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Abstract: Deciding the locations of shelters and how to assign evacuees to these locations is crucial
for effective disaster management. However, the inherent uncertainty in evacuation demand makes it
challenging to make optimal decisions. Traditional stochastic or robust optimization models tend to
be either too aggressive or overly conservative, failing to strike a balance between risk reduction and
cost. In response to these challenges, this research proposes a multi-objective distributionally robust
optimization (MODRO) model tailored for shelter location and evacuation allocation. First, an ambi-
guity set (moment-based or distance-based) is constructed to capture the uncertainty in evacuation
demand, reflecting the possible range of outcomes based on demand data from a disaster simulation
model. Then, the distributionally robust optimization model considers the “worst-case” distribution
within this ambiguity set to minimize construction cost, travel distance, and unmet demand/unused
capacity, balancing the trade-off between overly conservative and overly optimistic approaches.
The model aims to ensure that shelters are optimally located and evacuees are efficiently allocated,
even under the most challenging scenarios. Furthermore, Pareto optimal solutions are obtained
using the augmented ε-constraint method. Finally, a case study of Ogu, a wooden density built-up
area in Tokyo, Japan, compares the DRO model with stochastic and robust optimization models,
demonstrating that the cost obtained by the DRO model is higher than a stochastic model while lower
than the worst-case robust model, indicating a more balanced approach to managing uncertainty.
This research provides a practical and effective framework for improving disaster preparedness and
response, contributing to the resilience and safety of urban populations in earthquake-prone areas.

Keywords: shelter; earthquake; distributionally robust optimization; moment-based ambiguity set;
Wasserstein distance

1. Introduction

The number of reported disasters has increased over the past two decades [1]. The
increasing frequency and intensity of natural disasters have increasingly emphasized the
urgent need for reasonable disaster management. This surge has also highlighted the
necessity of comprehensive strategies that span mitigation, preparedness, response, and
recovery. Each of these phases is critical in reducing disaster risks and managing their
impacts effectively. Emergency humanitarian logistics, which plays an essential role in
mobilizing and delivering critical resources to affected populations in limited time, is a
big challenge for effective disaster management. One of the key logistical components in
disaster management is the optimal location planning of humanitarian facilities such as
shelters, warehouses, and healthcare centers, which collectively form the backbone of relief
operations. Shelter location planning, in particular, is vital across all disaster management
phases. In the mitigation phase, strategically located shelters can reduce potential loss
of life and property. During the preparedness phase, having well-distributed shelters
ensures communities are ready to respond to anticipated risks. In the response phase,
shelters’ proximity to impacted areas facilitates rapid and efficient relief efforts, as they
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are essential for providing immediate protection to evacuees. Lastly, during the recovery
phase, shelters offer temporary housing and support services that enable communities to
begin rebuilding and returning to normalcy. This critical role of shelter location planning
in disaster management has led to a significant body of research focusing on optimization
models for shelter locations.

The shelters are designed for earthquakes, floods, hurricanes, and other disasters.
Earthquakes are a major hazard that frequently happen in Japan. In history, big earth-
quakes have resulted in massive casualties. It is forecasted that a major earthquake will
strike in Tokyo in the near future [2]. Except Japan, other areas also face the threat of an
earthquake. In 2023, the Kahramanmaraş earthquake that hit Turkey and Syria killed more
than 53,000 people and forced 2 million people to become evacuees. To reduce the possible
losing of life and property, it is necessary to make sure that all people can arrive at shelters
as soon as possible. In Tokyo Metropolitan, the government usually appoints elementary
schools, middle schools, and other public buildings as official shelters. According to the
disaster mitigation plan, these shelters are able to accept most people in need under usual
emergency conditions. However, if the previously mentioned major earthquake happens,
existing shelters cannot accept all evacuees as before due to the increased scale of the disas-
ter and the resulting surge in evacuation demand. The task is to select the optimal locations
from many potential locations and decide the adequate capacity for each selected shelter.
The main challenge lies in uncertain demand, which means that the number of residents
who are in need of shelters is unknown before making decisions. The most common way
is by applying the stochastic programming that assumes that the probability distribution
of uncertain demand is known. Another challenge is to handle the relationship between
efficiency and cost. In order to deal with it, multi-objective optimization models that set
distance or construction cost as the objectives were proposed in past research. However,
it is hard to obtain the true probability distribution of uncertain demands, and unlike the
emergency logistics optimization problem [3,4], in which transportation costs for delivering
relief supplies and construction costs can be directly combined into a single monetary
objective, the shelter location allocation problem involves the transportation of people. In
this context, distances cannot be easily quantified in monetary terms and thus cannot be
directly aggregated with the construction or operational costs from the first stage.

