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Abstract: Throughout the past several decades, mobile devices have evolved in capability and popu-
larity at growing rates while improvement in security has fallen behind. As smartphones now hold
mass quantities of sensitive information from millions of people around the world, addressing this
gap in security is crucial. Recently, researchers have experimented with behavioral and physiological
biometrics-based authentication to improve mobile device security. Continuing the previous work
in this field, this study identifies popular dynamics in behavioral and physiological smartphone
authentication and aims to provide a comprehensive review of their performance with various
deep learning and machine learning algorithms. We found that utilizing hybrid schemes with deep
learning features and deep learning/machine learning classification can improve authentication
performance. Throughout this paper, the benefits, limitations, and recommendations for future work
will be discussed.

Keywords: machine learning; machine learning algorithms; deep learning; behavioral biometrics;
physiological biometrics

1. Introduction

Touch screen devices have evolved rapidly in recent years as demand and manufacture
have skyrocketed. While smartphone capability continues to grow, progress in security has
stagnated. This increasing gap between smartphone ability and security poses a significant
problem. Today, smartphone users keep unprecedented amounts of sensitive data on
their device, including photos, financial records, and private correspondence. Research
into progressing the security of smartphone devices is necessary to protect the sensitive
information of smartphone users.

To counter this issue, researchers and manufacturers have invested time and resources
into developing and improving different types of smartphone authentication methods.
Currently, the most common method of authentication in today’s mobile phones are
knowledge-based methods such as a password or a personal identification number (PIN) [1].
Since this method relies on the user’s own knowledge, it runs the risk of the user choosing
an easy to remember password that can easy be stolen or lost [1]. Due to the insecurity
of knowledge-based authentication, researchers have turned to other methods such as
physiological and behavioral biometrics. Physiological biometrics involve the unique
physical characteristics of an individual such as their face, fingerprints, or iris. Behavioral
biometrics involve how a person interacts with their device such as their typing, swiping,
or tapping patterns [2]. Biometrics authentication applies the user’s unique biological
or behavioral features to phone security, which is more difficult to replicate by attackers
in comparison to knowledge-based authentication [1]. In recent years, biometrics-based
authentication methods have shown promising results when tested with machine learning
and deep learning algorithms. Deep learning algorithm-centric methods have gained
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popularity as of late due to recent tech advances enabling their efficiency, such as an
increased availability of deep neural network (DNN) training datasets and increased
computational power [3].

It has been found that biometrics-based authentication methods can more effectively
secure mobile devices if more research is devoted to assuring that methodologies can be
effective in real-world scenarios [4]. In this paper, the performance of machine learning and
deep learning algorithms with biometrics-based authentication methods will be surveyed
and analyzed. This subject has been investigated and reviewed by various researchers [4],
thus this paper will continue this work by providing a comprehensive review on recent
findings related to popular biometric methodologies with machine learning (ML) and deep
learning (DL) algorithms. Our findings intend to help guide and inform researchers in their
experiments relating to biometrics-based mobile security.

This paper is organized as follows: The background section is introduced in Section 2.
It will discuss the differences between physiological and behavioral biometric dynamics,
presenting examples as well as their individual benefits and limitations. Various types of
DL and ML algorithms that will be spotlighted in the paper will be discussed and explained
on their uses and structures. The bulk of this paper includes the literature review (Section 3),
which has been divided into two main sections: behavioral and physiological dynamics.
Behavioral biometrics constitute Section 3.1, and physiological constitutes Section 3.2.
The behavioral biometrics section is further split up into different behavioral characteris-
tics utilized for authentication: Touch (Section 3.1.1.), Motion (Section 3.1.2.), Keystroke
(Section 3.1.3.), and Gait (Section 3.1.4.). The physiological section follows the same format,
with Face (Section 3.2.1.), Ocular (Section 3.2.2.), and other (Section 3.2.3.). Following the
literature review, we present the limitations of our analyzed studies (Section 4), a discussion
of our findings (Section 5), a review of our research questions (Section 6), and conclude
on what we believe are the most important findings for future work within the study of
mobile biometric authentication (Sections 7 and 8).

This paper provides a comprehensive review of the most prevalent dynamics within
biometric mobile authentication within recent and current research. As part of the process
of this review, observations on trends with machine and deep learning algorithms are noted
with regard to how they best perform with certain biometric dynamics. Other observations
on the use of the datasets and data collection methodology are provided. This review aims
to contribute to a better understanding of biometric mobile authentication with advice on
future research projects based on patterns observed through our comprehensive analysis.

2. Background

Before proceeding with the literature review, it is important to provide an overview
of the types of dynamics that will be discussed as well as some of the notable algorithms
used with them. Physiological biometrics are effective since it is difficult to copy or share a
unique physical characteristic. They are often performed as a method of static authentica-
tion [1]. One physiological dynamic that will be discussed in this paper is facial recognition,
where the user is identified by matching captured images to the image stored in the device’s
database [1]. Facial recognition has benefits in authentication since faces are distinctive and
usually readily available and unintrusive for capturing [5]. Nonetheless, facial recognition
encounters challenges such as facial changes over time [5] as well as requiring high quality
camera hardware that may not be up to par in all mobile devices [1]. Another dynamic
prevalent in physiological biometric authentication is ocular recognition. The human eye
contains many different features that can be used for authentication such as the iris and
retina and has benefits due to the unchanging nature of the iris [5]. Challenges in ocular
authentication include the difficulty of capturing the small retina, which requires specific
hardware that may not be readily available in some mobile devices [1]. Fingerprint authen-
tication is another popular physiological dynamic for mobile authentication and is used to
secure a device by capturing and comparing fingerprint traits such as arches, loops, and
whorls [1]. Fingerprint authentication is considered one of the most acceptable biomet-
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rics today for user authentication [1]. While fingerprint recognition requires additional
sensor hardware, fingerprint sensors are now more common in everyday devices, and are
becoming cheaper and more accessible with time [5]. Other physiological dynamics that
will be discussed in this review include voice authentication and vein recognition. Overall,
physiological dynamics have benefits due to their unique nature to each individual, yet
have the drawback of often requiring additional expensive hardware.

Behavioral biometrics have been called to attention for research since they can be
captured without needing additional hardware or sensors [2] and can be used to dynami-
cally authenticate while the device owner interacts with their phone [1]. Often, behavioral
biometric authentication requires less direct user input than static methods. Behavioral
biometrics-based models record how the user interacts with their device as data and uses it
for authentication [1]. One dynamic that will be reviewed is touch-based authentication.
Touch based authentication uses touchscreen inputs from the device, such as coordinates,
pressure, and touch size to correctly identify the phone user. It is often paired with motion-
dynamics to record phone micromovements while the device is swiped and tapped. Motion
dynamics record data from motion sensors within most smart devices such as the accelerom-
eter, gyroscope, and magnetometer. Motion data can be recorded from how the phone may
be moved while in use. Another dynamic that will be discussed is keystroke authentication,
which often involves a combination of touch and motion data. Keystroke dynamics use
typing data to secure the device. The final behavioral dynamic that will be reviewed is gait
dynamics. Gait dynamic-based methods record walking patterns using the phone’s motion
sensors. Gait dynamics are difficult to imitate, yet require movement to authenticate and
are vulnerable to variation due to the user’s environment [6]. While behavioral biometrics
benefit as a dynamic and hardware-cheap method for authentication, they require events
with the chosen trait to authenticate. If the user is not currently performing actions of the
chosen trait, the behavioral system cannot secure the device, resulting in impractical time
windows to detect intruders [6].

This review will discuss the performance of many different machine learning and
deep learning systems with physiological and behavioral biometric models. ML and DL
algorithms are a type of artificial intelligence (AI) that mimic human intelligence to make
inferences on groups of data. DL algorithms are different from ML in that they make use
of unsupervised learning strategies and can analyze unlabeled datasets [5]. Using DL
strategies, algorithms learn hierarchical representations from large amounts of data with
less human intervention. Prevalent DL algorithms in this review include convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and deep neural networks
(DNNs). DNNs are a type of multilayer perceptron and utilize many hidden layers with
fully connected weights in their architectures. RNNs and CNNs are both different types
of DNN [6]. CNNs are a type of feed-forward network and are made up of stacks of
layers that contain neurons with learnable weights and biases. These layers each transform
3D input volumes into 3D output volumes using a differentiable function [6]. RNNs can
work with both supervised and unsupervised learning tasks and are commonly known
for performing well with sequential data such as text. In unsupervised learning, RNNs
use previous data samples to predict future data sequences, continuously updating and
making predictions in a recurrent manner [6]. An example of a popular RNN used in many
current studies would be a long short-term memory network (LSTM). Prevalent machine
learning algorithms in this review include support vector machine (SVM) and random
forest (RF). SVM is commonly used in classification and regression tasks. To perform
classification, SVM constructs an n-dimensional space on which the datapoints lie and
attempts to find the optimal hyperplane in the training dataset. The optimal hyperplane is
a decision boundary that separates two classes of data and is used to properly classify new
input data. RF is also used for classification and regression tasks. Unlike SVM, RF utilizes
an ensemble learning technique. Multiple models, referred to as “trees”, are constructed
from the data samples and a majority vote is taken on their outputs. Both ML and DL
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algorithms can provide acceptable classification performance depending on the needs of
the authentication problem and each have their respective strengths and weaknesses.

3. Literature Review
3.1. Behavioral Biometrics
3.1.1. Touch Dynamics

Deep learning algorithms have been used to make classification decisions for many
touch-based mobile authentication models. For studies [7–9], CNN architectures were
used for classification. In [7], researchers used their proposed feature representation
tactic, multiple channels biological graph (MCBG), with CNN to enhance their continuous
mobile authentication scheme. MCBG takes touch and motion sensor data patterns and
visualizes them into one of three feature graphs. These graphs are taken as input to
train a CNN algorithm for classification. For model training and testing, a dataset of
real-world touch interaction data from 180 participants was used. Their proposed model
achieved a 96.77% accuracy with both moving and stationary data from the dataset. When
compared with other classification algorithms, CNN had the best authentication accuracy
with each feature graph input. Researchers of [8] evaluated implicit touch authentication
with multidimensional touch and motion sensor data. For their classifier, CNN was used
for its high performance with continuous implicit authentication (CIA) schemes. To use
sequence data as CNN inputs, SE_ResNet with an attention mechanism was utilized to
convert time series information into multichannel data. Datasets used for model training
and testing included their own uncontrolled unlock pattern touch dataset with 50 users
and the controlled BrainRun public dataset, consisting of various touch data collected from
2 k users via five interaction games. In the controlled scenario, an average accuracy of
96.94% was achieved, and in the uncontrolled scenario, a one-time recognition accuracy
of 87.11% was achieved. These results provide evidence for the effectiveness of touch
and motion sensor data with CIA. In [9], researchers analyzed deep models with touch
dynamics authentication. For their model architecture, feature regularization net CNN was
used to extract features from touch behavioral images, and a bidirectional LSTM was used
to extract features from touch behavioral sequences. These features were then regularized
and fused into a single layer before being sent to a K-nearest neighbor (KNN) algorithm for
classification. For model training and evaluation, a multitouch gesture dataset was used,
involving four-finger touch interaction data from 161 participants. The full version of their
model, involving handcrafted feature concatenation and regularization and embedding loss,
was able to achieve an equal error rate (EER) of 1.7%, outperforming comparison models.

