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Abstract: The continuous integration of automated tools into security operation centers (SOCs)
increases the volume of alerts for security analysts. This amplifies the risk of automation bias and
complacency to the point that security analysts have reported missing, ignoring, and not acting upon
critical alerts. Enhancing the SOC environment has predominantly been researched from a technical
standpoint, failing to consider the socio-technical elements adequately. However, our research fills
this gap and provides practical insights for optimizing processes in SOCs. The synergy between
security analysts and automation can potentially augment threat detection and response capabilities,
ensuring a more robust defense if effective human-automation collaboration is established. A scoping
review of 599 articles from four databases led to a final selection of 49 articles. Thematic analysis
resulted in 609 coding references generated across four main themes: SOC automation challenges,
automation application areas, implications on analysts, and human factor sentiment. Our findings
emphasize the extent to which automation can be implemented across the incident response lifecycle.
The SOC Automation Matrix represents our primary contribution to achieving a mutually beneficial
relationship between analyst and machine. This matrix describes the properties of four distinct
human-automation combinations. This is of practical value to SOCs striving to optimize their
processes, as our matrix mentions socio-technical system characteristics for automated tools.

Keywords: security operation center; security analyst; automation; automation bias; human–automation
collaboration; levels of automation; automation characteristics

1. Introduction

Despite the widespread adoption of automation in security operation centers (SOCs),
security analysts remain overwhelmed by constant alerts. This problem is further com-
pounded by the continuous integration of tools that generate additional security alerts
with corresponding data and the existing shortage of skilled analysts to manage them
effectively [1,2]. While the need for automation in SOCs is evident, its current implemen-
tation offers room for improvement. According to [3] (p. 03), 35% of 500 cybersecurity
decision-makers surveyed admitted to missing a security alert, 22% stated that they had
ignored security alerts entirely, and 25% confessed to not having acted upon a high-profile
alert. These statistics underscore the potential consequences of automation bias and com-
placency amidst a top-heavy automation environment and elucidate the deficient quality
of tool configuration and the lack of tool optimization. Automation complacency, the
substandard automation monitoring, automation bias, and the tendency for individuals to
become over-reliant on automated machines are significant concerns in SOCs. The earliest
research on automation bias dates to the 1990s [4,5]. Despite automation bias and compla-
cency not being novel concepts, limited efforts exist to examine them in the cybersecurity
context [6–11]. This indicates the need for further attention, with this study taking initial
steps to enhance the effectiveness of operations in SOCs by proposing human-automation
collaboration strategies.
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To achieve the desired benefits of SOC automation and keep the analyst-in-the-loop,
optimal configuration, maintenance, and understanding of these tools must occur. The
ineffective performance of automated tools often results from how they are programmed
instead of supposed technological limitations [12]. Thus, automation is only capable of
performing as instructed. Traditional automation relies on the approach where very specific
rules are developed. These tools are typically employed to relieve the burden of manual
inspection and detection. However, ref. [13] (p. 20217) assert that “automation with explicit
rules has generally not been very successful because (1) there is an intrinsic difficulty in
defining expert rules that robustly work in complex and dynamic networks, and (2) no
single expert knows all the rules for different network technologies”. This has given rise
to artificial intelligence (AI) and machine learning (ML) solutions in security operations.
Likewise, these tools can only perform based on how they are trained and how they learn.
Therefore, automated tools and security analysts must co-exist with one another and strive
to provide mutual benefit. This is supported by [14], who surveyed 641 analysts and found
that partial automation (reliant on both the human factor and technological solutions)
was the primary method of all threat-hunting activities. As SOCs increase the number of
processes they automate, investigating how analysts interact with and gain advantage from
using these tools represents an equally important avenue of research.

It is encouraging to see a strong call for further research in this domain [15]. When
referring to analysts as the “human-as-a-security-sensor”, ref. [16] assert that technology
must amplify human capacity rather than diminish it. The authors call for studies investi-
gating the degree of analyst inclusion during the design and implementation of automated
solutions. The prevalence of automated cybersecurity tools should provide ample moti-
vation toward studying human-automation interaction, yet research evaluating trust in
these tools appears limited [9]. Finally, ref. [2] (p. 05) comment that “. . .the technical paths
seem to be approached by researchers and developers, [and] the socio-technical aspects
do not”. Hence, integrating SOC automation that supports trust, limits bias, and does not
encourage complacent behaviors constitutes a critically under-researched field.