Therefore, to deal with these difficulties, in this study, instead of a single objective
or single stage model, we propose a multi-objective distributionally robust optimization
(MODRO) model aiming to aid decision-making by minimizing the mean value under the
worst probability distribution from a set of possible distributions. The MODRO model con-
siders three objectives: minimizing the total construction and operational costs, reducing
the overall evacuation distance, and minimizing the number of unutilized shelter capacities,
as well as the number of evacuees left without shelter. By adopting a multi-objective for-
mulation, a pareto solution set can be obtained, and we anticipate that the distributionally
robust optimization approach will enable authorities to make more informed and balanced
decisions regarding the optimal location of shelters.

2. Literature Review

This part will review the literature on (i) the shelter location allocation problem and
(ii) distributionally robust optimization.

2.1. Shelter Location Allocation Model

The shelter location allocation problem has been extensively studied in disaster man-
agement literature, with earthquakes [5–8], hurricanes [9–11], and floods [12–14] being the
most addressed disaster types. Authors from different areas are concerned about different
disasters. For example, researchers in North America care more about hurricanes [9,11,15]
or other meteorological disasters like tornadoes [16,17]. Studies in earthquake-prone re-
gions, like Italy and Turkey, focus more on earthquakes [8,18]. Disaster management
is typically divided into two-phases: pre-disaster (preparedness) and post-disaster (re-



GeoHazards 2024, 5 1310

sponse). In the pre-disaster stage, the decision variables are usually location, capacity,
or pre-positioned relief supplies, with the objective of minimizing the fixed or variable
construction costs of new facilities and the costs of pre-positioned items. In the post-disaster
stage, the decision variables include evacuation flow, unmet demand, relief flow, shortage,
and unused relief supplies. The goal of this phase is to minimize the transportation cost,
penalty cost for unmet demand, and shortage and surplus supplies. In the second stage,
there are uncertainty parameters, making solving the problem a challenge. Among the
different types of uncertainties (supply uncertainty, demand uncertainty, and network
connectivity uncertainty), demand uncertainty is frequently addressed, which a large body
of the literature focused on [11,19,20]. Stochastic programming (SP) is the most common
approach to handling uncertainties in such problems. When the probability distribution of
random parameter is known or assumed to follow a specific distribution, SP can be applied
to minimize the expected value of the second stage objective function under the predefined
probability distribution. However, it is not easy to know the “true probability distribution”
of demand or other uncertain parameters; therefore, many studies have adopted the SAA
(sample average approximation) [21–23] to deal with this problem. However, SAA requires
a large number of samples to accurately represent uncertainty, which can significantly
increase computational costs and complexity. Additionally, SAA solutions may suffer from
high variability if the sample size is insufficient. There is another problem for using the
two-stage SP to solve the shelter location allocation problem: there are few studies that have
dealt with the shelter location allocation problem for earthquake evacuation. Earthquake
evacuation is different from hurricane evacuation or the relief distribution problem, which
usually needs to travel for a long distance using a car. For earthquake evacuation, it is
important to ensure evacuees can quickly walk to a safe place in a short time due to fire
spreading; therefore, the objective in the response stage should be the total travel distance
instead of traveling cost. This will make the traditional two-stage stochastic programming
model unsuitable to solve such a problem, since distance cannot be added together with
construction cost.

2.2. Distributionally Robust Optimization

As we will describe in Section 3, distributionally robust optimization is the main
method we will use in this study, so, in this part, we will perform a review on it. Stochastic
programming (SP) is commonly used in the research of humanitarian facility locations [4],
as we described in Section 2.1; however, it is hard to meet the requirements of SP, since
there are usually limited historical data. Therefore, recently, more and more studies have
adopted robust optimization (RO) to ensure the system works well even if in the worst
situation [24–27]. Therefore, as one type of RO, distributionally robust optimization (DRO)
can be seen as a mixture of SAA and worst-case RO. This is because SAA assumes that the
probability of each realization of uncertain parameter is the same; instead, worst-case RO
only considers the worst realization while setting the probabilities of other realizations as 0.
However, DRO tries to obtain the optimal value under the worst probability distribution.
Therefore, it can be anticipated that the objective value obtained by DRO will be between
the SAA and worst-case RO. These results have been verified by [27,28]. DRO realizes
this effect by constructing an ambiguity set that contains those probability distributions
that meet certain criteria, thus providing a more conservative and robust approach to
decision-making under uncertainty. The set that contains all these possible probability
distributions is called the ambiguity set, which is the key component in a DRO model
that encapsulates the uncertainty in the probability distribution governing the problem.
The ambiguity set is built based on certain information, including support and moment
information [29,30], “distance” from the reference distribution [31,32], and the structural
properties [33,34]. Typically, for the moment-based ambiguity set, the range of mean and
variance will be defined, while the distance-based ambiguity set contains the distributions
that are close to a reference distribution. The DRO can be transformed into a semidefinite
programming (SDP) problem, which can be efficiently solved using the cutting surface



GeoHazards 2024, 5 1311

method [35,36] or dual method [30,33,37]. Compared to SP and RO, DRO offers greater
flexibility in constructing the uncertainty set; also, in practical applications, the solution of
DRO is resilient, with lower costs, which makes it suitable to solve problems in disaster
management. However, the research on earthquake evacuation seems to have not benefited
from the development of DRO. Therefore, this research aims to (i) propose a multi-objective
distributionally robust optimization model to solve earthquake shelter location allocation
planning and (ii) use an alternating gradient descent ascent (PDHG) method to solve
scenario-based DRO problems.

