Image Encryption Algorithms: A Survey of Design and Evaluation Metrics
Abstract
:1. Introduction
- Classification of image encryption into seven approaches based on the techniques used in the algorithms.
- A thorough review of a comprehensive set of security, quality, and efficiency evaluation metrics for image encryption.
- Calculation of the upper and lower bounds for each of the evaluation metrics for image encryption.
2. Image Encryption Algorithms
2.1. Traditional Ciphers
2.2. Chaotic Systems
2.2.1. Logistic Map
2.2.2. Baker Map
2.2.3. Arnold Maps
2.2.4. Tent Maps
2.2.5. Henon Maps
2.2.6. Hyperchaotic Systems
2.2.7. Multiple Chaotic Maps
2.3. DNA Encoding
2.4. Neural Networks
2.5. Frequency Domain
2.6. Compressive Sensing
2.7. Meaningful Encryption
3. Evaluation Metrics
3.1. Correlation Coefficient Analysis
3.1.1. Correlation Coefficient of Adjacent Pixels
3.1.2. Correlation Coefficient between Plaintext and Cipher Images
3.2. Histogram Analysis
3.2.1. Chi-Square ()
3.2.2. Maximum Deviation
3.2.3. Irregular Deviation
3.2.4. Deviation from Uniform Histogram
3.3. Entropy Analysis
3.4. Gray-Level Co-Occurrence Matrix (GLCM) Analysis
3.4.1. Homogeneity
3.4.2. Contrast
3.4.3. Energy
3.5. Encryption Quality
3.5.1. Mean Square Error
3.5.2. Mean Absolute Error
3.5.3. Peak Signal-to-Noise Ratio
3.6. Resistance against Differential Attacks
3.6.1. Avalanche Effect
3.6.2. Number of Pixels Change Rate (NPCR)
3.6.3. Unified Average Changing Intensity (UACI)
3.7. Resistance to Noise and Data Loss
3.8. Computation Complexity
3.8.1. Key Generation Complexity
3.8.2. Encryption-Decryption Complexity
3.9. Key Space and Key Sensitivity
3.10. NIST SP 800-22 Test Suite
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- NIST SP 800-22; A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.
- Wang, X.Y.; Chen, F.; Wang, T. A new compound mode of confusion and diffusion for block encryption of image based on chaos. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2479–2485. [Google Scholar] [CrossRef]
- Dworkin, M.; Barker, E.; Nechvatal, J.; Foti, J.; Bassham, L.; Roback, E.; Dray, J. NIST FIPS 197-upd1; Advanced Encryption Standard (AES). Federal Inf. Process. Stds. (NIST FIPS); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001. [Google Scholar] [CrossRef]
- Schneier, B.; Kelsey, J.; Whiting, D.; Wagner, D.; Hall, C.; Ferguson, N. Twofish: A 128-bit block cipher. NIST AES Propos. 1998, 15, 23–91. [Google Scholar]
- Canniere, C.D.; Preneel, B. TRIVIUM Specifications. eSTREAM, ECRYPT Stream Cipher Project. 2006. Volume 2006. Available online: https://www.ecrypt.eu.org/stream/e2-trivium.html (accessed on 22 February 2024).