This study aims to explore human-automation collaboration within the SOC envi-
ronment. We have opted to use “collaboration” instead of “interaction” as we believe
that modern forms of automation, particularly with the surge of large language models
and decision support systems, extend beyond simple interactions. For instance, ref. [17]
define human–automation interaction involving three elements: humans instruct automa-
tion on how to perform, humans can intercede with automation and control its actions,
and humans can receive information from automation. Furthermore, in their study of
automated agents in the incident response process, ref. [18] (p. 01) stated that “AI agents
collaborate with humans as interdependent teammates to reach a common goal”. Our
discussion will emphasize the qualities that advanced systems must possess to elevate mere
interaction into a collaborative relationship, sharing the sentiments of [19] (p. 185) who
refer to human-automation collaboration as: “allowing for the creation of automation that
can take ‘tasking” or delegation instructions at a variety of levels and degrees of complete-
ness while simultaneously providing feedback on the feasibility of those instructions . . .
automation may not only report on the progress and outcome of delegated tasks but may
also reason about what the human expects to occur during task performance-and thereby
be in a better position to detect and report anomalies”. Given this collaborative nature, the
SOC can be described as a socio-technical system, constituting socio and technical parts
that operate together in an environment and work towards completing tasks together in
the most optimal manner [20].

To achieve our objective, we will provide a more granular focus on where (and how)
automation is used in SOCs and consider its implications for security analysts. This study
will also showcase the varying extent to which automation can be implemented. Further-
more, we will also consider the degrees of automation versus the levels of automation and
provide a clear distinction between the two concepts.
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2. Materials and Methods

This study followed the scoping review approach by [21]. The Preferred Reporting
Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) checklist was
adopted to inform the protocol for this study (see Figure 1).

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram.

To search for relevant literature, we applied two search strings to the following four
databases: ScienceDirect, ACM Digital Library, Scopus, and IEEE Xplore. The first search
string concerned automation in SOCs, with the second factoring in the human component
(for conciseness, Appendix A provides an example search string for a select database).
This resulted in 599 papers, which was reduced to 547 after removing duplicates. The
articles were then screened at the title and abstract level, where we followed the Population,
Concept, and Context (PCC) framework put forward by [21]. Articles in this review
needed to adhere to the inclusion criteria of a population of security analysts, the concept of
automated security tools, and the context of SOCs. Based on this, 481 articles were excluded.
The final 66 articles were read in full, and 28 articles were excluded on the grounds of not
sufficiently addressing all three aspects. Backward searching (i.e., examining the reference
list of included articles) resulted in 10 articles being included. Since running our database
search, we recently published a 2023 conference article, indicating the one included article.
Figure 1 displays our final PRISMA diagram.

3. Results and Findings

The study selection process yielded 49 articles published over the last 11 years. It is
worth noting that no date limitations were applied when selecting literature, but it just so
happened that the selected literature dates between 2013 and 2024. While the literature
on SOCs before 2013 is available, discussions centered on how automation is used and its
implications on analysts are part of an emerging field. Available data indicate that since
2019, there has been a rapid increase in literature examining the specificities of automation
in security operations. Figure 2 shows the number of publications by year.

The final 49 articles were imported in NVivo, read in full, and thematically analyzed.
The thematic analysis involves identifying themes and patterns in the literature and catego-
rizing them accordingly [22]. We followed the six-phase approach, which produces both
semantic (themes that directly present themselves in the literature) and latent (themes that
are developed based on the interpretation of data) themes [22]. This resulted in 609 coding
references being coded against 65 individual codes and further distributed across four
main themes: (1) SOC Automation Application Areas, (2) SOC Automation Implications,
(3) Human Factor Sentiment, and (4) SOC Challenges Necessitating Automation (seen in
Figure 3).



J. Cybersecur. Priv. 2024, 4 391

Figure 2. Number of publications by year.

