MOCA: A Network Intrusion Monitoring and Classification System
Abstract
:1. Introduction
2. Related Works
3. Connection Features
- When there are multiple connections whose source IP address is the same as the current connection, the source count is extracted.
- When there are multiple connections whose destination IP address is the same as the current connection, the dst count is extracted.
- When there are multiple connections whose source port is the same as the current connection, the sport count is extracted.
- When there are multiple connections whose destination port is the same as that of the current connection, the dport count is extracted.
- When there are multiple connections whose destination and source IP addresses are the same as those of the current connection, the dst source count is extracted.
- When there are multiple connections whose destination IP address and source port are the same as those of the current connection, the dst sport count is extracted.
- When there are multiple connections whose source IP address and destination port are the same as those of the current connection, the source dport count is extracted.
4. MOCA Design
4.1. Feature Importance
4.2. Feature Selection
Algorithm 1: Selecting features in MOCA. |
|
4.3. Binary and Multi-Class Classifiers
4.4. Performance Metrics
- Accuracy: the sum of flows classified correctly with respect to the total number of flows. It is written by:
- Precision: positive predictive value, equal to:
- Recall: sensitivity or Detection Rate (DR), which is equal to:
- F1-Score: the harmonic mean of the Precision and Recall. In other words, it is a statistical technique for examining the system’s accuracy by considering both precision and recall:
5. Measurement Results
5.1. Binary Classification Accuracy
5.2. Multi-Class Classification Accuracy
5.3. Effectiveness of Pre-Trained Binary Classifier
5.4. Comparing MOCA with Previous Works
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasongo, S.M.; Sun, Y. A Deep Learning Method With Filter Based Feature Engineering for Wireless Intrusion Detection System. IEEE Access 2019, 7, 38597–38607. [Google Scholar] [CrossRef]
- Reis, B.; Maia, E.; Praça, I. Selection and Performance Analysis of CICIDS2017 Features Importance. In Foundations and Practice of Security—12th International Symposium, FPS 2019; Lecture Notes in Computer, Science; Benzekri, A., Barbeau, M., Gong, G., Laborde, R., García-Alfaro, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 12056, pp. 56–71. [Google Scholar]
- Lian, W.; Nie, G.; Jia, B.; Shi, D.; Fan, Q.; Liang, Y. An Intrusion Detection Method Based on Decision Tree-Recursive Feature Elimination in Ensemble Learning. Math. Probl. Eng. 2020, 2020, 2835023. [Google Scholar] [CrossRef]
- Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm. IEEE Trans. Comput. 2016, 65, 2986–2998. [Google Scholar] [CrossRef]
- Injadat, M.; Moubayed, A.; Nassif, A.B.; Shami, A. Multi-Stage Optimized Machine Learning Framework for Network Intrusion Detection. IEEE Trans. Netw. Serv. Manag. 2020, 18, 1803–1816. [Google Scholar] [CrossRef]
- Kurniabudi; Stiawan, D.; Darmawijoyo; Idris, M.Y.B.; Bamhdi, A.M.; Budiarto, R. CICIDS-2017 Dataset Feature Analysis With Information Gain for Anomaly Detection. IEEE Access 2020, 8, 132911–132921. [Google Scholar] [CrossRef]
- Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In ICISSP 2018; Mori, P., Furnell, S., Camp, O., Eds.; SciTePress: Setubal, Portugal, 2018; pp. 108–116. [Google Scholar]