- Bernstein, D.J. ChaCha, a variant of Salsa20. In Proceedings of the Workshop Record of SASC, Citeseer, Lausanne, Switzerland, 13–14 February 2008; Volume 8, pp. 3–5. [Google Scholar]
- Ali, T.S.; Ali, R. A new chaos based color image encryption algorithm using permutation substitution and Boolean operation. Multimed. Tools Appl. 2020, 79, 19853–19873. [Google Scholar] [CrossRef]
- Alghamdi, Y.; Munir, A.; Ahmad, J. A Lightweight Image Encryption Algorithm Based on Chaotic Map and Random Substitution. Entropy 2022, 24, 1344. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yu, J.; Lai, W.; Liu, L. A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimed. Tools Appl. 2019, 78, 22023–22043. [Google Scholar] [CrossRef]
- Zhang, B.; Rahmatullah, B.; Wang, S.L.; Liu, Z. A plain-image correlative semi-selective medical image encryption algorithm using enhanced 2D-logistic map. Multimed. Tools Appl. 2022, 82, 15735–15762. [Google Scholar] [CrossRef]
- Elashry, I.F.; El-Shafai, W.; Hasan, E.S.; El-Rabaie, S.; Abbas, A.M.; Abd El-Samie, F.E.; El-sayed, H.S.; Faragallah, O.S. Efficient chaotic-based image cryptosystem with different modes of operation. Multimed. Tools Appl. 2020, 79, 20665–20687. [Google Scholar] [CrossRef]
- Mondal, B.; Kumar, P.; Singh, S. A chaotic permutation and diffusion based image encryption algorithm for secure communications. Multimed. Tools Appl. 2018, 77, 31177–31198. [Google Scholar] [CrossRef]
- Rachmawanto, E.H.; De Rosal, I.M.S.; Sari, C.A.; Santoso, H.A.; Rafrastara, F.A.; Sugiarto, E. Block-based arnold chaotic map for image encryption. In Proceedings of the 2019 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–25 July 2019; pp. 174–178. [Google Scholar]
- Shalaby, M.A.W.; Saleh, M.T.; Elmahdy, H.N. Enhanced Arnold’s cat map-AES encryption technique for medical images. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; pp. 288–295. [Google Scholar]
- Li, C.; Luo, G.; Qin, K.; Li, C. An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 2017, 87, 127–133. [Google Scholar] [CrossRef]
- Vishwas, C.; Kunte, R.S. An image cryptosystem based on tent map. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; pp. 1069–1073. [Google Scholar]
- Gao, X. Image encryption algorithm based on 2D hyperchaotic map. Opt. Laser Technol. 2021, 142, 107252. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Chen, H. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt. Lasers Eng. 2017, 90, 238–246. [Google Scholar] [CrossRef]
- Phatak, S.; Rao, S.S. Logistic map: A possible random-number generator. Phys. Rev. E 1995, 51, 3670. [Google Scholar] [CrossRef] [PubMed]
- Rohith, S.; Jahnavi, L.; Bhuvaneshwari, S.; Supreeth, S.; Sujatha, B. Image Encryption and Decryption Using Key Sequence of Triple Logistic Map for Medical Applications. In Proceedings of the 2020 Third International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bengaluru, India, 11–12 December 2020; pp. 1–5. [Google Scholar]
- Arnold, V.I.; Avez, A. Ergodic Problems of Classical Mechanics; Benjamin: Amsterdam, The Netherlands, 1968; Volume 9. [Google Scholar]
- Zheng, Y.; Jin, J. A novel image encryption scheme based on Hénon map and compound spatiotemporal chaos. Multimed. Tools Appl. 2015, 74, 7803–7820. [Google Scholar] [CrossRef]
- Pradeep, D.A.; Harsha, A.; Jacob, J. Image Encryption Using Chaotic Map And Related Analysis. In Proceedings of the 2021 International Conference on Advances in Computing and Communications (ICACC), Kochi, Kakkanad, India, 21–23 October 2021; pp. 1–5. [Google Scholar]