Figure 3. Thematic analysis coding strategy result.

Figure 3 displays the result of the final coding process, with each block illustrating the
proportion of each theme in relation to the 609 coding references. For instance, automation
application areas mark the most dominant theme discussed in the literature. Similarly,
there is room for more research to address the human factor sentiment in SOCs, discussing
analysts’ tacit domain knowledge, their role as decision-makers, and how to best team
them with AI tools and technologies.

3.1. SOC Challenges Necessitating Automation

Given that prior works have identified these challenges, [15,23–25], coupled with the
case for article brevity, we will not delve into an exhaustive explanation of each challenge.
Through our systematic approach, we categorized SOC challenges into four distinct themes:
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(1) lack of cyber threat intelligence, (2) ineffective identification of threats, (3) alert fatigue,
and (4) alert reporting constraints. The thematic map is shown in Appendix B.

3.1.1. Lack of Cyber Threat Intelligence

A core issue was the lack of adequate solutions to convert threat data into threat
intelligence. Ref. [26] (p. 02) define threat intelligence as “evidence-based knowledge,
information or data about existing or emerging threats that can be used to prevent or
mitigate them”. Additionally, ref. [27] (p. 149) define threat intelligence as “evidence-based
knowledge, including context, mechanisms, indicators, implications and actionable advice,
about an existing or emerging menace or hazard to assets that can be used to inform
decisions. . .”. Simply collecting threat information does not assist security analysts in
learning about and responding to threats [28]. In the form of actionable intelligence, alert
meaning must be derived, the data redundancy removed, and the information must be
structured. Given the amount of threat information collected, identifying novel threats
amongst this data can be a cumbersome endeavor [29]. Ref. [30] contend that where
automation can assist in scripting rules for intrusion detection systems, security analysts
are further responsible for identifying the threats to which the rules pertain. Once threat
intelligence had been extracted, studies expressed their dissatisfaction with the lack of
integrated and automated threat intelligence information-sharing platforms across the
industry [31,32]. These challenges were mentioned in 8 out of 49 (16%) articles analyzed.

3.1.2. Ineffective Identification of Threats

The inability of traditional forms of automation (intrusion prevention systems and
intrusion detection systems) to detect novel threat variations was cited as the predominant
reason for cyberattacks materializing [33,34]. This appears to be a twofold issue. Tradi-
tional automation is largely signature and anomaly-based, and threats are becoming more
complex in their execution. Ref. [35] issue remarks that complexity (as seen in advanced
persistent threats) results in increased indicators of compromise that security analysts and
their tools must now account for, leading to an additional administrative burden. Attribut-
ing ineffective detection to poor rule configuration and tools repeatedly issuing unsolicited
alerts was also reported [36]. Considering that IDSs were initially proposed in the 1980s,
ref. [37] encourage moving beyond passive cybersecurity (one that is static) and into the
realm of active defense through the implementation of AI and ML technology. Anomaly-
based detection systems generate security alerts because the flagged behavior differs from
what is usually observed. However, refs. [38,39] mention that abnormal behavior is often
not related to maliciousness. Cyber situational awareness has been defined as gathering
information about a situation and utilizing it to differentiate between the suitability of
potential actions [40]. A security analyst’s failure to establish situation awareness in a
SOC due to the multitude of responsibilities they have (including monitoring, detecting,
responding, configuring tools, integrating new tools, team, and AI-agent collaboration)
constitutes the failure of effective threat detection according to two papers [2,41]. These
challenges were mentioned in 18/49 (37%) articles analyzed.