3. Model Formulation

It is necessary to consider not only construction/maintenance costs in the preparedness
phase but also the travel distance and surplus/deficit of shelter capacity in the response
stage. Therefore, we adopt a two-stage model formulation, as described in Figure 1.
However, because the units are different, these objective functions cannot be directly
summed together, as is commonly done in many two-stage stochastic optimization models
for the disaster management problem [3]. Therefore, we adopt a three-objective formulation
that contains all these objectives. The objectives of distance and capacity surplus/deficit
are estimated for the response phase in disasters, which is called the second-stage objective
in a two-stage formulation. In this research, we use a scenario-based DRO to formulate
these two objective functions.
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3.1. Formulation of the Ambiguity Set

In this research, we adopt two widely used approaches: a moment-based set and
Wasserstein distance-based set.

3.1.1. Moment-Based Ambiguity Set

The moment-based ambiguity set is a commonly used set that usually regulates the
range of the first moment (expected value) and second moment (variance), and its general
form is

U =

P ∈ RN

∣∣∣∣∣∣
EP[ξ] = u

v− ≤ EP

[(
ξ − ξ

)(
ξ − ξ

)T
]
≤ v+

, (1)

where ξ is the uncertain parameter, and ξ is the mean of ξ, which can be estimated from
partial data. The set U contains a distribution P, which makes the expected value (EP[ξ])

and variance (EP

[(
ξ − ξ

)(
ξ − ξ

)T
]

) of ξ within a certain range. In order to obtain a robust

solution that is effective even in the worst conditions, it is required to choose the “worst
probability”, which maximizes the value of the objective function. Consider that we have a
convex problem with the following form:

min
x

f (x, ξ), (2)

s.t.
x ∈ X, (3)
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in which ξ is an uncertain parameter vector about which we only know partial information,
f(x, ξ) is the convex function, and X is a convex set. Therefore, the DRO form of the original
problem can be written as

min
x

max
Pξ

f (x, ξ), (4)

s.t.
x ∈ X, (5)

Pξ ∈ U, (6)

For the discrete problem, which means that there are finite realizations of ξ, the inner
problem of Equation (4) can be written as

max∑i pi f (x, ξi), (7)

s.t.
∑i pi = 1, (8)

∑i piξi = u, (9)

v− ≤ ∑i pi

[(
ξi − ξ

)(
ξi − ξ

)T
]
≤ v+, (10)

in which pi is the probability of scenario i, and ξi is the realization of ξ in scenario i. It is
obvious that, for finite scenarios, this problem turns out to be linear programming (LP).

3.1.2. Wasserstein Distance-Based Ambiguity Set

A distance-based ambiguity set is a collection of probability distributions that are
defined based on a specific measure of distance between the distributions. In the context
of the DRO, this set includes all distributions within a certain distance from a reference
distribution, typically measured using a specific metric. One common choice is the Wasser-
stein distance, which quantifies the minimum cost of transporting probability mass to
transform one distribution into another. The Wasserstein ambiguity set thus encompasses
all distributions within a specified Wasserstein distance from the empirical or nominal
distribution, allowing for robust solutions that account for distributional uncertainty within
this defined range. The general form of a Wasserstein distance-based ambiguity set is

U =
{
P ∈ RN : W(P,Q) ≤ δ

}
, (11)

in which W(P,Q) is the Wasserstein distance between probability distribution P and
reference distribution Q, and δ is a threshold or radius that controls how “close” the
distributions within the ambiguity set must be to Q.

For discrete problems, the set can be rewritten as the following optimization problem:

min
π

∑i ∑j πijsij, (12)

s.t.
∑i πij = qj j = 1, . . . , M, (13)

∑j πij = pi i = 1, . . . , N, (14)

in which sij is the “distance” between the reference probability distribution Q and obtained
probability distribution P. pi is the probability of scenario i for the obtained probability
distribution P, and qj is the probability of scenario j for the reference probability distribution
Q. πij is the transportation plan, representing how much probability mass should be moved
from point i in distribution P to point j in distribution Q.
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3.1.3. Estimation of the Mean and Variance

