An analysis of complementary parameters like runoff and soil moisture
will be required to improve the landslide prediction in the 2nd wave of monsoon. Still,
the landslides affected by extreme rainfall could be predicted with an efficiency of ~0.6.
Moreover, rainfall thresholds should be considered as representations for issuing warnings
for chances of the occurrence of landslides rather than absolute measures above which
there is a 100% chance of landslide initiation. Also, considering previous studies [61], the
predictability rate of 57% for the 2nd wave is an acceptable ratio in rainfall threshold-based
landslide modeling.

3.4. Rainfall Threshold without Considering Intra-Seasonal Variation

To further explore the significance of the approach followed in this study, we devel-
oped a rainfall threshold for the entire rainfall season without considering the intra-seasonal
variability. Table 5 shows the ROC analysis performed on the daily vs. antecedent thresh-
olds for the entire monsoon season irrespective of subdivision into two waves. Here, both
the daily vs. 10-day and daily vs. 40-day antecedent thresholds performed the best with a
very high efficiency of 0.89 and a specificity of 0.87. The ROC analysis of the regression
modeling on the 4th quadrant of this distribution is shown in Table 6. In both cases, the OLS
model provided better statistics. Out of the two thresholds, the daily vs. 40-day antecedent
showed a slightly better performance and was, hence, chosen as the overall best threshold
and the combined statistics for all the four quadrants were computed. This model was then
compared with the best models for the separate 1st and 2nd wave threshold approach in
Figure 6.

Table 5. Confusion matrix of quadrants 1, 2, and 4 for the threshold models for the entire monsoon
without subdivision into 1st and 2nd waves.

Threshold Type TP FP FN TN Sensitivity Specificity Efficiency FP Rate

1-day 17 28 0 57 1.00 0.67 0.73 0.33

2-day 18 26 0 64 1.00 0.71 0.76 0.29

3-day 18 34 0 56 1.00 0.62 0.69 0.38

5-day 16 55 0 25 1.00 0.31 0.43 0.69
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Table 5. Cont.

Threshold Type TP FP FN TN Sensitivity Specificity Efficiency FP Rate

10-day 15 10 0 65 1.00 0.87 0.89 0.13

20-day 15 17 0 58 1.00 0.77 0.81 0.23

30-day 16 36 0 44 1.00 0.55 0.63 0.45

40-day 15 10 0 65 1.00 0.87 0.89 0.13

MA 19 28 0 67 1.00 0.71 0.75 0.29

EA 15 15 0 60 1.00 0.80 0.83 0.20

MAA 15 23 0 52 1.00 0.69 0.74 0.31

EAA 16 47 0 33 1.00 0.41 0.51 0.59

Table 6. Confusion matrix of the regression modeling in the 4th quadrant of the best threshold models
for the entire monsoon without subdivision into 1st and 2nd waves.

Threshold Type TP FP FN TN Sensitivity Specificity Efficiency FP Rate

10-dayOLS 8 43 18 87 0.31 0.67 0.61 0.33

10-dayLAD 13 66 13 64 0.50 0.49 0.49 0.51

40-dayOLS 9 38 17 92 0.35 0.71 0.65 0.29

40-dayLAD 12 55 14 75 0.46 0.58 0.56 0.42
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10‐dayLAD  13  66  13  64  0.50  0.49  0.49  0.51 

40‐dayOLS  9  38  17  92  0.35  0.71  0.65  0.29 

40‐dayLAD  12  55  14  75  0.46  0.58  0.56  0.42 
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Figure 6. Comparison of ROC statistics for different scenarios of monsoon rainfall.

Out of the three rainfall thresholds compared, the one for the 1st wave of monsoon
was the best-performing, with an efficiency of 0.82 and an FP rate of 0.17. The worst
performance was with the threshold model for the 2nd wave of monsoon, with an efficiency
of 0.47 and a high FP rate of 0.58. While combining the two models, the overall efficiency
for landslide prediction was 0.68 with an FP rate of 0.33. It is evident that the higher
number of false positives was a contribution of the 2nd wave and was instrumental in
reducing the overall efficiency of the threshold model developed for the entire monsoon
season without considering the intra-seasonal variations. The threshold developed for
the entire monsoon had an efficiency of 0.74 with an FP rate of 0.23, which is applicable
for both waves combined. Thus, analyzing seasonal variations and developing separate
rainfall thresholds accordingly should be the preferred approach in rainfall threshold
modeling. Moreover, dividing the rainfall threshold based on intra-seasonal variations
and the presence of extreme rainfall events should be an essential strategy in developing
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a landslide early-warning system for the area. This study also showcases the importance
of validation, especially considering the number of false positives in any proposed model,
before adopting it for early-warning purposes. Thus, based on the results of this research,
the authors propose developing four different thresholds for early-warning purposes in
Idukki as follows:

(i) A rainfall threshold for extreme precipitation for the 1st wave of monsoon;
(ii) A rainfall threshold for non-extreme precipitation for the 1st wave of monsoon;
(iii) A rainfall threshold for extreme precipitation for the 2nd wave of monsoon;
(iv) A rainfall threshold for non-extreme precipitation for the 2nd wave of monsoon.