3.1.3. Alert Fatigue

The most well-known challenge that plagues SOCs is the volume of alerts that their
analysts must triage [24,42,43]. Reasons for this include an increased number of tools, poor
configuration, and anomaly detection systems, among others. This issue is exemplified
by [39] who reported a true positive alert ratio of 1.59% when analyzing an alert dataset. A
frequent discussion point is that of false positives, which [44] define as genuinely flagged
security alerts that do not have an associated security event and are usually caused by
loosely defined rules. According to the same authors, false positives are differentiated from
benign triggers, which are true alerts that match a configured rule but are purposefully
ignored (due to legacy systems, for example). The voluminous alert issue has knock-on
effects. Firstly, not only does the flood of alerts need to be analyzed, but this information
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must also be stored and backed up. Secondly, the timely nature of response forces ana-
lysts to make quick judgments concerning which alerts require a deeper investigation [43].
Furthermore, human factor implications of desensitization after repeated exposure and
a reduction in response accuracy as a result of an overwhelming amount of information
processing are mentioned [39,45]. Correlating with industry reports [3], security analysts
state that the constant integration and maintenance of security monitoring tools has sig-
nificant secondary effects, namely, how time-consuming it is and the resultant increase
in alerts [31,46]. Refs. [36,47] both address how the continuous addition of tools can lead
to analysts becoming overwhelmed and suffering from alert fatigue. Another study com-
mented on the tedious tool integration process, given the number of APIs (averaging over
200 APIs per tool) and plugins that need to be accommodated [48]. Investigating the same
intrusion, either in parallel by different analysts or sequentially by the same analyst, results
in individual alerts being assessed in isolation instead of analyzed collectively concerning
the same event. However, ref. [36] claim that not all tools can group associated alerts,
rendering a large volume of alerts and their repeated investigation inevitable. The repeated
investigation of alerts was also mentioned by [1] who found that security analysts often
inspect the same domain on different occasions without arriving at a final solution. These
challenges are amplified by the skills shortage that security operation centers are currently
subject to [11,49]. These challenges were mentioned in 31/49 (63%) of the articles ana-
lyzed, making alert fatigue and its sub-themes the most dominant issues experienced by
security analysts.

3.1.4. Alert Reporting Constraints

Studies suggested that alert reports lacked context and were inconsistently formatted.
One study indicated that security analysts face the cognitive task of piecing together
the fragments of intrusion information while still considering the broader organizational
impact [35]. Further literature reports that a lack of contextual information elongates
response initiatives as analysts need to source information not presented to help inform
their response decisions [49,50]. Thus, the process of gaining contextual knowledge and
generating actionable information to accompany current alert reports is largely a manual
undertaking [51]. Additionally, the lack of industry and tool standardization regarding alert
reports makes collecting and interpreting information more difficult [31]. The technical
jargon of alert reports inhibits analysts from a comprehensive understanding, with studies
characterizing alert reports as lacking human-readable information. Conversely, [32]
argue that report information should be machine-readable to automate responses. These
challenges were mentioned in 12/49 (24%) articles analyzed.

3.2. SOC Automation Application Areas

We must acknowledge where automation is employed in SOCs (its application areas)
to address security analysts’ challenges and achieve a collaborative human–automation
environment. This theme considers the current use cases of SOC automation and mentions
novel solutions that are being proposed (see the thematic map in Appendix C).

3.2.1. Automated Cyber Threat Intelligence (CTI) Information

With the rise of threat information-sharing platforms, vulnerability databases, and
internet-based cybersecurity information, SOCs are challenged with converting large vol-
umes of threat information into threat intelligence. Considering big data, automated
solutions are needed to collect and classify information accordingly. Such processes can aid
in quickly educating SOC analysts. A commonly mentioned use case in this area is auto-
mated rule generation for intrusion detection systems (IDS), whereby tools automatically
collect CTI, generate indicators of compromise (IOCs), and update IDS for the detection
of malicious activity [26,29–31,52]. In one study, more than 70% of analysts stated that
automated tools must improve the quality of the information they collect [31]. Present-
ing security analysts with comprehensive information that can be effectively leveraged
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represents a core goal of these tools. Another study recommended collecting threat in-
telligence from malware information-sharing platforms (MISP) instead of general web
data to achieve data quality and developed SmartValidator, a tool that continuously and
automatically collects CTI and validates internal security alerts against it (i.e., proving
their legitimacy) [30]. They showcased how SmartValidator performed better when MISPs
were the primary data source. Ref. [52] posited that the manual generation of IOCs is
more interpretable and human-friendly, allowing SOC analysts to understand them suffi-
ciently. Thus, they compared their automated IOCs to manually generated ones and noted
that security analysts found no difference between the two sources. The notion of threat
intelligence interpretability was also discussed by [29] who stated that security analysts
must efficiently identify and comprehend all the relevant information when analyzing
automated threat reports.