For both moment-based and distance-based sets, an estimated mean and variance are
necessary. In this part, we will introduce how to use an earthquake simulation model [30]
to estimate the mean and variance of the uncertain parameter, which is the demand vector
in our problem, and we denote it as d = {d1, . . ., dk}. We define the demand as “number
of people in each demand point who are in need of staying in shelters due to house
damage or other situations”. By this definition, we can obtained by the following steps:
(i) determine the population in each building by assuming that the population distribution
is proportional to the building’s floor area; assign attributes to each building, where the
structure type is predefined and the building age is randomly generated; (ii) for buildings
with different attribute s(age and structure), compute the complete collapse rate of each
building based on the parameters of normal distribution in Table 1 (λ and ζ are the mean
and standard deviation of the building fragility curves; from the curve, we can obtain the
collapse rate of certain building types under different PGVs (peak ground velocities; it
refers to the maximum speed at which the ground moves during an earthquake, used to
assess seismic intensity and potential structural damage); these parameters are estimated
from the historical data of Kumamoto earthquake; (iii) randomly determine the state of each
building (collapse or not) based on the probability we obtained by step (ii). By following
these three steps, the demand of a single scenario can be acquired. Repeat the process n
times, and n demand samples can be generated. The estimated mean and variance then
can be acquired by (15) and (16). The reference distribution used by the distance-based set
can be regarded as the uniform distribution with the estimated mean.

d =
1
n∑i di, (15)

Σ =
1
n∑i

(
di − di

)(
di − di

)T
, (16)

Table 1. Parameters for various building types 1.

Building Structure Building Age λ ζ

Wooden

~1971 4.84 0.71
1972~1981 5.11 0.76
1982~1991 5.41 0.64
1992~2001 5.70 0.70

2002~ 6.62 0.89

RC
~1971 5.12 0.65

1972~1981 5.33 0.58
1982~ 6.00 0.79

Steel
~1971 4.64 0.62

1972~1981 4.97 0.49
1982~ 5.64 0.73

1 The parameters are estimated by the data from Kumamoto earthquake [38].

3.2. Formulation of Multi-Objective Distributionally Robust Optimization

In this study, we investigate a network that is composed of multiple shelters and
demand points during two time periods: before and after disasters occur. Evacuees relocate
from the demand point to the shelter after disaster occurs, and the emergency supplies
kept in shelters should meet the uncertain demands from demand points. There are two
decisions being made in the network: in the stage before disaster, the decision maker
makes decision on the locations and capacities of shelters from multiple potential locations,
decision makers can refer to the model’s results to determine where to build shelters and
their appropriate scale. Meanwhile, in the stage after a disaster, the decision will be made
on how many evacuees should be allocated to the shelters selected in the first stage. These
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decisions correspond to specific scenarios, enabling decision makers to use these results as
a reference for making personnel allocation decisions in similar situations. We consider the
demand as a random parameter that refers to the number of people in need of relocating to
shelters, and this parameter is highly uncertain, because only people who lose their houses
will become evacuees, and the state of the house damage is uncertain due to the uncertain
nature of the disaster. The objectives of this model include the objective of the before
disaster stage: minimization of the expenses needed to establish all selected shelters and
the objectives of the after disaster stage: minimization of the total evacuation distance and
minimization of unmet demands and unused capacity. The unmet demands are measured
by the number of unallocated people who are in need of being transferred to shelters
due to house damage. The unused capacities are measured by the number of additional
evacuees the shelters can accommodate using the remaining supplies after all persons have
taken shelter. The notations of the model are summarized in Table 2, and the details of the
objectives are shown in Table 3.

Table 2. Notations of the parameters, variables, and sets.

Category Name Description

Parameter (scalar)

fi Fixed cost for shelter i, measured by Japanese yen.

v Variable cost (unit cost corresponding to one evacuee),
measured by Japanese yen.

tki
Shortest travel distance from demand point k to
shelter i, measured by meter.

dk(s) Demand at demand point k at scenario s, measured by
number of people.

M A big number.

I Number of potential shelters.

K Number of demand points.

S Number of scenarios.

Decision variable
(scalar)

xi 1 if potential shelter i is selected, 0 otherwise.

ci Capacity of shelter i, measured by number of people.

qki(s) Number of people allocated from demand point k to
selected open shelter i at scenario s.

ps Probability of scenario s.

Set U Ambiguity set.

Table 3. Details of the objectives.