Studies [10,11] chose LSTM as a classifier. Researchers of [10] analyzed a touch
mobile authentication system with simple linear touch gestures. For their authentication
model, a Siamese neural network architecture was used for classification that consisted
of two LSTM layers. They trained their model with right swipe gesture data from the
600 subject HuMIdb database. From this touch data, they used 11 temporal features. They
compared their model’s performance with a Gaussian kernel binary-SVM. Results found
that their model’s performance saturated at six samples with 13% EER and outperformed
the comparison SVM model. For [11], researchers presented their database MobileTouchDB
and analyzed a passcode-drawing-based mobile authentication model. MobileTouchDB
consisted of unsupervised touch data from 217 users assigned to draw numbers and
characters on their device. A Siamese LSTM with dynamic time warping (DTW) was
chosen for their classification model. During experimentation, the discriminative power of
different characters as well as the effect of the length of passwords was evaluated. Their
LSTM classification model was compared to four other systems. Results found that their
time-aligned RNN achieved the best EER at 2.38%, and that EER decreased as password
length increased until a length of four.

DNN architectures were used in studies [12,13]. In [12], scrolling and motion sensor-
based touch data were evaluated with a DL model for two-class classification. A DNN
consisting of three dense layers with either 64 or 128 nodes in each layer was used as a
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classifier. Scrolling and motion sensor data from the Hand Movement, Orientation and
Grasp (HMOG) dataset was used for training. Their model was evaluated on performance
with different combinations of scrolling and motion sensor features. It was found that
while more features did not guarantee better performance, pairing some motion sensor
data with scroll data resulted in a better performance than scroll data alone. Gyroscope and
scroll features combined resulted in the best performance with 80–81% average precision
and 89–90% average accuracy. Other studies using the HMOG dataset are compared based
on performance in Table 1. In [13], DL architecture was evaluated with their touch-stroke-
based continuous authentication model, smart continuous authentication system (SCAS).
The Touchalytics dataset containing touchscreen interaction and navigation data from
41 participants was used. Their DL architecture consisted of a first layer, which took
portions of each stroke event as input data for their algorithms, and two hidden layers
involving leaky rectified linear unit (Leaky ReLu) activation functions at each layer and
SoftMax activation function at the output layer. Their model was able to achieve a testing
accuracy of up to 94% with an average EER of 3.4%.

In studies [14,15], researchers chose multilayer perceptron (MLP) as a classification
algorithm. Researchers of [14] evaluated a touch-and-motion sensor-based continuous
authentication scheme. For their model, random forest was used to detect the motion
state of the user, and MLP was used to authenticate the user with a model trained from
their detected motion state. A cloud-based server was used to facilitate the registration
and continuous authentication phased for their model. For model training and testing,
the study used an unsupervised dataset consisting of touch and motion sensor data from
20 participants. Results found that their model with MLP classification was able to achieve
an accuracy of 95.1% while using accelerometer and gyroscope data. MLP was able to
outperform three other comparison algorithms. In [15], researchers proposed TouchMetric,
an application designed to test machine learning algorithms with touch dynamics authenti-
cation. For their evaluation data, a thirty-four-subject dataset consisting of touch activity
data from three categories (move activity, swipe activity, and type activity) was used to
train and evaluate their models. Results from this study found that MLP was the only
classifier of six to correctly classify both authenticated and unauthenticated users.

Studies [16–19] used other types of deep learning architectures and algorithms for
classification. In [16], researchers proposed their touch-stroke-based two-class authenti-
cation model, kernel deep regression network (KDRN). Their proposed KDRN utilized
stacking-based representation learning, consisting of multiple hierarchical layers of kernel
ridge regression (KRR) trained analytically and independently. For training and testing, the
Touchalytics dataset consisting of vertical and horizontal touch strokes from 41 participants
was used. When compared with MLP, SVM, and radial basis function (RBF) kernel KRR,
their KDRN model achieved the best results in all scenarios with an intra-session EER of
0.01 + −0.02%. KDRN produced the best EER performance between reviewed studies
using the Touchalytics dataset as demonstrated in Table 2. For study [17], researchers
proposed a continuous authentication scheme utilizing touch gesture dynamics. In this
scheme, a radical basis function network (RBFN) with particle swarm optimization (PSO)
was used for classification. PSO + RBFN was compared to four other classifiers, including
decision tree (DT) J84, JRip, back propagation neural network (BPNN), and naïve Bayes
(NB). To train their models, a dataset was collected from 20 participants tasked with per-
forming various touch input such as single touch, multitouch, movement, and pattern-lock.
PSO + RBFN was found to have the best performance with 2.0% FAR, 1.9% FRR, and 1.95%
AER. In study [18], researchers proposed a touch stroke authentication model based on
auxiliary classifier-generative adversarial network (AC-GAN). Their AC-GAN model con-
sisted of a generator, discriminator, and a composite model with DNN structure in both the
generator and discriminator. For model evaluation and training, the Touchalytics dataset
was used. Authentication evaluation was performed by randomly selecting 10 subjects
from the dataset to provide genuine user data, while the AC-GAN generated a balanced
amount of synthetic imposter data to test against. Their model achieved EER, ranging from
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2% to 11%, between subjects with a median of 7%, providing comparable performance to
other touch stroke authentication systems. Researchers in study [19] proposed a continuous
touch authentication system via a deep autoencoder with SoftMax regression (DAE-SR).
For their model, butterfly optimization algorithm (BOA) was used to extract features before
sending the input to DAE-SR for classification. Ten subjects’ data from the HMOG dataset
were used for model training and evaluation, where touch interaction and motion sensor
data in controlled walking and sitting scenarios were collected. Their proposed model was
able to outperform comparative classifiers SVM and KRR in both scenarios, with a best
accuracy of 0.970 in sitting and a best EER of 0.030 in sitting.

Many other studies working with touch-based mobile authentication chose machine
learning classifiers to make their authentication decisions. Studies [20–24] implemented
SVM classifier in their models. In [20], researchers created an android app unlocking
mechanism that utilized behavioral biometrics and ML for enhanced application security.
Their application used pattern unlock to collect touch biometrics data and was evaluated via
one class SVM (OC-SVM) and K-means ML algorithms. Their application and methodology
were evaluated via 64 users and resulted in 93.7% true positive authorizations and 86%
true negative authorizations. Touch biometrics data collected via pattern lock were also
tested with OC-SVM in [21]. Researchers in this study aimed to address security issues
with pattern lock via context awareness and fine-grained feature detection. In their model,
motion sensor data collected from 77 users performing pattern lock input were used to
identify posture context. Segmentation of pattern lock features via polylines enabled
an improved accuracy and fine-grained detection. When this model was tested with
different classifiers, OC-SVM outperformed. Their model was able to effectively improve
pattern lock authentication with an EER of 5.1139% with context awareness and 98.96%
accuracy with S pattern. In study [22], researchers tested SVM and Gaussian mixture model
(GMM) with swiping biometric data from four different benchmark datasets: Serwadda,
Frank, Antal, and the UMDAA-02 database. While SVM performed best with stable users,
GMM performed best with unstable users. When fusing both SVM and GMM, the model
produced better results overall in all sessions and datasets. Researchers found that the best
performing operations were horizontal swipe gestures, and that landscape mode provided
more stability. Their model with SVM and GMM fusion in intra-session scenarios was able
to achieve 3–6% EER on the Serwadda dataset and around 3% EER with the Frank dataset.
For [23], researchers Li et al. analyzed touch behavioral authentication when used with
email application usage data. For their model, they collected touch action data from sixty
participants in three scenarios: email usage, social networking usage and free usage. Five
classifiers were compared on their performance while authenticating the collected data. A
best average error rate (AER) of 2.9% was achieved by SVM classifier with email usage
data. Researchers of [24] proposed a mobile authentication model via touch operations.
Data from 10 subjects were collected while performing tasks such as tapping, swiping, and
rotating. SVM classifier achieved better precision in single operations, but achieved a better
accuracy when combining operations. The best accuracy for their model was 97.7% when
tested with double tap and rotation data.

Studies [25–27] chose random forest as a classifier. In [25], researchers investigated
the use of touch swipe and micromovement biometric data for authentication. For data
collection, 40 subjects were tasked with answering a questionnaire using a slider. The
data were divided into swipes and then extracted for features. For evaluation, many
one-class and two-class classifiers were tested for user authentication. Results found
that constrained horizontal swipes were effective with both one and two-class classifiers,
and that accelerometer data improved performance. Random forest provided a best EER
of (0.002 ± 0.000) with five swipes and eleven features. Researchers of [26] proposed a
risk-based continuous authentication scheme with touch and motion data collected from
unrestricted pin entry. Data were collected from 95 subjects in three scenarios: sitting,
standing, and walking. These data were used to train a naive Bayes (NB) classifier, a
neural network (NN), and a random forest classifier. Results found random forest to have
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the best and most consistent results in all scenarios due to its ability to reduce variances
and tune to overfitting. With 15 samples, RF achieved a highest TAR of 91.79%. For [27],
researchers proposed an authentication scheme that identified hand motions (HM) and
hold posture (HP) via touch and motion sensor interaction data for user verification. The
study aimed to create a model that could authenticate in both dynamic and static scenes
without constrained environments and interactions. For data collection, ten students
posed as smartphone users and four researchers posed as imposters. KNN, SVM, and
RF were trained and tested with the collected data, and all achieved above 94% accuracy,
demonstrating the effectiveness of HMHP features. RF had the highest performing metrics
with 0.99 AUC and >0.1% EER.