- Li, L.; Yu, Y.; Bai, S.; Hou, Y.; Chen, X. An Effective Two-Step Intrusion Detection Approach Based on Binary Classification and $k$ -NN. IEEE Access 2018, 6, 12060–12073. [Google Scholar] [CrossRef]
- Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019; pp. 1–8. [Google Scholar]
- Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its applications. J. Algorithms 2005, 55, 58–75. [Google Scholar] [CrossRef]
- Wang, F.; Gao, L. Simple and Efficient Identification of Heavy Hitters Based on Bitcount. In Proceedings of the 20th IEEE International Conference on High Performance Switching and Routing, HPSR 2019, Xi’an, China, 26–29 May 2019; pp. 1–6. [Google Scholar]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B.P. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Fuhr, J.; Hanna, I.; Wang, F.; Tang, Y. The Diminished Importance of Connection-based Features in Intrusion Detection. In Proceedings of the 40th IEEE International Performance Computing and Communications Conference, Austin, TX, USA, 29–31 October 2021; p. 10. [Google Scholar]
- Javidi, M.M.; Mansouri, S. Intrusion detection system using an ant colony gene selection method based on information gain ratio using fuzzy rough sets. AUT J. Model. Simul. 2019, 51, 33–44. [Google Scholar]
- Maza, S.; Touahria, M. Feature Selection Algorithms in Intrusion Detection System: A Survey. KSII Trans. Int. Inf. Syst. 2018, 12, 5079–5099. [Google Scholar]
- Moustafa, N.; Slay, J. The Significant Features of the UNSW-NB15 and the KDD99 Data Sets for Network Intrusion Detection Systems. In Proceedings of the 4th International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS@RAID 2015, Kyoto, Japan, 5 November 2015; pp. 25–31. [Google Scholar]
- Binbusayyis, A.; Vaiyapuri, T. Identifying and Benchmarking Key Features for Cyber Intrusion Detection: An Ensemble Approach. IEEE Access 2019, 7, 106495–106513. [Google Scholar] [CrossRef]
- Lee, W.; Stolfo, S.J.; Mok, K.W. Mining in a Data-Flow Environment: Experience in Network Intrusion Detection. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 114–124. [Google Scholar]
- Mohammadi, S.; Mirvaziri, H.; Ghazizadeh-Ahsaee, M.; Karimipour, H. Cyber intrusion detection by combined feature selection algorithm. J. Inf. Secur. Appl. 2019, 44, 80–88. [Google Scholar] [CrossRef]
- Amiri, F.; Yousefi, M.R.; Lucas, C.; Shakery, A.; Yazdani, N. Mutual information-based feature selection for intrusion detection systems. J. Netw. Comput. Appl. 2011, 34, 1184–1199. [Google Scholar] [CrossRef]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar]
- Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160. [Google Scholar] [CrossRef]
- Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications and Information Systems Conference, MilCIS 2015, Canberra, Australia, 10–12 November 2015; pp. 1–6. [Google Scholar]
- Jan, S.U.; Ahmed, S.; Shakhov, V.V.; Koo, I. Toward a Lightweight Intrusion Detection System for the Internet of Things. IEEE Access 2019, 7, 42450–42471. [Google Scholar] [CrossRef]
- Leevy, J.L.; Khoshgoftaar, T.M. A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data. J. Big Data 2020, 7, 104. [Google Scholar] [CrossRef]
- Shapley, L. Quota Solutions op n-Person Games1; Artin, E., Morse, M., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; p. 343. [Google Scholar]