Findings: Overall, we classify automated CTI tools operating in four sequential phases:

1. Collect threat information.
2. Analyze and convert threat information into threat intelligence.
3. Validate the cyber threat intelligence against internal alert information to determine

the presence or absence of intrusions.
4. Generate indicators of compromise (IOCs).

By scanning the external threat landscape for information that can assist SOCs in
efficiently detecting threats, automated CTI tools permit security analysts to channel their
efforts into effective decision-making strategies [30]. These four phases illustrate that
the automation of CTI information can be implemented to varying degrees—with the
recommendation of all four phases being adhered to.

3.2.2. Automated Incident Detection

Where applicable, we attempted to code SOC automation application areas by the
incident response lifecycle (IR) phases. We focused on opposite spectrums of the IR lifecycle,
namely detection and analysis at the one end and recovery and response at the other. This
was performed because traditional cybersecurity automation is typically employed in the
earlier phases. However, as technology progresses, particularly with the rapid evolution
of AI and ML tools, new recovery and response solutions are beginning to emerge. For
example, Microsoft’s Security Co-Pilot and CrowdStrike’s Charlotte AI (neither mentioned
in any reviewed articles) represent first-to-market large-language models for use in SOCs.

One of the essential components of harnessing automation within SOCs is to support
analysts in identifying threats by providing them with the highest priority security alerts
to act upon [53,54]. Automation that specifically flags the most severe threats (those de-
manding immediate action) leads to beneficial efficiency gains. For this reason, we coded
the sub-theme of automated “alert analysis.” Here, our results yielded two categories of
solutions: the automation of the alert correlation process [49,55,56] and the automation
of the triage process [43,47,48]. One study developed a semi-autonomous tool interacting
with security analysts to identify advanced persistent threats [57]. Another study aimed
to detect malware attacks by monitoring host machines and their potential communica-
tion connections with malicious domains hosted at command-and-control centers [54].
Through 24 interviews conducted with SOC analysts, the effectiveness of automated tools
identifying suspicious activity primarily depends on their configuration [12]. Based on a
mixed-methods approach with 20 SOC analysts, ref. [44] designed a framework for con-
figuring tools to generate reliable, explainable, analytical, contextual, and transferrable
alerts. Various authors suggested corroborating alerts in conjunction with the preceding
and proceeding alerts (i.e., the alerts around the flagged alert) [41,51,56,57].

Findings: Overall, in many of the examined articles, automation was commonly used for
three primary purposes in the detection phase:

1. Connecting and correlating alerts from different security tools integrated into the
SOC.
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2. Gathering suspicious alerts in context with their surrounding (and related) alerts to
provide richer context.

3. Grouping alerts based on similar characteristics and IOCs (often called clustering).
For instance, ref. [55] advised that automation should analyze flagged alerts in context
with similar previous incidents to allow analysts to determine how to remediate them.

These three purposes illustrate that the automation of incident detection can be imple-
mented to varying degrees. It is recommended that all three aspects be adhered to.

3.2.3. Automated Alert Context

Once threats and vulnerabilities have been detected, the next step is to supplement
these alerts with additional context. Truly aiding security analysts extends beyond sim-
ply flagging alerts as malicious. It involves providing further background information
about these alerts in the form of alert characteristics and properties, where they have
originated from, attacker behaviors and techniques, and what the alert impact could be
if not resolved [45]. Ref. [58] implemented Context2Vector to reduce security analysts’
burden during the triage process by enhancing alerts’ informative information beyond
what traditional intrusion detection systems offer. In the cybersecurity domain, ref. [45]
(p. 02) define alert context as “a comprehensive concept, cover[ing] different kinds of data
sources, such as the provenance . . ., the logs collected within the same period, [and] the
alert sequences”.