Researchers of [28–30] chose other ML classifiers for their models. In study [28], a
continuous touch-dynamics authentication method was studied. Researchers used the
Touchlogger application to collect background touch data during phone usage. For data
collection, 14 participants collected general usage data over the course of two weeks,
consisting mainly of single touch actions. RF, KNN, gradient boosting classifier (GBC),
and linear SVM (L-SVM) classifiers were evaluated with these data. While RF and GBC
had similar accuracy, GBC was chosen as the optimal classifier due to a faster performance
with an average accuracy under the ROC curve (AUC) of 0.9692 and a learning time of
117 s. For [29], researchers attempted to create a privacy-preserving global continuous
authentication model using touch dynamics. To achieve this, base features would be
extracted from initial user sessions. Behavioral embedding was then performed, in which
current session data would be transformed and embedded into past datasets. The global
model would be trained on this embedded dataset. A total of 9 k subjects were tasked with
data collection. Their method was tested on three algorithms: XGBoost (XGB), linear GBC,
and DNN. The best results were achieved with L-GBC with an AUC of 0.913–0.921%, and
an EER of 15.3–15.9%. Gradient boosting methods both outperformed the DNN. When
compared with state-of-the-art (SOTA) techniques with OC-SVM and isolation forest (IF),
their methods significantly outperformed. A touchscreen authentication model utilizing
biometric information from both a smartphone and a smartwatch was proposed in [30].
For their model, a user performs a touch swiping task on the smartphone while wearing
a smartwatch. The phone collects touch data while the watch collects motion data via
accelerometer and gyroscope sensors. The scheme performs the authentication process
using a server. Their server registers the user templates, stores data, and makes the
authentication decision. The data flow for this authentication process is demonstrated in
Figure 1. A Gaussian mixture model was used as a classification algorithm. To collect a
dataset for their study, 20 volunteers were instructed to swipe on a Samsung device with
three fingers in an L shape repeatedly for 120 times. Their model was found to perform
with 91.5% authentication accuracy and resistance to attacks with only a 2.47% average
attack success rate.
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3.1.2. Motion Dynamics

Deep learning algorithms are a popular choice for authentication in many recent
studies involving motion dynamics. In studies [31–36], CNN was used to accomplish
authentication. Hybrid models involving CNN feature extraction and SVM classification
were noted frequently. Researchers of [31] aimed to combat DL vulnerability by testing
a CNN model against adversarial attacks. Their authentication model was based on ges-
ture authentication via the usage of time-series triaxial accelerometer data. To build their
dataset, 16 users held a smartphone and traced a gesture in the air. A one-dimensional-CNN
(1D-CNN) and an SVM were trained and tested on this data for authentication. Adversarial
samples generated by deep convolutional GAN (DC-GAN) were used to evaluate CNN’s
robustness against adversarial attacks. Their CNN model slightly surpassed their SVM
model with an accuracy range of 90% to 94% after hyperparameter fine-tuning was per-
formed. Their CNN model was also able to resist adversarial attacks with a 90% accuracy
facing poisoning attacks and almost completely overcoming evasion attacks. In study [32],
researchers aimed to enhance the representational power of features and decrease the
computational cost of continuous authentication models. Their model, SCANet, utilized
a hybrid model involving a two-stream CNN based on depthwise separable convolution
to extract features with high discriminability and an OC-SVM for classification. Their
dataset included motion sensor data collected from 100 volunteers who performed tasks
such as reading, writing, and navigation. When compared with other models, their CNN
was able to achieve best accuracies of 87.53% and 90.04% in 2 s and 5 s time windows,
respectively. A similar hybrid model and dataset were used in study [33]. Researchers
proposed a continuous mobile authentication scheme using motion patters. A Siamese
CNN performed feature extraction and OC-SVM performed classification. The HMOG
dataset was used to evaluate their model. Their scheme produced a highest authentication
accuracy of 97.8% with a sampling frequency of 25 Hz and a window size of 1 s in an
analysis of all scenarios combined. Researchers of [34] also used a CNN–SVM hybrid model.
Their approach generated grayscale images based on three-axis motion sensor signals from
a single tap touch action and used these images to discriminate users. Touch data in the
sitting position from the HMOG dataset were utilized for this study. A six-layer CNN
model performed feature selection and an SVM was trained for classification. Their model
was compared to LSTM feature and handcrafted feature models. Overall, their hybrid
model significantly outperformed, with 96.72% accuracy. For study [35], a hybrid model for
real-world mobile authentication was proposed. This model was aimed to combat issues
with noise-in-motion sensor data when collected in real-world settings. A four-layer CNN
was chosen to perform feature extraction and an SVM was used for classification. This
CNN + SVM architecture is illustrated in Figure 2. A variational mode decomposition
function (VMD) was used for data de-noising and signal enhancement. For their dataset,
1516 participants collected unlabeled and unsupervised motion sensor data over the course
of one week. In comparison to other models using only ML, their CNN + SVM model
outperformed with 95.01% accuracy. In [36], researchers proposed DeFFusion, a continuous
mobile authentication scheme using motion sensor data. Their dataset consisted of time-
domain accelerometer and gyroscope data collected from 100 users tasked to perform three
common mobile phone tasks. These data were then converted into frequency data, from
which a CNN extracts features and then fuses them to train an OC-SVM for classification.
Results from this study found that when compared to OC-SVM, KNN, RF, and DT features,
their CNN-based feature model performed the best with the SVM classifier. Their model
produced the best authentication metrics of 1.00% EER, 1.42% false acceptance rate (FAR),
and 0.75% false rejection rate (FRR).
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Studies [37–40] used RNNs such as LSTM for their authentication models. AutoSen,
a continuous mobile authentication model utilizing motion sensor data, was proposed
in [37]. For this model, data were captured implicitly without constraints on activity to
preserve a realistic authentication scenario. Their dataset consisted of motion data from five
smartphone sensors collected from 84 participants. An LSTM-RNN was used to capture be-
havioral traits directly from this dataset. Three different LSTM architectures were compared,
including simple LSTM, bidirectional LSTM, and multilayer LSTM. Their analysis found
that using data from only three sensors (accelerometer, gyroscope, and magnetometer)
produced the best results. Multilayer LSTM was used for further authentication analysis
and was able to achieve FRR 0.96%, FRR 8.08%, and EER 0.09% at 0.5 s frequency intervals.
In study [38], DeepAuthen was proposed, utilizing motion sensor data for continuous
authentication. Their model utilized DeepConvLSTM, a hybrid architecture consisting of a
three-layer CNN tasked to handle spatial data and a one-layer LSTM to handle temporal
data. Motion sensor data from the HMOG, UCI-HAR, and WISDM-HARB datasets were
used to train and test their model. For evaluation, their CNN + LSTM model was com-
pared to individual CNN and LSTM models. DeepConvLSTM outperformed the baseline
models with a highest accuracy of 99.99% (±0.030%) and an EER of 0.01% (±0.060%) in the
navigation during a sitting scenario from the HMOG dataset. Researchers of [39] proposed
DeepAuth, an LSTM-based continuous authentication scheme using passive user behavior
while online shopping. For their dataset, motion sensor data were collected from 47 users
while browsing the Target application. Discrete Fourier transform (DTF) was then used to
convert time signal data into frequency signals. An LSTM received these data for authenti-
cation. Their LSTM model was compared to four other baseline models: SVM, RF, logistic
regression (LR), and GBC. Results found that DeepAuth outperformed the baselines and
was able to detect both micro- and macro-movement patterns. Their highest metrics were
92.73% negative accuracy, 99.20% positive accuracy, 95.85% F1 score, and 99.05% AUC.
In [40], researchers detailed a large-scale study on deep learning with human kinematics,
proposing an active mobile authentication scheme via motion sensors. Their model used
a specialized shift-invariant dense clockwork RNN for feature extraction and a GMM for
classification. To test their model, researchers in this study created a dataset consisting
of unrestricted motion sensor data collected from 1500 volunteers. When compared with
other temporal models, their dense clockwork RNN produced the best accuracy with GMM.
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The best metrics from their authentication evaluation included an EER of 18.17% and a
human-targeted translation error rate (HTER) of 19.29%.

Table 1. Comparison of studies with HMOG dataset [12,33,34,38].

Study Algorithm Accuracy (%)

[12] DNN 89.90
[33] CNN + OC-SVM 97.80
[34] CNN + SVM 96.72
[38] LSTM 99.99

Table 2. Comparison of studies with Touchalytics dataset [13,16,18].

Study Algorithm EER (%)

[13] DNN 3.4
[16] KRR 0.01
[18] AC-GAN 7.0

Researchers of [41,42] used other deep learning algorithms in their models. In [41],
researchers evaluated a continuous mobile authentication model using deep learning
autoencoders. Their scheme utilized a cloud system to manage communication between
their classification algorithm and their collected data. For evaluation, this study used
motion sensor data from two public datasets intended for continuous mobile authentication:
the HMOG dataset and a crowdfunded dataset with data from 20 subjects. Their deep
learning classifier with autoencoders was trained and tested on these datasets. Results
found that their model was flexible enough to handle different authentication contexts, with
an EER of 2.2% with five layers and 15 min intervals between model rebuilds. Researchers
of [42] proposed a mobile authentication scheme utilizing the motion sensor data collected
from the action of turning over a mobile device. In their dataset, 19 volunteers were
instructed to turn their mobile phone over multiple times in different positions, from which
accelerometer and gyroscope data were collected. Their classifier, a DNN, was trained
with custom movement samples from this dataset. Results from this study found that their
model produced viable metrics in both sitting and standing postures and was stable over
time, with best metrics of 94–98% accuracy and 9–1% FRR and FAR.

Machine learning is also a popular method of classification for motion biometrics.
Studies [43–46] used SVM classifier. In [43], researchers proposed a continuous authenti-
cation scheme via motion activity in different contexts. Their dataset consisted of motion
sensor data from ten participants performing six different activities: walking, sitting, stand-
ing, running, and moving upstairs and downstairs. Three classifiers were tested with their
authentication model: SVM, DT, and KNN. SVM achieved the highest accuracy results
in all six activities between the comparison algorithms. SVM was decided to be the best
for on-device user authentication with an overall average recognition accuracy of 97.95%.
Researchers of [44] proposed RiskCog, a mobile authentication scheme using motion sensor
data from both the mobile device and a smartwatch wearable device. Binary SVM with
RBF kernel was used as a classification algorithm. Their model was tested with motion
sensor data from six different public datasets. Results found that RiskCog was able to
achieve higher accuracy rates than comparison studies, with 93.77% in steady conditions
and 95.57% in moving conditions on dataset IV. Dataset IV consisted of data collection over
10 days from 1530 users. RiskCog was also able to resist brute force and mimicry attacks.
Study [45] proposed SmartCAMPP, a continuous mobile authentication system via motion
sensors. SmartCAMPP authenticates users by encrypting and preprocessing accelerometer
and gyroscope data before authenticating with an ML classifier. Their model was tested on
the Sherlock dataset, consisting of motion sensor data from 52 users over 500 h. Three dif-
ferent classifiers were tested, including SVM, RF, and LR. In baseline authentication results,
SVM achieved a highest accuracy of 82.26%. SmartCAMMP’s results produced an accuracy
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of 76.85%, with a 5% reduction due to encryption. For [46], researchers analyzed behavioral
biometrics to increase mobile authentication accuracy as compared to physiological. Their
study analyzed a model based on accelerometer and gyroscope motion sensing. A dataset
consisting of data recorded from 60 users lifting a phone to take a call was used to train
and test four classifiers: SVM, KNN, MLP, and NB. Results found that while MLP had the
highest average accuracy, it carried a heavy data processing footprint. SVM was claimed to
be the best performing algorithm in both accuracy and efficiency with around 92% accuracy
in both simple and complex scenarios.