- Hindy, H.; Atkinson, R.; Tachtatzis, C.; Colin, J.N.; Bayne, E.; Bellekens, X. Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection. Electronics 2020, 9, 1684. [Google Scholar] [CrossRef]
- Cieslak, D.; Chawla, N.; Striegel, A. Combating imbalance in network intrusion datasets. In Proceedings of the 2006 IEEE International Conference on Granular Computing, Atlanta, GA, USA, 10–12 May 2006; pp. 732–737. [Google Scholar]
- Moustafa, N.; Ahmed, M.; Ahmed, S. Data Analytics-enabled Intrusion Detection: Evaluations of ToN IoT Linux Datasets. TrustCom 2020, 2020, 727–735. [Google Scholar]
- Zhang, H.; Huang, L.; Wu, C.Q.; Li, Z. An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset. Comput. Netw. 2020, 177, 107315. [Google Scholar] [CrossRef]
- Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features Dimensionality Reduction Approaches for Machine Learning Based Network Intrusion Detection. Electronics 2019, 8, 322. [Google Scholar] [CrossRef]
- De Gregorio, M.; Giordano, M. An experimental evaluation of weightless neural networks for multi-class classification. Appl. Soft Comput. 2018, 72, 338–354. [Google Scholar] [CrossRef]
- Radford, B.J.; Richardson, B.D.; Davis, S.E. Sequence Aggregation Rules for Anomaly Detection in Computer Network Traffic. arXiv 2018, arXiv:1805.03735. [Google Scholar]
CICIDS2017 | CICDDOS2019 | |||||||
---|---|---|---|---|---|---|---|---|
Selected Features | Accuracy | Prec | Rec | F1-Score | Accuracy | Prec | Rec | F1-Score |
Top-20 F w/CF | 1.000000 | 0.999952 | 0.999952 | 0.999952 | 1.000000 | 0.999987 | 0.999987 | 0.999987 |
Top-10 F w/CF | 0.996000 | 0.995979 | 0.995978 | 0.995978 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
Top-5 F w/ 3 CF | 0.989400 | 0.989414 | 0.989368 | 0.989361 | 0.999800 | 0.999796 | 0.999796 | 0.999796 |
Top-3 CF | 0.951900 | 0.951822 | 0.951863 | 0.951871 | 0.999100 | 0.999060 | 0.999055 | 0.999056 |
Top-20 BF | 0.999800 | 0.999846 | 0.999846 | 0.999846 | 1.000000 | 0.999974 | 0.999974 | 0.999974 |
Top-10 BF | 0.991200 | 0.991227 | 0.991209 | 0.991211 | 1.000000 | 0.999883 | 0.999883 | 0.999883 |
Top-5 BF | 0.970700 | 0.971417 | 0.970745 | 0.970795 | 0.986600 | 0.986546 | 0.986613 | 0.986345 |
Top-3 BF | 0.915100 | 0.918395 | 0.915075 | 0.914359 | 0.982900 | 0.982693 | 0.982857 | 0.982448 |
MOCA (Top-20) | MOCA (Top-7) | MOCA (Top-5) | RF (10) [2] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 |
DoS GoldenEye | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 0.99 |
DoS Hulk | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 | 0.99 | 1.00 | 0.99 |
DoS Slowhttptest | 1.00 | 1.00 | 1.00 | 0.97 | 0.96 | 0.97 | 0.86 | 0.85 | 0.86 | 0.83 | 0.83 | 0.83 |
DoS slowloris | 1.00 | 1.00 | 1.00 | 0.98 | 0.98 | 0.98 | 0.93 | 0.93 | 0.93 | 0.98 | 0.98 | 0.98 |
FTP-Patator | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 |
Heartbleed | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
PortScan | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.99 |
SSH-Patator | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
(Brute Force) | 0.97 | 0.97 | 0.97 | 0.95 | 0.91 | 0.93 | 0.94 | 0.90 | 0.92 | 0.58 | 0.45 | 0.52 |
(Sql Inj) | 1.00 | 1.00 | 1.00 | 1.00 | 0.86 | 0.92 | 1.00 | 0.86 | 0.92 | 1.00 | 0.80 | 0.89 |
Web Attack XSS | 0.93 | 0.92 | 0.93 | 0.92 | 0.89 | 0.91 | 0.99 | 0.87 | 0.93 | 0.68 | 0.76 | 0.72 |
Bot | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.83 | 0.79 | 0.81 |
DDoS | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 |
Infiltration | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.88 | 0.88 |