3.5. Limitations of the Study

Though this study tries to overcome specific uncertainties with rainfall threshold
models, there are certain limitations, addressing which would further improve the model.
Firstly, though landslide activity in Idukki is frequent, due to the lack of temporal infor-
mation in the database, the authors were forced to construct a new database that included
landslide temporal information, which contained only 250 landslides. The actual modeling
was further limited to 41 unique events since multiple landslides fell on the same rainfall
grid on the same day.

Furthermore, the authors worked with calibrated satellite precipitation owing to the
scarcity of rain gauges in the area. Though the conditional merging methodology used for
calibrating the satellite precipitation improved their accuracy, the calibration technique
itself is dependent on the number of rain gauges in the area. An increased number of
rain gauges could improve the performance of conditional merging and of the threshold
development model overall.

Though considering the antecedent rainfall reduced uncertainties surrounding the
lack of the time of the occurrence of landslides, this would be welcome information, as
the cumulative rainfall from the start of the monsoon, or from the start of an event, to the
moment immediately preceding a landslide could certainly improve the threshold model.
However, these limitations are for future studies to address and would need infrastructural
improvements like the expansion of rain gauge networks.

4. Discussion

This study aimed to overcome specific uncertainties related to rainfall threshold mod-
els, especially in data-sparse regions. The first uncertainty is the selection of contributing
rain gauges. Studies like that of Abraham et al. [44] used Thiessen polygons and elevation
considerations to divide the area into zones of influence under each rain gauge. While this
is a valuable method to ascertain rainfall quantities corresponding to landslides, the granu-
larity of these data is be coarser than ideal, especially when dealing with smaller landslide
databases. The total area of Idukki is approximately 4600 sq.km, which would mean the
average area under each of the rain gauges is roughly 900 sq.km. On the other hand, one
pixel of a GPM IMERG is roughly 100 sq.km, thereby providing roughly 46 pixels or 46
different rainfall values for the study area in place of the five rain gauge observations. This
higher resolution of rainfall data provides a much better understanding of the geographic
variability of rainfall within the study area.

The second uncertainty was the choice of threshold parameter. While both rainfall
intensity–duration and antecedent rainfall are commonly considered rainfall threshold
parameters, in this study, we chose the antecedent rainfall as the threshold-defining pa-
rameter owing to the unavailability of hourly rainfall from the rain gauge stations and the
difficulty in ascertaining the exact time of the occurrence of the landslides. However, the
results of this study show that, in Idukki, the compounding effects of cumulative rainfall
have a major role to play in triggering landslides, in which case, the antecedent rainfall is a
much better option than intensity–duration thresholds.

The third uncertainty is the intra-seasonal variations in rainfall patterns. To the best
of our knowledge, no studies in a similar geographic extent [44,64] have considered the



GeoHazards 2024, 5 648

intra-seasonal variations in rainfall patterns. As shown in Figure 3, there was a large
difference between the rainfall values associated with landslides in the first and second
monsoon waves. This is a matter that was overlooked by all of the above studies and
further consolidates the fact that rainfall threshold definitions are complex problems that
require more granularity, not only in the spatial domain, but also in the temporal domain.
The remarkable variation in the rainfall patterns between the first and second monsoon
waves warrant the development of separate thresholds for different parts of the year.

5. Conclusions

The rainfall–landslide distribution for Idukki was analyzed with a landslide database
comprising 250 landslides for the period 2018–2021 from various sources of data. Satellite
rainfall data in the form of GPM IMERG-L were calibrated using rain gauge observations
using a process called conditional merging and this improved rainfall product was used as
rainfall data. Distinct intra-seasonal patterns were observed in landslide-inducing rainfall,
and thus, separate thresholds were developed for each of these separate monsoon waves.
The monsoon antecedent was identified as the best threshold parameter for the first wave
of monsoon, while the event antecedent was identified as the best threshold parameter for
the second wave of monsoon. Moreover, to account for the erratic nature of monsoons in
the study area, separate thresholds were developed for extreme and non-extreme rainfall.
Regression models were used to develop thresholds for non-extreme rainfall, while critical
values developed from the statistical distribution of rainfall were used to separate extreme
rainfalls from non-extreme ones.

Overall, this study aimed to address the following uncertainties in rainfall threshold
modeling: the lack of a robust landslide database with temporal information, the choice of
contributing rain gauges, and the temporal variations in rainfall. They were addressed by
developing a landslide database with accurate information on the date of the occurrence
of landslides, using antecedent rainfall instead of duration-based threshold parameters,
by considering calibrated satellite precipitation instead of rain gauges, and by developing
separate thresholds for distinct intra-seasonal variations.

Three different scenarios of landslide warning are proposed from the developed
rainfall thresholds: (a) when the daily rainfall is above extreme levels; (b) when the
antecedent rainfall is above the extreme levels; and (c) when the daily rainfall is above the
threshold for non-extreme rainfall. Such a proposition warrants the continuous monitoring
of rainfall as cumulative rainfall was found to have a major contribution towards landslide
initiation. This points towards the development of a landslide early-warning system
that continuously monitors the rainfall levels in the study area using satellite rainfall
observations. The future directions of this study points towards this end.
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