In [47,48], researchers used RF as a classifier. For study [47], researchers proposed
ADLAuth, an implicit mobile authentication scheme using motion sensor data from both
the mobile phone and a wearable device. The methodology for their authentication sys-
tem is shown in Figure 3. Their model used three different datasets ranging from 9 to
59 participants performing static and dynamic activities. SVM, DT, and RF classifiers were
tested with the model and datasets. Results from the datasets only using smartphone
sensing data achieved highest accuracy results with a random forest classifier. MobiAct
dataset + RF classifier achieved the highest accuracy of 97.13%. In [48], AnswerAuth, a
bimodal authentication scheme, was proposed. AnswerAuth used motion sensor data col-
lected during the action of lifting a phone to take a call to discriminate users. Their dataset
included accelerometer, gyroscope, magnetometer, and gravity sensor data collected from
85 participants in three different scenarios. Six different ML classifiers were tested with this
model. Results found that RF outperformed the other classifiers with a highest accuracy of
99.35% with reduced features. Throughout the reviewed motion-sensing authentication
schemes, it is observed that the accelerometer and gyroscope are of the most popular chosen
motion sensors, as demonstrated in Figure 4.
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3.1.3. Keystroke Dynamics

Many keystroke dynamics-based authentication methods have used deep learning
algorithms to make their authentication decisions. Studies such as [49–54] used RNN-based
deep architectures. In [49], researchers tested many types of touch modalities, including
keystroke on their effectiveness with various motion sensors. They used HuMldb, a large-
scale database including over 600 subjects. For the keystroke data, timestamp and keypress
data were recorded in a fixed text scenario. Individual LSTM-RNN authentication models
were trained with each modality and then fused at score level. Compared to other touch-
based modalities, keystroke outperformed with a best EER of 4.62% when touch data were
fused with accelerometer, magnetometer, and gravity sensor data. It was also found that the
fusion of modalities led to a better performance. Similar results were found in [50], where
researchers also used an LSTM-RNN model with Siamese architecture. Keystroke touch
and temporal data along with motion and GPS sensor data were collected continuously in
a free text scenario from a dataset of 37 subjects. Each modality was individually evaluated
on their performance and fused. Their Siamese LSTM network was trained with deep
temporal features of the various modality combinations. Results found that a highest TAR
of 99.98% was achieved with all eight sensor modalities fused. Performance saturated
after five modalities were used, with a 99.80% and 97.15% TAR at 0.1% FAR with 3 s
and 5 s, respectively. In [51], researchers tested an RNN and other algorithms for mobile
identification via keystroke and touch dynamics. The dataset used included keystroke
and swipe data from 31 subjects collected in a supervised environment. Multimodal
features were fused at score level and then used to train with various algorithms. RNN
was able to achieve the best classification results with unimodal classification as well
as multimodal classification. With all features fused late using weighted product rule,
RNN achieved slightly better results than CNN with 95.29% accuracy and 1.78% EER.
In [52], researchers proposed TypeNet, where an LSTM-RNN architecture was used for
keystroke authentication. In the mobile scenario, free-text keystroke temporal data collected
from 26,000 participants in the Palin et al. dataset was used for training an RNN with
three loss functions. Their model was able to achieve 9.2% EER in mobile authentication
with a triplet loss function when balancing enrollment data and performance. In [53],
weighted results from and RNN and a SVM were used to authenticate keystroke data. A
small dataset consisting of motion sensor, touchscreen, and temporal data from 10 users
was used to train the models. It was found that a combination of motion sensor and
touchscreen data had the best results, with 93.9% accuracy. Researchers of [54] proposed
a touch database, BenchPassDB, which was evaluated with an LSTM-RNN classification
model. BenchPassDB consisted of touch and motion sensor data from eight different
touch interaction tasks performed by 81 subjects. Between their eight different touch tasks,
keystroke interaction had the best authentication performance with 68.72% AUC. Their
results found that discriminative ability was enhanced by a fusion of modalities.

Other methods [55–58] used non-RNN deep learning architectures. In [55], a CNN
algorithm with transformer architecture was used for classification. The Aalto mobile
keystroke database was used for model training and experimentation, consisting of free-
text keystroke data from 260k subjects. Five timestamp-based features were extracted from
each keypress. Results from their model were compared with the TypeNet [52] RNN model
on the Aalto database. Their deep transformer architecture outperformed TypeNet on
10 enrollment sessions with 3.15% EER compared to 8.00% EER. For [56], a DNN classifi-
cation model was created, consisting of layers of restricted Boltzmann machines (RBMs).
The Stanford TapDynamics dataset was used for training and testing, consisting of tapping
timestamp and accelerometer sensor data in a fixed PIN scenario. The results of the DNN
model were compared with an SVM algorithm. Their model outperformed the SVM with a
best EER of 2.8% on all 35 considered features. In [57], Kcollector was presented, using a
multiview bagging with DL structures for classification. The DL structures used for the
model consisted of gated recurrent unit multiview bagging RNNs (GRU-BRNN). Keystroke
and accelerometer sensor data were collected from 26 subjects in a free-text scenario for
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model training and experimentation. Compared to shallow machine learning approaches,
their model outperformed with a best EER of 8.94% and 94.07% accuracy. In study [58],
researchers evaluated a small dataset of five subjects with MLP for keystroke-enhanced
PIN authentication. When compared with three other classifiers (sequential minimal opti-
mization (SMO), naïve Bayes, J-48), MLP performed the best with all 40 pressure, size, and
time features, achieving a 5.43% EER.

Some machine learning methods also achieved promising results with keystroke-
authentication and were primarily tested with fixed keystroke data [59–62]. In [59,60],
random forest was chosen as a classifier. Researchers of [59] used keystroke touch pressure
and time features to enhance PIN authentication. Antal et al.’s 42 subject dataset consisting
of fixed typing data was used to train a random forest classifier. Results found that random
forest performed best while combining pressure and timing features with an EER of 2.3%.
In [60], researchers used the same dataset as [59] to evaluate random forest. In this study,
finger area was used as a feature, along with timing and pressure features, adding up
to 71 features tested. Five statistical methods were then used on the dataset to produce
19 more features. Along with random forest, four other classifiers were evaluated with
the dataset. Random forest outperformed the other classifier with 94.26% accuracy, using
all 90 features. For study [61], a multiclass SVM was evaluated for a fixed-text keystroke
authentication scenario. Researchers collected data in a fixed-text scenario from 94 subjects.
Thirty-six optimal features involving touch pressure, size, and coordinates features were
selected via maximum relevance minimum redundancy (mRMR) wrapping. Linear SVM
and RBF kernel SVM were evaluated on these features. SVM with RBF kernel has the best
results, with 97.4% accuracy due to its generalization power. In [62], researchers used PCA
(principal component analysis) with keystroke data to enhance PIN authentication. Motion
sensor data from accelerometer, gyroscope, and others were collected from 12 subjects
while entering a PIN to form their dataset. A graphic visualization of each subject’s data
using PCA is shown in Figure 5. For evaluation, PCA was compared with Kernel-PCA
(K-PCA), OC-SVM, and local outlier factor (LOF). PCA achieved the best performance with
an EER of 5% with four-digit pins and 4% with six-digit pins. PCA also achieved the lowest
processing time.
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3.1.4. Gait Dynamics

Deep learning algorithms have been used in many studies on gait-based mobile
authentication schemes. CNN-based models [63–65] have been used in gait dynamics
authentication. IDNet, a gait mobile authentication scheme, was proposed in [63]. This
model utilized a CNN for universal feature extraction and an OC-SVM for classification.
Accelerometer and gyroscope data were collected from 50 subjects over a six-month period
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to form their dataset. IDNet was built to be able to classify gait cycles regardless of
smartphone orientation. For evaluation, CNN features were tested with multiple classifiers,
and their IDNet was compared to other studies. Results found that all classifiers performed
better with CNN features as opposed to manually selected features and that CNN features
with SVM classifier had the best performance. Overall, IDNet outperformed the comparison
literature with less than 0.15% FRR and FAR in fewer than five walking cycles. In [64],
researchers explored the use of deep metric learning with gait-based mobile authentication.
In this study, three CNN architectures (LeNet, VGG, and MobileNetv2) were compared
based on their authentication performance with different Siamese networks (baseline,
Siamese multiclass, Siamese binary-class). Four different datasets consisting of gait sensor
data ranging from 20 users to 744 users were utilized to train the models. Results found
that all three architectures had the best authentication performance with Siamese binary
class and joint loss function. A best accuracy of 0.981% was achieved on the ZJU dataset
with VGG8 architecture. For study [65], a model identification model using CNN and gait
dynamics was proposed for smartphone-based sensing applications. This system extracts
statistical and discrete Fourier transform (DFT) features from accelerometer data, which
are then used to train a CNN model for identification. The Kaggle dataset, a real-world
benchmark dataset consisting of accelerometer data collected from 387 users, was used in
this study. For evaluation, their CNN model was compared to SVM, RF, DT, LR, and KNN.
CNN performed the best on average with a highest accuracy (0.9882 ± 0.004), precision,
recall, and F1.