- Hussein, K.A.; Mahmood, S.A.; Abbass, M.A. A New Permutation-Substitution Scheme Based on Henon Chaotic Map for Image Encryption. In Proceedings of the 2019 2nd Scientific Conference of Computer Sciences (SCCS), Baghdad, Iraq, 27–28 March 2019; pp. 63–68. [Google Scholar]
- Boriga, R.; Dăscălescu, A.C.; Priescu, I. A new hyperchaotic map and its application in an image encryption scheme. Signal Process. Image Commun. 2014, 29, 887–901. [Google Scholar] [CrossRef]
- Vispoel, M.; Daly, A.; Baetens, J. Lyapunov exponents of multi-state cellular automata. Chaos Interdiscip. J. Nonlinear Sci. 2023, 33, 043108. [Google Scholar] [CrossRef] [PubMed]
- Jasra, B.; Moon, A.H. Color image encryption and authentication using dynamic DNA encoding and hyper chaotic system. Expert Syst. Appl. 2022, 206, 117861. [Google Scholar] [CrossRef]
- Ramasamy, P.; Ranganathan, V.; Kadry, S.; Damaševičius, R.; Blažauskas, T. An image encryption scheme based on block scrambling, modified zigzag transformation and key generation using enhanced logistic—Tent map. Entropy 2019, 21, 656. [Google Scholar] [CrossRef]
- Jain, K.; Aji, A.; Krishnan, P. Medical image encryption scheme using multiple chaotic maps. Pattern Recognit. Lett. 2021, 152, 356–364. [Google Scholar] [CrossRef]
- Wu, T.Y.; Fan, X.; Wang, K.H.; Lai, C.F.; Xiong, N.; Wu, J.M.T. A dna computation-based image encryption scheme for cloud cctv systems. IEEE Access 2019, 7, 181434–181443. [Google Scholar] [CrossRef]
- Li, K.; Su, Z. Research on an Image High Intensive Encryption Way Based on the Chaos Theory and DNA Coding. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–7. [Google Scholar]
- Li, X.; Li, X. A novel block image encryption algorithm based on DNA dynamic encoding and chaotic system. In Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019; pp. 901–906. [Google Scholar]
- Feng, W.; He, Y.; Li, H.; Li, C. A plain-image-related chaotic image encryption algorithm based on DNA sequence operation and discrete logarithm. IEEE Access 2019, 7, 181589–181609. [Google Scholar] [CrossRef]
- Uddin, M.; Jahan, F.; Islam, M.K.; Rakib Hassan, M. A novel DNA-based key scrambling technique for image encryption. Complex Intell. Syst. 2021, 7, 3241–3258. [Google Scholar] [CrossRef]
- Man, Z.; Li, J.; Di, X.; Sheng, Y.; Liu, Z. Double image encryption algorithm based on neural network and chaos. Chaos Solitons Fractals 2021, 152, 111318. [Google Scholar] [CrossRef]
- Yang, F.; Mou, J.; Cao, Y.; Chu, R. An image encryption algorithm based on BP neural network and hyperchaotic system. China Commun. 2020, 17, 21–28. [Google Scholar] [CrossRef]
- Han, B.; Jia, Y.; Huang, G.; Cai, L. A medical image encryption algorithm based on hermite chaotic neural network. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 2644–2648. [Google Scholar]
- Wang, X.Y.; Li, Z.M. A color image encryption algorithm based on Hopfield chaotic neural network. Opt. Lasers Eng. 2019, 115, 107–118. [Google Scholar] [CrossRef]
- Ding, L.; Ding, Q. A novel image encryption scheme based on 2D fractional chaotic map, DWT and 4D hyper-chaos. Electronics 2020, 9, 1280. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, S.; Zhang, J. A hybrid domain image encryption algorithm based on improved henon map. Entropy 2022, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; Yang, X.; Hu, W. Chaotic image encryption algorithm using frequency-domain DNA encoding. IET Image Process. 2019, 13, 1535–1539. [Google Scholar] [CrossRef]
- Faragallah, O.S.; Afifi, A.; El-Shafai, W.; El-Sayed, H.S.; Naeem, E.A.; Alzain, M.A.; Al-Amri, J.F.; Soh, B.; Abd El-Samie, F.E. Investigation of chaotic image encryption in spatial and FrFT domains for cybersecurity applications. IEEE Access 2020, 8, 42491–42503. [Google Scholar] [CrossRef]