Stage Objective Type Objective Detail Measurement

First stage:
before-disaster

Establish cost
data

Fixed cost ∑
i∈I

fixi

Variable cost ∑
i∈I

civ

Second stage:
after-disaster

Total evacuation distance ∑
k∈K

∑
i∈I

tkiqki(s)

Shortage and
surplus

Unmet demand ∑
k∈K

(
dk(s)− ∑

i∈I
qki(s)

)
Unused capacity ∑

i∈I

(
ci − ∑

k∈K
qki(s)

)
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We propose a two-stage multi-objective DRO (MODRO) to solve this location allocation
problem. The formulations of the three objectives are as follows:

f1 = min
x,c

(∑i∈I fixi+∑i∈I civ), (17)

f2 = min
q

max
p ∑s∈S ps[∑k∈K ∑i∈I tkiqki(s)], (18)

f3 = min
q,c

max
p ∑s∈S ps[∑k∈K (dk(s)− ∑i∈I qki(s)) + ∑i∈I (ci − ∑k∈K qki(s))], (19)

As it is shown in Table 3, f 1 is a first stage objective function consisting of fixed cost and
variable cost, in which ∑i∈I fixi sums up the fixed cost for selected shelters, and ∑i∈I civ
calculates the cost that corresponds to the number of evacuees. Fixed cost means the
cost for each selected shelter, while variable cost refers to the cost for each evacuee. The
details of these two types of cost for our case can be seen in Section 5.1. f 2 is a second
stage objective function that can be regarded as the expected value of the total evacuation
distance for all scenarios. It sums up the distance from one demand point to the assigned
shelter of all evacuees who walk between them. f 3 is a second stage objective function
that can be seen as the expected value of the sum of the unmet demand and unused
capacity, in which ∑k∈K (dk(s)− ∑i∈I qki(s)) measures the number of people who had not
been allocated to shelters for all K demand points, and ∑i∈I (ci − ∑k∈K qki(s)) measures
the amount of capacities that are above the number of evacuees for all I shelters. f 2 and
f 3 are formulated as DRO forms, respectively. The variable ps is the “worst” probability
of scenario s. It means to choose one probability distribution from the moment set U that
makes the expected value of the objectives for all the maximum scenarios, then optimize it
under this distribution. The details of the moment set will be introduced in the next section.
The constraints for the model are from Equations (20)–(25). Equation (20) ensures that the
number of people at each demand point allocated to shelters will not exceed the number
of people at this point. Equation (21) makes sure that the number of evacuees assigned
to each shelter will not exceed the capacity limit. In Equation (22), M is a large positive
constant, and it makes sure that, if the location is not selected (xi = 0), then the capacity will
also be 0. Equation (23) regulates that xi is the binary variable. Equations (24) and (25) state
that other decision variables should be non-negative.

∑i∈I qki ≤ dk k = 1, . . . , K, (20)

∑i∈I qki ≤ ci i = 1, . . . , I, (21)

Mxi ≥ ci i = 1, . . . , I, (22)

xi ∈ {0, 1}, (23)

ci ≥ 0 i = 1, . . . , I, (24)

qki ≥ 0 i = 1, . . . , I, k = 1, . . . , K, (25)

4. Solution Approach

The MODRO combines multi-objective optimization and distributionally robust op-
timization. It was solved by Wang, Song [32] using AUGMECON after reformulation as
a multi-objective MILP. For that kind of problem, we need to first reformulate the DRO
problem, then solve the multi-objective problem. In order to facilitate the reformulation,
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we firstly rewrite the model into a compact form (the meaning and size of each vector and
matrix can be seen in Table 4):

f1 = min
x,c

[
fTx + vTc

]
, (26)

f2 = min
q

max
P∈U

EP
[
tTq

]
, (27)

f3 = min
c,q

max
P∈U

EP
[
αTc − ρTq + θTd

]
, (28)

Table 4. Notations of the parameters and variables in vector or matrix form.

Category Name Size Description

Parameter (scalar)
I 1 Number of potential shelters.
K 1 Number of demand points.
S 1 Number of scenarios.

Parameter
(vector/matrix)

f I × 1 Vector of fixed cost.
v I × 1 Vector of variable cost (all element is equal to v).
t (KI) × 1 Vector of distance.
α I × 1 All-one column vector.
ρ I × K All-two column vector.
θ K × 1 All-one column vector.

D K × S Matrix of uncertain demand of K demand points
in S scenarios.

Decision variable
(vector/matrix)

x I × 1 Vector of location decision.
c I × 1 Vector of capacity decision.
Q S × (KI) Matrix of evacuee flows in S scenarios.
p S × 1 Discrete probability distribution of demand.

In which, α is the all-one column vector with length I, ρ is the all-two column vector
with size I × K, and θ is the all-one column vector with length K. Because we deal with
scenario-based problems, the second-stage objective functions f 2 and f 3 can be written as
the min–max forms as follows:

f2 = min
Q

max
p

[
tTQp

]
, (29)

f3 = min
c,Q

max
p

[
αTc − ρTQp + θTDp ], (30)

In which p is a S × 1 column vector of probabilities, D is a K × S matrix of the uncertain
demand with all S scenarios, and Q is a S × KI matrix of evacuee flows with all scenarios.

D =

d1(1) · · · d1(S)
...

. . .
...

dK(1) · · · dK(S)

, (31)

Q =

 q11(1) · · · qKI(1)
...