Many studies [66–68] chose LSTM as a viable algorithm to pair with gait mobile au-
thentication schemes. In study [66], a gait mobile authentication method utilizing three-axis
accelerometer data was proposed. For this model, feature extraction was performed in the
preprocessing stage. A hybrid deep recurrent neural network (DRNN) with a hidden LSTM
layer was used for classification. A twenty-one-subject dataset consisting of flatland walk-
ing data in two smartphone-holding positions was used to train their model. For evaluation,
the performance of their model was tested in different architecture parameters as well as
between the two smartphone-holding positions (pocket and handholding). Results found
that in handholding position, increasing the number of LSTM blocks resulted in a better
classification rate and that two hidden layers was optimal for rate and evaluation time. For
gait identification, their LSTM model performed better than RF. For gait authentication,
their model was able to achieve a higher than 95% accuracy for almost all subjects in pocket
position and 90% or higher in handholding position. Researchers of [67] continued their
previous research on their smartphone imposter detection (SID) model, focusing on deep
learning algorithms and protecting user data privacy. This study utilized the WALK section
of the HAPT dataset, consisting of motion sensor data collected from 30 participants with
smartphones strapped to their waists. Their model was evaluated in two scenarios: IDaaS,
a binary classification scenario, and LAD, a scenario in which only user data are available
for training. LSTM and SVM were compared in the LAD scenario and MLP was compared
to SVM in the IDaaS scenario. DL algorithms achieved a better imposter detection than
the ML algorithms in both scenarios with regard to a balance of execution time, memory
usage, and accuracy. LSTM with prediction error distributions was able to achieve an
accuracy of 90.24% in the LAD scenario with a 200 reading window. For [68], researchers
proposed ContAuth, a continuous mobile authentication tested on gait, breathing, and
electromyography (EMG) data. The architecture for this model used an LSTM for fea-
ture extraction and a stochastic gradient descendent (SGD) algorithm for classification.
Incremental learning algorithms were also employed when encountering a new class. To
train their model, four small-scale breathing datasets, an EMG dataset, and the IDNet [63]
gait dataset were used in separate evaluations. With incremental learning and gait data,
ContAuth was able to achieve an authentication accuracy of 97%, the highest between the
dynamics tested. The performance of ContAuth is compared to other reviewed studies us-
ing the IDNet dataset in Table 3.Hybrid classification models using LSTM and CNN are the
most popular choice for gait authentication schemes [69–73]. Researchers of [69] evaluated
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the performance of mobile gait recognition in unconstrained conditions. Their hybrid DL
architecture included a CNN for feature extraction and a two-layer LSTM for prediction.
Accelerometer and gyroscope mobile sensor data from the WhuGAIT datasets were used
to train and evaluate their model. This collection of datasets consists of mobile gait data
collected from 118 participants in the wild. For evaluation, multiple combinations of DL
methods were compared, and LSTM was evaluated with three different architectures: one
layered, bidirectional, and two layered. Results from this study found that the accelerome-
ter sensor better captured gait features when compared with gyroscope, but that they were
complementary overall. LSTM and CNN were found to be effective with extracting inertial
time series gait data. The hybrid CNN + LSTM model also outperformed standalone CNN
and LSTM models, with a 93.75% authentication accuracy with vertically aligned samples.
In study [70], an implicit gait mobile authentication model using edge computing was
proposed. Their scheme involves generating their authentication model on a cloud server
and deploying it on an edge device (mobile device) to preserve efficiency and computing
resources. Their authentication model involves a CNN for feature extraction and an LSTM
for classification, and the model was trained and tested using gait data from the IDNet
dataset [63]. A visual diagram of the gait cycle is demonstrated in Figure 6. SVM and
CNN were used as comparison baselines for model evaluation. The CNN–LSTM hybrid
model outperformed with an accuracy of 97.7% and did not experience a significant dip in
performance when less training data were incorporated. For [71], a cross-modal mobile
authentication system via DL was evaluated. Their model consisted of a time-distributed
cross-modal architecture with CNN feature extraction and LSTM interpretation. To train
their model, researchers in this study used a fifty-person dataset consisting of walking data
captured from accelerometer and gyroscope sensors. Their cross-modal CNN–LSTM model
outperformed comparison algorithms (K-neighbors, DT, RF, CNN + PCA + OC-SVM) with
a 92.3% accuracy. GaitPrivacyOn, a gait mobile authentication scheme, was proposed
in [72]. This model utilized an architecture with two modules. In the first, an autoencoder is
used to transform raw gait data to preserve user privacy. In the second module, a Siamese
CNN–RNN is utilized for the model’s verification system consisting of three convolutional
layers and a bidirectional LSTM layer. Two public datasets consisting of motion sensor
data from gait activity were used to train their model. Results found that this model was
able to differentiate activity with 99.2% AUC and authenticate users with AUC ranging
from 91.5% to 99.9%. In [73], researchers proposed a hybrid deep learning model (HDLN)
for gait mobile authentication. Their hybrid architecture consisted of two LSTM layers and
three one-dimensional CNN layers for feature extraction, followed by a convergence layer
and a SoftMax layer for interpretation. A specialized segmentation algorithm was used to
divide gait cycles to use as input for the HDLN. Accelerometer and gyroscope data from
40 individuals performing gait activity were used to train their model. A visualization of
the gyroscope signals of three different subjects is presented in Figure 7. In comparison to
other systems, HDLN performed the best with an accuracy of 95.79% and a run-time of
2.92 s. Using the IDNet dataset [63], this model was able to produce a 99.65% accuracy in a
more realistic scenario.

Table 3. Comparison of studies on IDNet dataset [68,70,73].

Study Algorithm Accuracy (%)

[68] LSTM + SGD 97.00
[70] CNN + LSTM 97.70
[73] CNN + LSTM 95.79
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3.2. Physiological Biometrics
3.2.1. Facial Dynamics

Capturing facial features has been a popular method of mobile authentication in recent
years. Many studies [64,74–77] have utilized the CNN algorithm for their authentication
models. In [74], a cloud-based mobile face authentication system is proposed. On the user
side, the device owner captures a face picture which is resized and sent to the cloud for
authentication. On the cloud side, CNN is used for feature extraction and Softmax performs
the classification. A total of 2800 facial images from 200 individuals in the FEI Face database
was used for training and evaluation. The model achieved an accuracy of 99.50% and 0.01%
loss. Efficient mask-net, a CNN-based facial authentication model, was proposed in [75].
The model architecture used a CNN for feature extraction and large margin piecewise
linear classifier (LMPL) for classification. This system intended to authenticate users with
and without face masks. To authenticate masked users, GAN was employed to generate
a full face from the masked image, from which the system authenticates. Images from
Masked Face-Net and Flicker Face-HQ datasets were used to train their model. Results
found that their model was able to outperform other face-mask authentication models,
with 99.53–99.64% accuracy with EfficientNetB0 + LMPL. In study [64], researchers address
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the issue of face detection methods losing accuracy as the face distance is closer to the
camera. They present a CNN-based mobile frontier face detection model. This method
compared Viola Jones and CNN for face detection and alignment. The CNN FaceNet
model was then employed for facial verification. This model was evaluated on a dataset of
40 individuals captured via a front-facing camera in three different distances. Results found
that CNN outperformed Viola Jones for facial detection with a recognition accuracy of
~0.97. When compared with SOTA models such as PCA, latent Dirichlet allocation (LDA),
Fisherface, and Eigen’s face, CNN outperformed with ~0.99 verification accuracy. For [76],
researchers present MobileFaceNets, a class of real-time CNN face verification systems.
For their architectures, residual bottlenecks from MovileNetV2 are used as building blocks.
PreLu is used as a nonlinearity. The primary MobileFaceNet has a large computational cost
and 0.99 million parameters, so MobileFaceNet-M and MobileFaceNet-S were constructed
as well. MobileFaceNet-M removes a linear 1 × 1 convolutional layer after the linear
GDConv layer, and MobileFaceNet-S removes a linear 1 × 1 convolutional layer before
the linear GDConv as well. The MobileFaceNets were compared to baselines such as
MobileNetV, SuffleNet, and MobileNetV2. All models were trained on the CASIA-WebFace
dataset and tested on the Labeled Faces in the Wild (LFW) and Age DB-30 datasets. The
MobileFaceNets achieved an overall better performance compared to baseline studies,
with a highest accuracy of 99.28% on the LFW dataset with the original MobileFaceNet.
Models M and S were able to achieve extremely close results with less parameters and
smaller computational cost. Researchers in study [77] propose a one class autoencoder
regularized CNN (OC-ACNN) for active face authentication. The architecture consists
of three nodes, feature extraction, classification, and decoder networks. In the feature
extraction network, any CNN architecture can be used as the base, but AlexNet, VGGFace,
and VGG16 were used for evaluation purposes. Before feeding input into the classification
network, it is concatenated with a Gaussian vector to act as a pseudo-negative class.
The classification network consists of a one-layer connected classification network. The
decoder network consists of a four-layer CNN. The entire network is trained with two loss
functions and three face datasets: MOBIO, UMDAA-01, and UMDAA-02. The proposed
approach was compared with multiple baselines, including SVM and OC-NN. Overall,
the OC-ACNN approach had superior performance compared to other OC classification
methods on all three databases and all three extractor networks. VGGFace extractor
achieved the best results with the OC-ACNN model on the UMDAA-01 database with
0.9772 ± 0.0213 AUROC.

While CNN alone can provide state-of-the-art mobile authentication, many stud-
ies have paired CNN with other ML algorithms in a hybrid model architecture [78–82].
Study [78] presents a multitask model for mobile authentication via facial attributes. Two
CNN-based architectures are proposed: deep CNNAA and wide CNNAA. Both archi-
tectures consist of an ensemble of multitask DCNNs intended to extract facial attributes,
with parameters varying depending on the facial region which is operated. Attributes
extracted from the CNN architectures are then predicted by linear SVM. Two publicly
available mobile-captured facial video and image datasets, MOBIO and AA01, are used
for the active authentication evaluation problem. Results found that MutliDeep-CNNAA
had better performance since the MultiWide-CNNAA had more parameters and overfit-
ted to celebrity facial images. Overall, their attribute detection models performed better
than comparison methods. In the active authentication problem, their method was able
to outperform previous facial attribute studies. MutliDeep-CNNAA achieved an EER of
0.19–0.20% with the datasets tested. Between the reviewed studies using the MOBIO and
A011 datasets, MutliDeep-CNNA presents the best EER performance as shown in Table 4.
Echoprint, a mobile facial authentication system using both acoustic and visual features,
was proposed in [79]. Echoprint utilizes the frontal camera to capture visual face features.
For acoustic features, inaudible sound is emitted from the device to illuminate the physical
face and capture features from the resulting echo. The architecture for this model included
CNN feature extraction and SVM classification. Forty-five users supplied the data for their
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training set, as well as five nonhuman images to provide sufficient data. Twelve users
joined for model evaluation. Echoprint achieved a mean precision score of 98.05% when
the 12 new users were evaluated on the model and were able to resist spoofing attacks.
When comparing the usage of different features with different classifiers, it was found that
SVM outperformed with CNN features, and that CNN features had the best accuracy rate
overall. In [80], researchers trained and evaluated a small-sized mobile facial recognition
model. Three deep learning solutions were compared for feature extraction in this dataset:
FaceNet (CNN), OpenFace, and gb2s_model. Distance-based classifier (DBC) and SVM
were compared as classifiers. To sufficiently train and test a model suited to scenarios as
realistic as possible, a large sum of facial images was acquired from nine different public
databases. Results found that DL solutions performed better than geometrical and local
binary patterns (LBPs). The largest model, FaceNet, was able to achieve the best results
with less variability between datasets as compared to the other models. When using
SVM matching, system performance improved as compared to DBC. With SVM matching,
FaceNet achieved an EER ranging from 0.00 to 2.56%. Ultimately, it is concluded that the
feature extracting model directly influences results, and that the deeper the model, the
better the results. Researchers of [81] created a model relying on facial recognition and
eye-blinking biometrics to improve dynamic mobile authentication. Two phases make
up their proposed model, with facial recognition performed in phase 1, and eye-blink
authentication performed in phase 2. In phase 1, the face is detected via a histogram of
oriented gradients (HOG) and linear SVM, from which facial landmarks are obtained. A
CNN uses these landmarks to extract facial features, and an SVM performs classification.
In phase 2, LeNet-5 CNN classifies the user’s eye-blinking sequence. Datasets CEW and
ZJU, consisting of eye photos and blinking videos, are used to train their eye-blinking
classification model. Batch normalization was used to increase classification accuracy. Their
model was compared with KNN and CNN + SVM models and outperformed with an FI
score of 98.4% on the CEW dataset and an operation speed of 20 frames per second. In [82],
researchers propose a mobile face authentication scheme via deep CNN with mobile cloud
computing. The architecture of this model includes CNN + local ternary pattern (LTP)
for feature extraction and KNN for classification. Facial images captured on the mobile
device are stored on the cloud, which are preprocessed by LTP and sent to train the DCNN.
The information is decrypted via partially homomorphic encryption (PHE), and the cloud
makes the authentication decision, which is sent back to the device. Five facial datasets,
including ORL, Yale Face database and the Georgia Tech Face database, are used to train
and evaluate the model. The LTP-DCNN was able to achieve high performance in accuracy,
precision, recall, and FI for all databases, outperforming existing methods. Recognition
accuracy under encrypted data averaged 90.90–98.78% between the datasets.