- Dou, Y.; Li, M. An image encryption algorithm based on compressive sensing and M Sequence. IEEE Access 2020, 8, 220646–220657. [Google Scholar] [CrossRef]
- Zhang, M.; Tong, X.J.; Liu, J.; Wang, Z.; Liu, J.; Liu, B.; Ma, J. Image compression and encryption scheme based on compressive sensing and Fourier transform. IEEE Access 2020, 8, 40838–40849. [Google Scholar] [CrossRef]
- Wang, X.; Su, Y. Image encryption based on compressed sensing and DNA encoding. Signal Process. Image Commun. 2021, 95, 116246. [Google Scholar] [CrossRef]
- Ping, P.; Fu, J.; Mao, Y.; Xu, F.; Gao, J. Meaningful encryption: Generating visually meaningful encrypted images by compressive sensing and reversible color transformation. IEEE Access 2019, 7, 170168–170184. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Jiang, D. Visually meaningful image encryption scheme based on new-designed chaotic map and random scrambling diffusion strategy. Chaos Solitons Fractals 2022, 164, 112625. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, L.; Zhu, L.; Wang, X.; Rong, X.; Chai, H. Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform. Signal Process. 2021, 188, 108220. [Google Scholar] [CrossRef]
- Yang, Y.G.; Wang, B.P.; Yang, Y.L.; Zhou, Y.H.; Shi, W.M.; Liao, X. Visually meaningful image encryption based on universal embedding model. Inf. Sci. 2021, 562, 304–324. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Yang, Z.; Hu, J.; Lei, X. A new plaintext-related image encryption scheme based on chaotic sequence. IEEE Access 2019, 7, 30344–30360. [Google Scholar] [CrossRef]
- Khan, J.S.; ur Rehman, A.; Ahmad, J.; Habib, Z. A new chaos-based secure image encryption scheme using multiple substitution boxes. In Proceedings of the 2015 Conference on Information Assurance and Cyber Security (CIACS), Rawalpindi, Pakistan, 18 December 2015; pp. 16–21. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 2013, 222, 323–342. [Google Scholar] [CrossRef]
- Sha, Y.; Cao, Y.; Yan, H.; Gao, X.; Mou, J. An image encryption scheme based on IAVL permutation scheme and DNA operations. IEEE Access 2021, 9, 96321–96336. [Google Scholar] [CrossRef]
- Qayyum, A.; Ahmad, J.; Boulila, W.; Rubaiee, S.; Arshad; Masood, F.; Khan, F.; Buchanan, W.J. Chaos-Based Confusion and Diffusion of Image Pixels Using Dynamic Substitution. IEEE Access 2020, 8, 140876–140895. [Google Scholar] [CrossRef]
- Iqbal, N.; Hanif, M.; Abbas, S.; Khan, M.A.; Almotiri, S.H.; Al Ghamdi, M.A. DNA Strands Level Scrambling Based Color Image Encryption Scheme. IEEE Access 2020, 8, 178167–178182. [Google Scholar] [CrossRef]
- Sanap, S.D.; More, V. Performance Analysis of Encryption Techniques Based on Avalanche effect and Strict Avalanche Criterion. In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 676–679. [Google Scholar]
- Yu, F.; Shen, H.; Yu, Q.; Kong, X.; Sharma, P.K.; Cai, S. Privacy Protection of Medical Data Based on Multi-Scroll Memristive Hopfield Neural Network. IEEE Trans. Netw. Sci. Eng. 2023, 10, 845–858. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel. Areas Telecommun. 2011, 1, 31–38. [Google Scholar]
- Shafique, A.; Ahmed, J.; Rehman, M.U.; Hazzazi, M.M. Noise-Resistant Image Encryption Scheme for Medical Images in the Chaos and Wavelet Domain. IEEE Access 2021, 9, 59108–59130. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, N.R.; Gong, L.H. Fast color image encryption scheme based on 3D orthogonal Latin squares and matching matrix. Opt. Laser Technol. 2020, 131, 106437. [Google Scholar] [CrossRef]