Findings: Within this theme, our analysis led us to interpret that alert context is first
extracted and then generated:

1. Context extraction refers to collating organizational information affected by security
alerts (i.e., pulling context from additional sources beyond the SOC). The more infor-
mation that is collected from around the organization, such as business assets affected
and processes disrupted, the better decision-making will be [58,59]

2. Context generation refers to utilizing and generating the auxiliary extracted informa-
tion and generating from it, such as the threat’s potential impact and risk level. As a
result, prioritization techniques are ameliorated [44,45,50].

The multi-phase approach of context extraction and generation illustrates that the au-
tomation of alert context can be implemented to varying degrees, with the recommendation
that both phases be adhered to.

3.2.4. Automated Alert Reports (Explainable and Interpretable)

The previous three themes have shown that, until now, threat information from the
external environment has been collected, indicators of compromise have been created, intru-
sion detection systems have been updated, alerts have been detected, and context has been
extracted and generated. As mentioned earlier, the next logical step in the incident response
lifecycle is the culmination of the information into alert reports presented to analysts. A
significant finding in the articles evaluated is that alert reports must build upon the contex-
tual information gathered by creating a storyline of intrusion events [12,18,37,38,47,51]. By
knitting this information together, security analysts are presented with different aspects
of events in a timeline format, dating back to the root cause [54,56,57]. The premise of
these reports is to explain what has happened, why it occurred, and its importance when
analyzing a suspicious alert [38]. Therefore, for security analysts to derive value from alert
reports, they must be able to comprehend and action them. Furthermore, an understanding
of how these reports are developed is needed for security analysts to trust the systems
generating the alert reports. [37] (p. 112394) refer to this as X-IDS (or explainable intrusion
detection systems) and X-AI (in the context of AI), defining it as “the system’s ability to
explain the behavior of AI-controlled entities”.

Findings: Drawing upon the discussion by [37], we have produced the diagram in Figure 4
to help distinguish between the terms interpretability, explainability, and understandability
in the context of automated systems.
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Figure 4. X-AI terminology.

1. Interpretability refers to automation’s ability to produce information that security
analysts can comprehend and understand. In SOC automation, interpretability occurs
at the alert level, referring to the security event flagged. It can be measured by the
analyst’s ability to piece the intrusion storyline together.

2. Explainability occurs at the system level, whereby automated tools provide analysts
with an explanation and justification of how they operate and why they have arrived
at a particular decision. Ref. [37] (p. 112394) define explainability as “following the rea-
soning behind all the possible outcomes [whereby] models shed light on the model’s
decision-making process.” Hence, explainable automation makes significant efforts to
keep the human-in-the-loop. While these two constructs can exist independently, we
recommend that they be coupled together, as seen at the top of Figure 4.

3. Sufficient interpretability and explanation lead to increased understanding. However,
the understandability of this information depends on the audience and their skill
level. Ref. [51] state that information presented to different stakeholders must adhere
to their expertise and terminology.

4. If the user-level expertise cannot comprehend the information already presented, post
hoc explainability in the form of data visualizations can be presented [37] but may
come with performance issue trade-offs.

The distinction between these terms is also supported by [44]. The four-construct
model in Figure 4 illustrates that the automation of explainable and interpretable alert
reports can be implemented to varying degrees, with the recommendation that all four
concepts are adhered to.

3.2.5. Automated Incident Response

Various automated solutions were present in the incident response phase, demonstrat-
ing automation’s technical advancements. Examples include decision support systems for
known threats (rule-based systems) [35,59] and decision support systems for unknown
threats (adaptable intrusion response systems) [60,61]. Concerning decision support sys-
tems, ref. [62] advocate for semi-autonomous systems that either offer recommendations
and implementations depending on the threat faced. Several authors promote dynamic
intrusion response initiatives—ones that are not solely based on predefined configured
responses from security analysts but cater to variations of attacks [56,60]. For instance,
ref. [32] developed a dynamic intrusion response database that can be queried for the most
recent countermeasures concerning a specific vulnerability. Ref. [26] differentiate between
indirect automation integration and direct automation integration. The former assists in
informing security analysts about threats and how to respond to them, and the latter will
sense cyber threats and automatically respond to threats without human intervention. The
decision to recommend and automatically implement a response is driven by the contex-
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tual information collected [58]. This includes associated business processes and assets,
instantiating the importance of context extraction and generation.