. . .
...

qK1(S) · · · qKI(S)

, (32)

Equations (29) and (30) are the standard min–max form; therefore, we have transformed
the scenario-based DRO into a saddle point problem [39]. An example of a saddle point
can be seen in Figure 2. To solve this problem, we use the primal–dual hybrid gradient
(PDHG) method, which alternates between minimizing the objective with respect to one
variable and maximizing with respect to another, using gradient updates in each step. The
Figure 3 shows the steps for solving f 2, similar for f 3.
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The projections for Q and p ensure that the variable after the descent/ascent step is
still located in a feasible region. By minimization the distance between “new” and “old”
locations, Projections (33)–(36) can obtain the “closest” location that meets the constraints
for Q, and Projections (37) and (38) can acquire the “closest” distribution to that in ambiguity
set U. U can be a distance-based set or moment-based set, and the details can be seen in
Section 3.1. The product of two step sizes ηp and ηq (these two step sizes correspond to
descent and ascent steps, respectively) should be less than 1 in order for convergence. In
our problem, the order of magnitude of probability is far less than the number of people;
we therefore set a small ηp with a big ηq.

min
z

∥∥z − Qt∥∥2
, (33)

s.t.
∑i∈I Qt

ki(s) ≤ dk(s) k = 1, . . . , K, s = 1, . . . , S, (34)
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∑k∈K Qt
ki(s) ≤ ci i = 1, . . . , I, s = 1, . . . , S, (35)

Qt
ki(s) ≥ 0 k = 1, . . . , K, i = 1, . . . , I, s = 1, . . . , S (36)

min
z

∥∥z − pt∥∥2, (37)

pt ∈ U, (38)

The second part is to solve the multi-objective optimization. The modified epsilon constraint
method called AUGMECON by Mavrotas [40] is used to solve it. The detailed steps are as
follows: (i) construct a payoff table. Our main purpose is to obtain the optimal location and
capacity of the shelters; therefore, we prioritize minimizing f 1 as our main optimization
goal. Using the payoff table shown in Table 5, we can determine the lower bounds and
range for f 2 and f 3. For example, the lower bound for f 2 is the minimum values among all
the optimization results for f 1, the upper bound is the maximum value, and the range is
the gap between the upper bound and the lower bound. These optimization models are
solved using the commercial solver Gurobi (downloaded from https://www.gurobi.com/
downloads/ (accessed on 1 October 2024)).

Table 5. Details of the payoff table.

R11:
Independently optimization
result for f 1

R21:
Optimization result for f 2 by
setting f 1 = R11

R31:
Optimization result for f 3 by
setting f 1 = R11 and f 2 = R21

R12:
Optimization result for f 1 by
setting f 2 = R22

R22:
Independently optimization
result for f 2

R32:
Optimization result for f3 by
setting f 2 = R22 and f 1 = R12

R13:
Optimization result for f 1 by
setting f 3 = R33

R23:
Optimization result for f2 by
setting f 3 = R33 and f 1 = R13

R33:
Independentlyoptimization
result for f 3

(ii) Solve the epsilon constraint problem to obtain Pareto solutions. The objective
function and constraints of the epsilon constraint problem are shown by Equations (39)–(43),
where lb2 is the lower bound for f 2, lb2 is the lower bound for f 3, k2 and k3 are the ranges
for f 2 and f 3, respectively, and g2 and g3 are the number of grid points (they indicate the
number of solutions that can be acquired). i2 and i3 are integers; by changing i2 from 1
to g2 and i3 from 1 to g3, we can obtain one solution for each pair of i2 and i3. For each
solution acquired, no other solution is considered superior without compromising at least
one objective.

min f1, (39)

s.t.
f2 ≤ e2, (40)

f3 ≤ e3, (41)

e2 = lb2 +
i2k2

g2
, (42)

e3 = lb3 +
i3k3

g3
(43)

(iii) Select the best solution from the Pareto set. Since we only need one solution, it is
necessary to choose only one solution out from the Pareto sets obtained in the second step.
Here, we use the ratio of unmet demand to unused capacity as the criteria to select the best
solution; in other words, the solution with the value of the ratio closest to 1 will be selected.

https://www.gurobi.com/downloads/
https://www.gurobi.com/downloads/
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5. Case Study and Results Analysis
5.1. Study Area and Data Preparation