Some studies utilized non-CNN architectures and algorithms for facial authentication
and achieved comparable results [83–85]. A two-step face authentication scheme (TSFAS)
was proposed in [83]. TSFAS utilizes a combination of facial biometrics and pin entry to
enhance mobile banking security. The model begins once the user unlocks their device,
with video feed monitoring their interactions. Model architecture involves facial feature
extraction via denoised autoencoder (DAE). DAE is also used to perform the classification
task. To train and evaluate TSFAS, the MSU-MFSD database was used, consisting of
280 video clips from 35 users as well as attack attempts. Results found that TSFAS was able
to outperform two-faction authentication and hierarchical correlation-based authentication
methods, with the best performing true rejection rates (TRRs) exceeding 92.58%. TSFAS
was also able to resist spoofing attacks provided by the MSU-MFSD database. Study [84]
proposed a generic prototype for a facial biometric mobile authentication model that
preserves user privacy when working with services and transactions. Three components
make up this model: the mobile device, the identity provider (IDP), and the service provider
(SP). The IDP is the software that performs enrollment and authentication, while the service
provider is the client application that facilitates the transaction. This protocol allows mobile
users to authenticate to online services while preserving their privacy. The architecture
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for the authentication model included a C-SVM for multiclass classification. To evaluate
their model, the AT&T Laboratories Cambridge dataset was utilized. After many trails
with different numbers of enrolled users in the authentication system and random users
in the trained algorithm, their model was able to reach acceptable FAR and FRR levels.
With a ratio of 1:2 enrolled and random users, the model was able to achieve an FAR
of ~1%. In [85], researchers presented a continuous mobile authentication scheme with
facial attributes biometrics. The PubFig database, consisting of facial images with labeled
attributes, was used to train the attribute classifiers. This training process involves first
detecting facial landmarks. Then, facial components are extracted. For each component,
features are extracted and then dimensionally reduced with PCA. These features are used
to train the classifiers. SVM with RBF kernel was chosen as a classifier and compared with
many other methods using the MOBIO and AA01 mobile video face datasets. Linear-SVM
on a 0.5 scale was able to achieve a best EER of 0.25%, outperforming the LBF method. The
proposed model was implementable on a mobile scenario with acceptable memory usage,
power consumption, and speed. Throughout the reviewed facial dynamics studies, CNN
was the most popular chosen algorithm for architectures as demonstrated in Figure 8.
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Table 4. Comparison of studies with UMD-AA01 and MOBIO facial datasets [78,85].

Study Algorithm EER (%)

[78] CNN + SVM 0.20
[85] SVM 0.25

3.2.2. Ocular Dynamics

Ocular dynamics are a type of physiological biometric that have been investigated
by researchers for their use in mobile authentication. Many studies [86–89] have focused
on both ocular and periocular regions of an individual’s eye to discriminate users. In
study [86], researchers proposed a novel heterogeny-aware deep-embedding scheme for
mobile periocular recognition. The architecture for this scheme involves a CNN in which
the periocular images pass through. During training, a heterogeny-aware loss function
optimizes feature representations to reduce intra-class variations. To train their model,
three different datasets containing periocular imaging were used. Results found that their
model outperformed comparison models with 99.41% accuracy and 1.32% EER with the
VISOB dataset. Out of the reviewed studies using the VISOB dataset, this scheme produced
the best EER values as shown in Table 5. OcularNet, a CNN-based ocular recognition
model, was proposed in study [87]. This scheme utilizes a periocular region detected
via eye landmark localization. Six overlapping patches are extracted from the periocular
region, from which a CNN model is trained as a multiclass classifier for each patch. Four
different datasets containing ocular imaging are used to train their models. Both ResNet
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and OcularNet architectures are compared on their performance. Results found that
despite being a smaller model, OcularNet was able to outperform ResNet, producing a
lowest mean EER of 1.17% with the Oppo N1 device and the VISOB dataset. Researchers
of [88], following the success of VISOB 1.0, present their findings from their most recent
competition in mobile ocular biometric recognition. This publication first proposes their
new VISOB 2.0 dataset, consisting of selfie image capturing of the periocular eye region
from 150 volunteers for the training set and 100 for the testing set. For the selfie images,
three sets of lighting were taken in burst mode, from which stacks of five images were used
in the dataset. For the competition and evaluation, three teams participated. Team 1 used
five ResNet-CNN models pretrained on the UGGFace dataset and fine-tuned with VISOB 2.
Team 2 utilized decision tree–local binary patterns (DT–LBP), the only non-DL approach.
Team 3 used GoogleNet extraction and LSTM prediction. Results from this study found
that the deep learning approaches achieved better results. Specifically, the ResNet-CNN
team achieved the best results with 5.256% EER and 0.988 AUC with Note4 challenge data.
Researchers of [89] presented an in-depth study comparing multiple deep architectures
for iris/ocular mobile authentication. Many CNN architectures such as VGG, ResNet,
DenseNet, MobileNetV1, MobileNetV2 were compared with NasNet-Mobile and their own
proposed architecture. Their proposed model was based off MobileNetV2, with a drop in
spatial resolution and an increase in feature channels, resulting in a model with the least
number of features and parameters. This model was modified to reduce computational
complexity while retaining a mobile-capable authentication system. The VISOB dataset
was reduced into three sections with around 200–400 participants each to suit their training
and testing needs. Overall, it was found that ResNet-50, DenseNet-50, and the proposed
model performed consistently better than the other comparison models. The study claimed
their proposed model to be the best trade-off between performance and computational cost.
In the subject-independent open set scenario, their model has the best EER values ranging
from 4.65 to 6.57% EER.

Table 5. Comparison of studies with VISOB dataset [86,87,89].

Study Algorithm EER (%)

[86] CNN 1.32
[87] CNN 1.71
[89] CNN 4.65

Other studies [90,91] using ocular biometrics for mobile authentication have utilized
the many details of an individual’s iris to perform user authentication. In study [90],
researchers propose a multi-instance cancellable iris authentication system (MICBTDL).
For the enrollment process, the user device captures left and right iris images. Random
cross-folding is applied, and the images are transformed before being sent to a CNN for
feature extraction. A reference template is generated and sent to a cloud server. The
authentication process runs similarly, but the reference template is sent to the cloud server
to be verified with an artificial neural network (ANN). To train their model, the MMU and
IITD iris databases were utilized, consisting of left and right iris images of 253 subjects in
total. Results found that their CNN extraction method outperformed comparison feature
extraction techniques, and that MICBTDL achieved a fair performance against comparison
studies, with an EER from 0.03 to 0.06% between the two datasets. Another CNN-based
iris authentication system is proposed in study [91]. The architecture of their model
involves a mask region-based CNN (R-CNN) structure that locates and extracts iris features
with regional proposal networks component (RPN). For the recognition process, mobile
inception V4 neural network architecture is fine-tuned and executed. The UTiris dataset,
consisting of 1540 iris images captured from 79 users in non-constraint conditions, was used
to train their model. Results found that their scheme was able to outperform comparison
models with a 99.10% authentication accuracy. The study found their model suitable for
high-performance mobile devices.
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3.2.3. Other Physiological Dynamics

As previously mentioned, biometrics are currently the most prevalent in mobile bio-
metric research, but they are not the only dynamics that have produced viable results for
authentication schemes. Many studies such as [92–95] have utilized fingerprint characteris-
tics for mobile authentication models. In [92], researchers proposed a partial fingerprint
recognition scheme with DL. Zeng et al. recognized that modern mobile fingerprint scan-
ners were not able to capture the entire fingerprint; thus, they created an algorithmic model
built specifically for the recognition of partial fingerprint images. Their model used CNN-
ResNet architecture with cross-entropy and contrastive loss functions. This model was
trained using partial fingerprint images from the NCUT-FR and the NIST-DB4 databases,
consisting of over 9 k fingerprint images in total, with 5 k collected from a touch fingerprint
scanner. For evaluation, their model performance was compared to a reference study that
also used CNN architecture for partial fingerprint recognition. Results found that the
proposed model was able to outperform the reference model with 91.8–93% accuracy on the
NIST-DB4 database. Study [93] proposed FINAUTH, a model aimed to complement finger-
print authentication models and resist puppet attacks with fingertip-touch characteristics.
This model utilized sensors common in mobile devices such as accelerometer, gyroscope,
and magnetometer to capture the fingertip-touch characteristics. For feature extraction,
FINAUTH was tested with time-and-frequency domain features and CNN-learned features
with Leaky-ReLu activation functions. For classification, the study compared the perfor-
mance of four methods: Pearson’s correlation coefficient (PCC), OC-SVM, LOF, and IF. For
the collected dataset, 90 subjects and 15 attackers were recruited separately and tasked with
performing fingerprint smartphone unlock in different holding positions. Results of their
study found that CNN + LOF achieved the most reliable authentication performance and
that CNN features were more discriminative than time–frequency domain features. In the
sitting scenario, CNN + LOF achieved 97.99% BAC and 0.86% FAR. With non-overlapping
subjects in training and testing, CNN-LOF achieved a 95.34% balanced accuracy (BAC)
and 0.9805 AUC. Further testing with CNN-LOF found that FINAUTH was able to resist
replica, puppet, and mimicry attacks. For study [94], researchers proposed a framework to
detect spoofing in fingerprint recognition for mobile banking applications. Their model
architecture first used histogram equalization on fingerprint images to increase contrast
and uniformity before applying a CNN for feature extraction and classification. The CNN
architecture included multiple convolutional layers and a two-unit SoftMax layer for the
two-class problem (live vs. spoofed fingerprint). A total of five different databases consist-
ing of real and spoofed fingerprint images was used to train their model. Results found that
their CNN architecture was able to achieve >99.00% recognition accuracy on all databases,
outperforming comparison SOTA CNN architectures. Spoof-detection rates were overall
improved. C2CL, a contactless fingerprint matching mobile authentication system, was
proposed in study [95]. For preprocessing, their method involved a U-net segmentation
network, multiple image enhancements, and distortion correction and scaling performed
by a spatial transformer network (STN). After preprocessing, a CNN architecture based
on deep print was fine-tuned for the contact–contactless scenario and used to perform
representation extraction. Finally, Verifinger 12.0 Software Development Kit (SDK) was
used to extract minutiae representations from the contactless fingerprint images. A match
score was computed with weighted fusion for classification/matching. Multiple databases
consisting of over 50k contact/contactless fingerprint images were used for the training
and testing of their model. Results found that C2CL was able to outperform previous SOTA
verification results with significant improvement in EER values. On the PolyU database,
C2CL achieved a 0.03% EER and 97.74 TAR @ FAR = 0.01%.