- Munir, A.; Kansakar, P.; Khan, S.U. IFCIoT: Integrated Fog Cloud IoT: A novel architectural paradigm for the future Internet of Things. IEEE Consum. Electron. Mag. 2017, 6, 74–82. [Google Scholar] [CrossRef]
- Munir, A.; Kwon, J.; Lee, J.H.; Kong, J.; Blasch, E.; Aved, A.; Muhammad, K. FogSurv: A Fog-Assisted Architecture for Urban Surveillance Using Artificial Intelligence and Data Fusion. IEEE Access 2021, 9, 111938–111959. [Google Scholar] [CrossRef]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef]
- Himthani, V.; Dhaka, V.S.; Kaur, M.; Singh, D.; Lee, H.N. Systematic Survey on Visually Meaningful Image Encryption Techniques. IEEE Access 2022, 10, 98360–98373. [Google Scholar] [CrossRef]
- Ahmed, F.; Siyal, M.; Abbas, V.U. A perceptually scalable and jpeg compression tolerant image encryption scheme. In Proceedings of the 2010 Fourth Pacific-Rim Symposium on Image and Video Technology, Singapore, 14–17 November 2010; pp. 232–238. [Google Scholar]
- Munir, A.; Blasch, E.; Kwon, J.; Kong, J.; Aved, A. Artificial Intelligence and Data Fusion at the Edge. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 62–78. [Google Scholar] [CrossRef]
Rule | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
A | 00 | 00 | 01 | 01 | 10 | 10 | 11 | 11 |
T | 11 | 11 | 10 | 10 | 01 | 01 | 00 | 00 |
G | 01 | 10 | 00 | 11 | 00 | 11 | 01 | 10 |
C | 10 | 01 | 11 | 00 | 11 | 00 | 10 | 01 |
+ | A | G | C | T |
---|---|---|---|---|
A | A | G | C | T |
G | G | C | T | A |
C | C | T | A | G |
T | T | A | G | C |
Size | 128 × 128 | 256 × 256 | 512 × 512 | 1024 × 1024 |
---|---|---|---|---|
Upper limit | 4,177,920 | 16,711,680 | 66,846,720 | 267,386,880 |
Size | 128 × 128 | 256 × 256 | 512 × 512 | 1024 × 1024 |
---|---|---|---|---|
Upper limit | 8192 | 32,768 | 262,144 | 524,288 |
Size | 128 × 128 | 256 × 256 | 512 × 512 | 1024 × 1024 |
---|---|---|---|---|
Upper limit | 32,640 | 130,560 | 522,240 | 2,088,960 |
Approach | Strengths | Weaknesses |
---|---|---|
Traditional | Well-established; | High computational requirement; |
Secure; | Slow encryption speed; | |
Standardized and tested | Faulty decryption of cipher images with corrupted pixels | |
Chaotic systems | Fast computation; | Small range of chaotic behavior |
Minimal complexity | ||
DNA | High security; | Experimental and only explored in academic research |
Fewer storage requirements | Require specialized lab equipment | |
Neural networks | Fast encryption | Security level not explored |
Frequency domain | Intuitively secure | Computationally intensive; |
Security analysis has not been explored | ||
Compressive sensing | High security; | High computational overhead |
Small size of cipher image | ||
Meaningful encryption | High security due to combining | High computational overhead |
encryption and steganography |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, Y.; Munir, A. Image Encryption Algorithms: A Survey of Design and Evaluation Metrics. J. Cybersecur. Priv. 2024, 4, 126-152. https://doi.org/10.3390/jcp4010007
Alghamdi Y, Munir A. Image Encryption Algorithms: A Survey of Design and Evaluation Metrics. Journal of Cybersecurity and Privacy. 2024; 4(1):126-152. https://doi.org/10.3390/jcp4010007
Chicago/Turabian StyleAlghamdi, Yousef, and Arslan Munir. 2024. "Image Encryption Algorithms: A Survey of Design and Evaluation Metrics" Journal of Cybersecurity and Privacy 4, no. 1: 126-152. https://doi.org/10.3390/jcp4010007
APA StyleAlghamdi, Y., & Munir, A. (2024). Image Encryption Algorithms: A Survey of Design and Evaluation Metrics. Journal of Cybersecurity and Privacy, 4(1), 126-152. https://doi.org/10.3390/jcp4010007