The Ogu area, situated in the northeast of Tokyo Metropolitan, spans a total area of
2.7 km2 with a population of 54,650 (as of November 2023). The location of this area is
shown in Figure 4. The geology of this area is believed to consist of diluvial layers in the
upland areas and alluvial layers in the lowland areas. This region is characterized by a
large number of wooden structure buildings, rendering it vulnerable to both earthquakes
and fires. According to the Ninth Community Earthquake Risk Assessment Study [41],
approximately half of the communities in the Ogu area receive the highest risk ratings for
both building collapse and fire hazards. The last major earthquake that happened in this
region was the 1923 Great Kanto earthquake, which caused approximately 140,000 deaths
and missing persons in the whole Kanto area. Regarding building damage, approximately
109,000 buildings were completely destroyed, and about 212,000 were completely burned
down. Within this area, there are 34 demand points and 18 potential shelter locations
(schools and other public buildings), which can be seen in Figure 5. Each demand point
represents an administrative unit called Chōnaikai, comprising one or several communities.
In Tokyo, the Chōnaikai is responsible for establishing and managing shelters, as well as
stockpiling disaster relief supplies; therefore we choose it as the basic unit for allocation. In
order to prepare for the possible major earthquake and the secondary earthquake, especially
the fire spread, the Tokyo Metropolitan government has implemented a series of measures,
including the construction of shelters. There are three types of shelters in Tokyo, which
are temporary evacuation areas, evacuation area, and evacuation centers. The temporary
evacuation areas consist of street parks, which are used for immediate evacuation right after
earthquakes. The evacuation areas are large open spaces, like the university. It is fire-proof,
which can protect evacuees from fire spread, which is very necessary, since Tokyo has many
wooden buildings that are easily caught on fire. Finally, elementary schools and middle
schools and other public buildings are appointed as evacuation centers, which can provide
food and accommodations for evacuees. In this study, we discuss the evacuation centers.

Utilizing the methods proposed by Hirokawa and Osaragi [42], we obtained disaster
simulation data, including the probabilities of building collapse, street blockage, and fire
outbreak. It is important to note that the parameters used for estimating building collapse
probabilities are derived from the research conducted after the 2016 Kumamoto earthquake
and the 1995 Great Hanshin earthquake, as noted in Table 1, which are considered to be
more accurate than previous studies. By employing the methods mentioned in Section 3.1.3,
we can obtain the demand of different scenarios. As for the estimation of establishing
cost, we classify the cost into fixed cost and variable cost. There is a standard of the
amount of relief at each shelter in Tokyo, so we use the list of relief of Adachi (There is no
description in Arakawa on the website.) and estimate the cost of relief at each shelter by the
price on Amazon (https://www.amazon.co.jp/ (accessed on 1 October 2024)) or Rakuten
(https://www.rakuten.co.jp/ (accessed on 1 October 2024)). Table 6 shows the values of
these two parameters. The distance matrix between different nodes is estimated by the
K-shortest algorithm using the network distance data. Shelter planning problem of this
region is also studied by Tang and Osaragi [43].

Table 6. Classification of the cost.

Type Item Total Price (yen)

Variable cost Rice, water, blanket, etc. 6010/person
Fixed cost Generator, light, batteries, telephone, TV, etc. 4,690,979

https://www.amazon.co.jp/
https://www.rakuten.co.jp/
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5.2. Performance of PDHG

The DRO model was implemented in Python 3.8 on a computer equipped with an
Intel Core (8 cores, 2.3 GHz), 32 GB of DDR4 RAM. The toolbox used for solving the
optimization problem is Gurobi. Since we hope to test the feasibility of applying this model
in practice, we use the data described in Section 5.1 to test using the PDHG method to
solve f3. From Table 7, we can see that, as the learning rate increases, the running time and
required iteration are expected to decrease. delta is the parameter that regulates the size
of the ambiguity set. As the size increases, the feasible region expands, and the running
time also increases, since the computational difficulty generally increases with a larger
feasible region. However, a larger ambiguity set means that there will be more probability
distributions to choose, and it is more possible to generate a “better” solution finally.
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Table 7. A summary of the CPU running time for solving f 3 using a distance-based ambiguity set.

delta Step Size (ηp, ηq) Iterations to
Convergence Running Time (s)

100
0.000001, 900,000 7 2411.24

0.00005, 19,000 16 3629.54
0.00001, 90,000 45 6789,12

500
0.000001, 900,000 10 3545.25

0.00005, 19,000 17 4598.12
0.00001, 90,000 67 8894.76

5.3. Sensitivity Analysis of the Ambiguity Set Size

Sensitivity analysis of the ambiguity set size is conducted. All the parameters except
for the one under analysis are fixed. Since we want to see the impact on the DRO model,
we test the influence of the parameter on the DRO solution for f 3. A big size ambiguity set
means that there will be more choice of probability distribution; however, it also means
that it is possible to choose the probability distribution that is “far” away from the “true”
distribution. Therefore, it is necessary to see the effect of enlarging the size of the ambiguity
set. To verify the impact of the size of the ambiguity set on the DRO solution, we conducted
a sensitivity analysis of the size of both the moment-based set and distance-based set.
For the size of the distance-based set, we set the threshold δ range from 100 to 2000 and
observed the value of f 3. Figure 6 shows the impact of different δ on the value of f 3: it can
be seen that the value of f 3 increases as the size of the distance-based set increases; this is
because there will be more choice for a “worse” distribution. After δ reaches around 1400,
it will not change at all; this is because, when δ is big enough, we have already found the
worst distribution. For the moment-based set, we set the r1 from 0.2 to 1.0 and r2 from 1.0
to 3.0. We can see from Figure 7 that the value of f 3 also increases with the enlargement of
the ambiguity set, and after r1 reaches around 0.8, it will never increase if r2 remains the
same. When fixed r1 while r2 increases, the value of f 3 will continue to increase until the
maximum value is obtained. The maximum value is the same as the one obtained by the
distance-based set. However, comparing these two sets, we can find that the distance-based
set will show a broader range.
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5.4. Analysis of the DRO Solution