While few, other studies [96–98] have found voice and vein dynamics to be viable for
mobile authentication. Following the COVID-19 epidemic, study [96] aimed to create a
hygiene-aware contactless biometric recognition system utilizing wrist–vein biometrics.
Their model was tested as a recognition system with a mobile application, utilizing wrist
data captured via near-infrared camera with near-infrared lighting. The model architec-



J. Cybersecur. Priv. 2023, 3 248

ture consisted of a CNN algorithm for feature extraction and logistic regression (LR) for
classification. CNN architectures such as VGG16, VGG19, ResNet50, and ResNet52 were
compared in the evaluation stage. To train and test their models, the UC3M-SV2, UC3M-
CV1, PUT, and ImageNet datasets were utilized. Results found that the models were able
to produce viable EER rates in verification evaluation. The ResNet152 architecture achieved
the lowest EER of 0.33% on the UC3M databases and the VGG16 architecture achieved
a 0.58% EER on the raw image UC3M-CV2 database. Researchers of [97] presented a
text-independent speaker authentication scheme for mobile devices. Their method involves
recording voice audio and extracting features to create a voice sample dataset. Audio data
are trimmed for voice segments and normalized, and a linear prediction cepstral coefficient
(LPCC) is used for feature extraction. Voice signals before and after trimming are shown in
Figure 9. Naïve Bayes (NB) was chosen as a classifier due to its low computational load.
Three datasets were utilized for model training and testing, with a collected dataset of
11 student volunteers and two datasets from Ted talks and speakers (Ted-LIUM, TIMIT).
With the proposed dataset, their scheme achieved 94% accuracy in a quiet environment
and 83% accuracy in a noisy environment. A total of 83% accuracy was achieved with the
Ted-LIVM dataset and 87% mean accuracy with TIMIT dataset. Results were found to be
consistent with comparison schemes. ChestLive, an authentication system utilizing voice
dynamics and chest movements, was proposed in [98]. While the user speaks, inaudible
acoustic sensing is performed to capture reflected acoustic signals from the chest via the
mobile speaker and microphone. These signals are then used to derive channel energy
(CE) signals, from which interference is removed to produce a clear chest motion signal
suitable for authentication. Mel-frequency cepstrum coefficient (MFCC) is used to extract
features that suitably characterize both voice and motion signals. To address the problem
of a small training sample set, meta-learning reptile algorithm is used for classification.
In reptile, a general neutral network is first trained with a good generalization property
and then adapted with new training samples. To construct their dataset, 61 volunteers
were instructed to collect voice recordings in different usage scenarios with the mobile
device pointed toward their chest. Results found that the model produced an average
authentication accuracy of 98.31% and an EER of 2.92%. ChestLive was resilient in different
usage scenarios and resistant to replay and impersonation attacks.
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We have observed from Table 6 that most published studies within behavioral biomet-
rics are focused on the use of touch and motion sensor-based dynamics. Within physio-
logical studies, a large majority invests research into facial and ocular dynamics. Across
all studies, DL algorithms are shown as a popular choice for authentication models. Some
recent studies have paired DL algorithms into hybrid architectures, performing as a feature
extractor for an ML classifier or another DL classifier. It has been observed that many
studies are taking advantage of an influx of public datasets containing carefully collected
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data from large amounts of subjects, such as the HMOG, IDNet, MOBIO, VISOB, and
HuMldb datasets. A great number of studies are achieving high metrics in accuracy and
low metrics in EER values, demonstrating the potential for biometric mobile authentication
security. Overall, the table represents a trend of high performance among studies evaluating
biometric mobile authentication models.

Table 6. Comprehensive table of reviewed sources [7–98].

Dynamic Study Algorithms Performance Datasets

Touch

[7] CNN 97.00% ACC Original Dataset: 180 subjects

[8] CNN 96.94% ACC
Original Dataset: 50 subjects,

BrainRun Dataset: 2218 subjects
[9] CNN + LSTM + KNN 1.7% EER Outsourced Dataset: 161 subjects

HuMldb Dataset: 600 subjects
e-BioDigitDB: 93 subjects,

MobileTouchDB: 217 subjects
HMOG Dataset: 100 subjects

Touchalytics Dataset: 41 subjects
Original Dataset: 20 subjects
Original Dataset: 34 subjects

Touchalytics Dataset: 41 subjects
Original Dataset: 20 subjects

Touchalytics Dataset: 41 subjects
HMOG Dataset: 10 subjects used

Original Dataset: 64 subjects
Original Dataset: 77 subjects

Serwadda, Frank, Antal, UMDAA-02 Datasets:
350 subjects total

Original Dataset: 10 participants
Original Dataset: 10 subjects
Original Dataset: 40 subjects
Original Dataset: 95 subjects
Original Dataset: 14 subjects
Original Dataset: 14 subjects
Original Dataset: 9 k subjects
Original Dataset: 20 subjects

[10] LSTM-RNN 13% EER
[11] LSTM-RNN 2.38% EER

[12] DNN 89–90% ACC
[13] DNN 3.4% EER
[14] MLP 95.1% ACC
[15] MLP 100% ACC
[16] KRR 95% ACC
[17] PSO + RBFN 1.95% AER
[18] AC-GAN Median 7% EER
[19] DAE-SR 0.03% EER
[20] OC-SVM + K-means 93.7% TPR
[21] OC-SVM 98.96% ACC
[22] SVM + GMM 3% EER

[23] SVM 2.9% AER
[24] SVM 97.7% ACC
[25] RF 0.002 ± 0.000 EER
[26] RF 91.79% TAR
[27] RF >0.1% EER
[28] GBC 0.9692 AUC
[29] L-GBC 0.913–0.921% AUC
[30] GMM 91.5% ACC

Motion

[31] CNN 90–94% ACC Original Dataset: 16 subjects
[32] CNN + OC-SVM 90.04% ACC Original Dataset: 100 subjects
[33] CNN + OC-SVM 97.8% ACC HMOG Dataset: 100 subjects
[34] CNN + SVM 96.72% ACC HMOG Dataset: 100 subjects
[35] CNN + SVM 95.01% ACC Original Dataset: 1513 subjects
[36] CNN + OC-SVM 1.00% EER Original Dataset: 100 subjects
[37] LSTM 0.09% EER Original Dataset: 84 subjects
[38] LSTM 0.01% EER HMOG Dataset: 100 subjects,

UCI-HAR Dataset: 30 subjects,
WISDM-HARB Dataset: 51 subjects

[39] LSTM-RNN 99.05% AUC Original Dataset: 41 subjects
[40] RNN + GMM 18.17% EER Original Dataset: 1.5 k subjects
[41] DAE 2.2% EER HMOG Dataset: 100 subjects,

Original Dataset: 20 subjects
[42] DNN 94–98% ACC Original Dataset: 19 subjects
[43] SVM 97.95% ACC Original Dataset: 10 subjects
[44] SVM 95.57% ACC Outsourced Dataset IV: 1513 subjects
[45] SVM 76.85% ACC Sherlock Dataset: 52 subjects
[46] SVM 92.0% ACC Original Dataset: 60 subjects
[47] RF 97.13% ACC HAR Dataset: 30 subjects,

PAMAP2 Dataset: 9 subjects,
MobiAct Dataset: 59 subjects

[48] RF 99.35% ACC Original Dataset: 85 subjects
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Table 6. Cont.

Dynamic Study Algorithms Performance Datasets

Keystroke

[49] LSTM-RNN 4.62% EER HuMldb Dataset: 600 subjects
[50] LSTM-RNN 99.98% TAR Original Dataset: 37 subjects
[51] RNN 1.78% EER Original Dataset: 31 subjects
[52] RNN 9.2% EER Palin et al. Dataset: 260 k subjects

Original Dataset: 10 subjects
BehavePassDB: 81 subjects

Aalto Dataset: 260 k subjects
Stanford TapDynamics Dataset: 55 subjects

Original Dataset: 26 subjects
Original Dataset: 5 subjects

Antal et al. Dataset: 42 subjects
Antal et al. Dataset: 42 subjects

Original Dataset: 94 subjects
Original Dataset: 12 subjects

[53] RNN + SVM 93.9% ACC
[54] LSTM-RNN 68.72% AUC
[55] CNN 3.15% EER
[56] DNN 2.8% EER

[57] GRU-BRNN 94.07% ACC
[58] MLP 5.43% EER
[59] RF 2.3% EER
[60] RF 94.26% ACC
[61] L-SVM + RBF 97.4% ACC
[62] PCA 5% EER

Gait

[63] CNN + OC-SVM <0.15% FRR, FAR Original Dataset: 50 subjects
[64] CNN (VGG8) 0.981 ACC Mcgill: 20 subjects,

IDnet: 50 subjects,
ZJU: 153 subjects,

Osaka: 744 subjects
[65] CNN 0.9882 ± 0.004 ACC Kaggle Dataset: 387 subjects
[66] DRNN-LSTM >95% ACC Original Dataset: 21 subjects
[67] LSTM 90.24% ACC HAPT Dataset: 30 subjects
[68] LSTM + SGD 97% ACC IDNet Dataset: 50 subjects
[69] CNN + LSTM 93.75% ACC WhuGAIT: 118 subjects
[70] CNN + LSTM 97.7% ACC IDNet Dataset: 50 subjects
[71] CNN + LSTM 92.3% ACC Outsourced Dataset: 50 subjects
[72] CNN + LSTM 91.5–99.9% AUC MotionSense Dataset: 24 subjects,

MobiAct Dataset: 56 subjects
[73] CNN + LSTM 95.79% ACC IDNet Dataset: 50 subjects

Face

[74] CNN 99.50% ACC FEI Dataset: 200 subjects
[75] CNN + LMPL 99.53–99.64% ACC Masked FaceNet,

Flicker Face-HQ Datasets: 15 k images
[64] CNN ~0.99 ACC Original Dataset: 40 subjects

CASIA-Webface, LFW, AgeDB-30 Datasets:
unspecified subjects

MOBIO Dataset: 150 subjects,
UMDAA-01 Dataset: 50 subjects,
UMDAA-02 Dataset: 44 subjects

MOBIO Dataset: 150 subjects,
UMDAA-01 Dataset: 50 subjects

Original Dataset: 57 subjects
BioID, EUCFI, ORL, Ext. Yale B, PrintAttack,

gb2sTablet, gb2sMOD, gb2s_Selfies, gb2s_IDCards:
696 subjects

CEW Dataset: 2423 images,
ZJU Dataset: 80 video clips

ORL: 40 subjects, Yale: 15 subjects,
Extended Yale: 40 subjects,
Georgia Tech: 50 subjects,

FEI: 200 subjects
MSU-MFSD Dataset: 35 subjects

AT&T Dataset: 40 subjects
MOBIO Dataset: 150 subjects,

UMDAA-01 Dataset: 50 subjects

[76] CNN 99.28% ACC

[77] OC-ACNN 0.9772 AUROC

[78] CNN + SVM 0.19–0.20% EER

[79] CNN + SVM 98.05% Precision
[80] CNN + SVM 0.00–2.56% EER

[81] CNN + SVM 98.4% FI-score

[82] CNN + KNN 90.90–98.78% ACC

[83] DAE >92.58% TRR
[84] SVM ~1% FAR
[85] SVM 0.25% ERR
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Table 6. Cont.