MOCA (Top-20) | MOCA (Top-7) | MOCA (Top-3) | Random Forest | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Classes | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 | Prec | Rec | F1 |
DNS | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.99 | 0.97 | 0.97 | 0.97 | 0.99 | 0.99 | 0.99 |
MSSQL | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.97 | 0.98 | 0.98 | 0.97 | 0.98 |
NTP | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.97 | 0.97 | 0.97 | 0.99 | 0.99 | 0.99 |
SNMP | 0.94 | 0.92 | 0.93 | 0.93 | 0.92 | 0.92 | 0.82 | 0.91 | 0.86 | 0.92 | 0.91 | 0.91 |
SSDP | 0.85 | 0.73 | 0.79 | 0.84 | 0.70 | 0.76 | 0.83 | 0.70 | 0.76 | 0.78 | 0.67 | 0.72 |
LDAP | 0.95 | 0.99 | 0.97 | 0.95 | 0.99 | 0.97 | 0.94 | 0.85 | 0.90 | 0.95 | 0.99 | 0.97 |
NetBIOS | 0.90 | 0.92 | 0.90 | 0.91 | 0.91 | 0.88 | 0.91 | 0.88 | 0.89 | 0.88 | 0.89 | 0.89 |
Portmap | 0.90 | 0.91 | 0.91 | 0.87 | 0.92 | 0.89 | 0.87 | 0.93 | 0.90 | 0.88 | 0.88 | 0.88 |
Syn | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
TFTP | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
UDP | 0.85 | 0.95 | 0.90 | 0.85 | 0.96 | 0.90 | 0.85 | 0.96 | 0.90 | 0.82 | 0.93 | 0.87 |
UDP-lag | 0.84 | 0.82 | 0.83 | 0.84 | 0.82 | 0.83 | 0.83 | 0.82 | 0.83 | 0.78 | 0.75 | 0.77 |
WebDDos | 0.92 | 1.00 | 0.96 | 0.78 | 0.93 | 0.85 | 0.75 | 0.89 | 0.82 | 0.88 | 0.96 | 0.92 |
Dataset | Accuracy | Class | Precision | Recall | F1 |
---|---|---|---|---|---|
ToN-IoT [29] | 0.8804 | Benign | 0.97 | 0.69 | 0.80 |
Attack | 0.85 | 0.99 | 0.91 | ||
BoT-IoT [12] | 0.9994 | Benign | 0.97 | 0.96 | 0.96 |
Attack | 1.00 | 1.00 | 1.00 | ||
CICIDS2018 [7] | 0.9482 | Benign | 0.90 | 1.00 | 0.95 |
Attack | 1.00 | 0.90 | 0.95 | ||
CICDDOS2019 [9] | 0.9667 | Benign | 0.99 | 0.70 | 0.82 |
Attack | 0.96 | 1.00 | 0.98 |
Class | MOCA Method | SGM [30] | UDBB [31] | WiSARD [32] | LSTM [33] |
---|---|---|---|---|---|
Benign | 1.00 | 1.00 | 1.00 | 0.97 | 0.87 |
Bot | 1.00 | 1.00 | 1.00 | 0.14 | 0.83 |
DDoS | 1.00 | 1.00 | 1.00 | 0.54 | 0.71 |
DoS GoldenEye | 1.00 | 1.00 | 1.00 | 0.48 | 0.74 |
DoS Hulk | 1.00 | 1.00 | 0.99 | 0.67 | 0.74 |
DoS Slowhttptest | 1.00 | 1.00 | 0.99 | 0.23 | 0.71 |
DoS slowloris | 1.00 | 1.00 | 0.99 | 0.79 | 0.71 |
FTP-Patator | 1.00 | 1.00 | 1.00 | 0.00 | 0.91 |
Heartbleed | 1.00 | 1.00 | 1.00 | 0.80 | 0.96 |
Infiltration | 1.00 | 1.00 | 1.00 | 0.50 | 0.95 |
PortScan | 1.00 | 1.00 | 1.00 | 0.51 | 0.98 |
SSH-Patator | 1.00 | 1.00 | 1.00 | 0.00 | 0.87 |
Web Attack | 0.97 | 0.96 | 0.94 | 0.47 | 0.71 |
Brute Force | |||||
Web Attack | 1.00 | 1.00 | 1.00 | 0.00 | 0.71 |
Sql Injection | |||||
Web Attack XSS | 0.92 | 0.93 | 0.88 | 0.12 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuhr, J.; Wang, F.; Tang, Y. MOCA: A Network Intrusion Monitoring and Classification System. J. Cybersecur. Priv. 2022, 2, 629-639. https://doi.org/10.3390/jcp2030032
Fuhr J, Wang F, Tang Y. MOCA: A Network Intrusion Monitoring and Classification System. Journal of Cybersecurity and Privacy. 2022; 2(3):629-639. https://doi.org/10.3390/jcp2030032
Chicago/Turabian StyleFuhr, Jessil, Feng Wang, and Yongning Tang. 2022. "MOCA: A Network Intrusion Monitoring and Classification System" Journal of Cybersecurity and Privacy 2, no. 3: 629-639. https://doi.org/10.3390/jcp2030032
APA StyleFuhr, J., Wang, F., & Tang, Y. (2022). MOCA: A Network Intrusion Monitoring and Classification System. Journal of Cybersecurity and Privacy, 2(3), 629-639. https://doi.org/10.3390/jcp2030032