As shown in Section 5.3, when the size of the ambiguity set reaches a certain degree,
the value of the optimization model will not change any more. We choose r1 = 0.6 and
r2 = 1.0 to rule the size of the moment-based set and delta = 1200 to regulate the size of the
distance set. As described in Section 4, the Pareto solution can be obtained by AUGMECON,
and we can obtain the best solution from the Pareto set. Figure 8 shows the selection of
the best solution by the ratio of unmet demand to unused capacity. The red point is the
solution with the ratio closest to 1.0. In addition, we also obtain the result of the SAA and
worst-case RO to make a comparison. As expected, the results shown in Table 8 indicate
that DRO can result in a solution that is better. The cost is between SAA and worst-case
RO; however, the DRO showed better performance in allocating more evacuees to shelters
than SAA.
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Table 8. A comparison of the results by different models.

Objective Value Number of
Selected Sheltersf 1 (yen) f 2 (m) f 3 (People)

MODRO (r1 = 0.6, r2 = 1) 369,509,830 50,913,964 81,124 16/18
MODRO (delta = 1200) 360,990,800 50,685,047 80,900 16/18

SAA 352,921,119 59,973,533 100,975 15/18
worst-case RO 412,667,762 50,467,510 80,080 18/18

6. Discussion and Conclusions

The results obtained from the multi-objective distributionally robust optimization
(MODRO) model for shelter location allocation planning under demand uncertainties
demonstrate several findings. First, the comparison between the MODRO model and
traditional stochastic and robust optimization models highlights the advantages of a dis-
tributionally robust approach. By considering the “worst-case” distribution within a
moment-based or distance-based ambiguity set, the MODRO model effectively balances
the trade-offs between cost, efficiency, and safety. This balance is crucial, as overly con-
servative models (worst-case RO) may result in unnecessarily high costs, while overly
optimistic models (SAA) may fail to provide sufficient protection in the worst-case scenario.
One key finding is that the construction cost under the MODRO model is consistently
positioned between the costs derived from the worst-case RO and SAA. This indicates that
the MODRO model provides a more balanced approach, neither too cautious nor too risky,
thereby offering a more reliable framework for decision-making in disaster management.
The MODRO model’s ability to incorporate uncertainty in a more nuanced manner allows
for the identification of shelter locations that are not only cost-effective but also capable of
accommodating evacuees under the most challenging scenarios.

Additionally, the model’s multi-objective nature allows for a more comprehensive
analysis of the trade-offs between different goals. For instance, while the primary objective
may be to minimize construction and operational costs, the model also considers the overall
evacuation distance and the utilization rate of shelter capacities. This approach ensures that
decisions are made not only with cost in mind but also with a focus on the overall efficiency
and effectiveness of the evacuation process. The sensitivity analysis conducted as part
of this study further underscores the robustness of the MODRO model. By adjusting the
size of the ambiguity set, it becomes evident that the model can adapt to various levels of
uncertainty. This flexibility is critical for real-world applications, where demand predictions
are often imprecise, and the consequences of misallocation can be severe.

Although this study proposes a new approach to address this problem, several limita-
tions must be acknowledged. First, due to the lack of sufficient historical data, we relied
on simulation results. In reality, obtaining detailed, small-scale historical evacuation data
is challenging. For example, for our study, the number of evacuees in each shelter under
different scenarios is necessary, while it is not easy to acquire these data. Other data that
need to be acquired are the building age data, which we currently cannot obtain in the study
area. However, with advancements in remote sensing and other technologies, we hope
that more real-world data will become accessible in the future. Further, the casualties will
influence the demand, but we do not have enough data to estimate this. Second, it remains
uncertain whether this method is applicable to areas beyond the current study region.
Especially, the hierarchy of shelters are different in different areas, and many cities remain
not only one type of area. Also, for some developed cities, it is unnecessary to discuss
newly constructed shelters. Going forward, we aim to enhance the model’s applicability
across a broader range of real-world scenarios. Third, the selection of the optimal solution
from the Pareto solution set may be subjective, and the Pareto solution sometimes cannot
ensure if a solution is reasonable. There are many standards to make the choice, and it is
better to use the appropriate one according to different situations.
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