Dynamic Study Algorithms Performance Datasets

Ocular

[86] CNN 99.41% ACC VISOB Dataset: 550 subjects,
CSIP Dataset: 50 subjects,
IIITD Dataset: 62 subjects

[87] CNN 1.17% EER VISOB Dataset: 550 subjects,
UBIRIS-1 Dataset: 241 subjects,
UBIRIS-2 Dataset: 261 subjects,
CrossEyed Dataset: 120 subjects

[88] CNN 0.988 AUC VISOB-2 Dataset; 150 subjects
[89] CNN 4.65–6.57% EER VISOB Dataset: 550 subjects
[90] CNN + ANN 0.03–0.06% EER IITD Dataset: 225 subjects,

MMU Dataset: 45 subjects
[91] CNN 99.10% ACC UTiris Dataset: 79 subjects

Other

[92] CNN 91.8–93% ACC NCUT-FR Dataset: 5 k images,
MST-DB4 Dataset: 4 k images

[93] CNN + LOF 97.99% BAC Original Dataset: 105 subjects
[94] CNN >99.00% ACC

FVS2006, ATVSFFpDB, Spoof Attack Finger Vein
Database, LivDet 2013 Dataset, LivDet 2015 Dataset

[95] CNN 0.03% EER UWA Benchmark, ManTech Phase2,
PolyU, MSU, IIT, ISPFDv2, ZJU Datasets: ~1 k

subjects total
UC3M-CV2: 2400 images,
UC3M-CV1: 1200 images,

PUT: 1200 images,
ImageNet: 14 million images
Original Dataset: 11 subjects
Original Dataset: 61 subjects

[96] CNN 0.33% EER

[97] Naïve-Bayes 94% ACC
[98] NN 98.31% ACC

4. Limitations

Despite the promising results and insightful contributions of the various studies pre-
sented in this paper, many have limitations in their data collection and research conduction
that could affect the legitimacy and relevancy of their proposed models. One common
limitation occurring in many studies reviewed would be the usage of small datasets. While
it can be difficult to accumulate or find datasets relevant to a study with large amounts
of data, it is significantly important to the quality of modern authentication schemes. As
DL becomes more relevant in the study of biometrics authentication, the need for larger
datasets has increased. DL algorithms require a substantial amount of data to adequately
train their models in comparison to ML models. Small datasets also affect data quality in
that significant data variability can lead to harmful bias and underrepresentation of the
target population. This results in a model that cannot accurately classify the target popula-
tion. Another frequent limitation would be a lack of testing against attacks. While some
studies such as [30,31,44,79,83,93,98] were engaged in testing their models against attacks,
a vast majority did not. There are many different types of attacks designed to combat vari-
ous types of mobile authentication strategies, such as smudge, over-the-shoulder, replica,
puppet, mimicry, replay, and impersonation attacks. As mobile authentication schemes
become more advanced, it is important to make sure our models can effectively resist
these types of attacks. Another limitation prevalent in many studies would be constrained
scenarios in data collection and authentication testing. In the cases of many behavioral
biometric schemes such as gait, touch, and motion dynamics, there can be a lot of variability
in how the individual uses their device and performs an activity. Often, these data are
difficult to process for authentication. While some studies such as [7,8,35,65] account for
this variability in their data collection and preprocessing stages and allow unconstrained
data collection and realistic smartphone usage, many studies instruct their volunteers to
follow more rigid instructions for data collection and testing. This can result in models
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that are not equipped to handle authentication in real-life scenarios. If biometrics mobile
authentication is to become a practical option for mobile phone security, these limitations
in our studies need to be addressed.

5. Research Questions

We have aimed this review to provide answers to questions related to the use of ML
and DL algorithms with biometric authentication. Question 1: Which biometrics are the
most effective between behavioral and physiological biometric mobile authentication? We
have observed that touch and motion dynamics are the most prevalent and effective within
behavioral biometrics, while facial and ocular dynamics are largely focused on within
physiological dynamics. Question 2: What algorithms are effective with regard to biometric
dynamics in mobile authentication? This has been answered through our observations
and conclusions from Table 6. Question 3: What types of algorithms should researchers
investigate for their studies on biometric mobile authentication? We have concluded from
our review that deep learning algorithms are especially effective with biometric mobile
authentication, and that combining two AI algorithms in a hybrid scheme can provide
better performance than a single algorithm alone.

6. Discussion

Prevalent DL and ML algorithms and their usage with various biometric authentication
schemes have been reviewed in depth throughout this paper. After close analysis of each
biometric dynamic, it is clear that the careful selection of algorithms can result in better
performance, and that specific algorithms are more adept to working with different types
of biometric data. Considering deep learning authentication schemes, CNN and RNN
dominate physiological and behavioral dynamics. Both are proficient with touch, motion,
and gait dynamics, as demonstrated in Table 6. RNN is observed to be especially useful
with keystroke dynamics, which was anticipated given that RNN is known to perform well
with sequential data such as text. CNN was recognized to be proficient with physiological
data, performing with higher metrics compared to other algorithms with facial, ocular, and
fingerprint-based authentication schemes. This trend is consistent with CNN, given that
CNN is majorly used in image recognition, and physiological dynamics commonly utilize
image-captured inputs for their authentication schemes. Overall, CNN and RNN are the
two most used algorithms within the studies examined within this paper as seen in Table 6
and can produce authentication results with a high accuracy and capability with mobile
devices. With the rise of dataset quantity and quality in recent years, DL algorithms have
been able to surpass ML in many studies and prompt the creation of more advanced and
capable mobile authentication models.

As previously established in [4], SVM is a strong contestant for mobile behavioral
biometric classification. This was once again observed within studies in this paper. SVM
was popular in studies working with touch, motion, and keystroke dynamics schemes,
outperforming many other ML algorithms. RF was found to be a close second, also
providing adequate performance with these schemes with favor to keystroke dynamics.
It is notable that SVM was also observed to be capable as a classifier in physiological
dynamics such as facial authentication when paired with CNN features. This brings the
discussion of a particular phenomenon within mobile biometric authentication to light.

Hybrid authentication systems are on the rise, as demonstrated by many models
within this paper. Many schemes using hybrid architectures involve using one algorithm
for feature extraction and another to perform classification with those features. These
architectures have presented themselves in pairs of DL–DL as well as DL–ML. CNN was
exceedingly popular as a feature extractor for many of these hybrid authentication sys-
tems. Within gait dynamics, it was observed that a CNN + LSTM system was the most
popular choice out of any architecture, with CNN used for feature extraction and LSTM for
classification. CNN + LSTM often outperformed standalone LSTM and CNN models as
demonstrated by [69–71]. Within facial authentication, it was observed that a CNN + SVM
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architecture was prevalent, wherein CNN was used for feature extraction and SVM was
used for classification. In studies [79–81], different combinations of features with different
classifiers were analyzed with facial authentication. In these studies, CNN features with
SVM classification outperformed other combinations. Motion-sensing dynamics authentica-
tion systems in studies [32–36] also used CNN + SVM hybrid architectures. SVM was found
to be the best performing classifier with CNN features in studies [32,36]. In study [34], using
CNN features with SVM performed better than with handcrafted features or LSTM-based
features. Comparing their hybrid model with non-hybrid comparison studies, researchers
of [35] found their CNN + SVM to have a better accuracy. When analyzing these trends, it
is evident that hybrid architectures are promising, with mobile biometric authentication
able to enhance the authentication performances of many classifiers with CNN features.

7. Conclusions

This survey has presented a comprehensive review of the current state of mobile bio-
metric authentication, highlighting the most significant algorithms and popular dynamics.
Within behavioral biometric authentication schemes, touch and motion dynamics were
popular choices for mobile authentication models, with the greatest number of studies
present out of all sources. Touch dynamics schemes performed well with a variety of DL
and ML algorithms, mainly featuring CNNs, RNNs, and SVMs. Motion dynamics schemes
were also effective with CNNs and SVMs, especially when paired together to form a hybrid
CNN + SVM architecture. Within motion schemes, accelerometer and gyroscope were
prevalent, as demonstrated in Figure 4. In keystroke dynamics models, LSTM–RNNs were
outstandingly common and proficient. Schemes that utilized gait dynamics worked well
with CNNs and RNNs, specifically when combined in a hybrid CNN + LSTM architecture.
In physiological authentication models, CNN completely dominated. As demonstrated
in Figure 8, CNN architectures were used in the majority of facial authentication models,
providing sufficient performance both as a standalone classifier and a feature extractor.
This trend persisted in other physiological models using ocular, fingerprint, vein, and
voice characteristics.

To summarize, deep learning has been found to be an effective method of classification
in a variety of different contexts within behavioral and physiological authentication. CNNs
and RNNs were overwhelmingly the most effective and popular algorithms for mobile
biometric authentication schemes presented in studies from the past five or so years. CNN
has proven to be exceptional not only in authentication contexts across both behavioral
and physiological dynamics, but also as a feature extractor capable of enhancing the
classification performance of many other algorithms. Most notably, hybrid authentication
schemes have been observed to be a compelling and advancing architecture for classification
models, resulting in higher accuracies than standalone models in many studies such
as [35,67,69–71].

Overall, the usage of DL algorithms and hybrid authentication models is worthy of
and in need of further investigation within the field of mobile biometric authentication. The
rise in the prevalence of DL algorithms across both behavioral and physiological dynamics
indicates great change in the field of mobile biometric authentication, as studies investigate
more complex architectures for their models. With many studies starting to take advantage
of hybrid architectures, it is reasonable to assume that hybrid DL architectures have the
potential to advance biometric authentication past previous boundaries. While behavioral
biometric authentication requires more research and experimentation to become usable in
real-world scenarios, experimentation in hybrid architectures shows that growth in this
field is possible and that investment into the study of biometric mobile authentication
is worthwhile.

8. Future Work

For future work, researchers should look toward deep learning algorithms such as
CNNs and RNNs for their biometric mobile recognition systems. Exploring DL algorithms
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as well as their potential in hybrid authentication schemes is highly encouraged due to their
observed potential in the schemes reviewed. Figure 10 visualizes the hybrid architecture
strategy currently used in newer studies, which is projected to enhance the performance of
biometric authentication with continued investigation. Furthermore, addressing limitations
within dataset and data collection quality as well as realism in testing scenarios is necessary
to ensure that authentication schemes are suitable for real-world contexts. With the rise in
DL algorithms, it is important that researchers focus especially on expanding their datasets
in both quality and numbers to enable the full potential of DL and create an ideal biometric
authentication model. This ideal model is depicted in Figures 11 and 12 for behavioral and
physiological dynamic authentication. Further research in mobile biometrics authentication
is encouraged to engage in study in the aforenoted areas and address the current limitations
as previously stated.
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