Furthermore, the advent of AI and ML solutions in SOCs is clear [18,28,36,63]. 10 SOAR
platforms were reviewed in one study, and it was and revealed AI/ML’s use cases across
the incident response lifecycle phases [55]. For instance, IBM’s Resilient QRadar SOAR
integrates ML models trained using historical data to predict the severity of new incidents,
estimate the time for resolution, and link similar recently resolved incidents. The rise of
large language models has also extended into SOCs, e.g., Microsoft’s Security Co-Pilot and
CrowdStrike’s Charlotte AI. Regarding Microsoft’s tool, it is worth noting that in and of
itself, the term “co-pilot” is synonymous with assisting or helping, showcasing the tool’s
effort to augment SOC analysts’ capabilities.

However, given that generative AI and ML tools require users (i.e., SOC analysts) to
feed information into them, the confidentiality, integrity, and availability of an organiza-
tion’s security intelligence information (and to whom it is exposed) may hinder adoption
rates. Ref. [18] evaluated security analysts’ comfort levels with AI agents during the re-
sponse phase and found that it was significantly lower when compared to the identification
phase (M = 2.71 and M = 4.04, respectively, p < 0.001). More than half of the studies
(29/49 or 59%) included in this analysis mentioned AI and ML solutions. Within the AI
and ML domain, we found that 24.13% of articles focused on neural networks, 13.79% on
visualization modules, and 10.3% on natural language processing (see Table 1).

Table 1. Articles by Technology Type.

Technology Type Number of Articles

AI/ML 29
Not Classified (simple AI/ML) 12
Neural Networks 7
Visualization Modules 4
Natural Language Processing 3
Deep Learning 2
Reinforcement Learning 1

IDS 3
SIEM/SOAR 3
Other 5
N/A 9

Findings: AI and ML solutions in the incident response phase must be accompanied by
contextual information and data visualizations to aid analysts’ understanding of how
these systems arrive at solutions [58]. Furthermore, when these systems are utilized, it is
imperative to know when they are better off as recommendation engines or implemen-
tation agents. Also relevant to the discussion of AI and ML models is whether they are
subject to supervised or unsupervised learning, a topic that sparked much debate within
the literature reviewed [36–38,64]. We conclude that the critical nature of missed alerts
demands highly trained supervised learning models to ensure greater accuracy in detecting
threats. Nevertheless, due to the unpredictable nature of cybersecurity and its complexity,
security analysts can gain advantages from using unsupervised models that detect abnor-
malities and patterns beyond traditional tool recognition. Hence, we suggest adopting
a semi-supervised approach. The varying levels of autonomy illustrate that employing
AI and ML solutions in incident response can be completed to varying degrees, with the
recommendation that this be applied on a case-by-case basis. To better understand when to
harness automation in the response phase and the level of automation that should be used,
we recommend applying the four critical success factors put forward by [65]: (1) task-based
automation, (2) process-based automation, (3) automation performance appraisal, and
(4) SOC analyst training of automation systems.
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In our findings, this discussion has highlighted automation areas of prominence and
delineated their associated system characteristics. This information has been summarized
in Figure 5.

Figure 5. Automation application areas and system characteristics.

3.3. SOC Automation Implications on Analysts

Limited studies have empirically measured automation bias and complacency within
SOCs while discussing the ideal level of automation that should be applied. Consequently,
we did not produce an individual thematic map for this theme. Instead, we report on
results per the bottom left-hand rectangle of Figure 3. The same approach was taken for
the human factor sentiment theme, referencing the bottom-right rectangle of Figure 3,
respectively. The influx of SOC automation increases analysts’ susceptibility to automation
bias and complacency. Several discussions focused on automation disuse (the purposeful
neglect and under-utilization of automation) and misuse (the over-reliance on automation).
Refs. [6,7] found the occurrence of misuse whereby participants placed high trust in a
poorly performing system. Another study suggests that automation errors can result in
disuse because analysts initially perceive these tools to be error-free [53]. However, disuse
can lead to legitimate attacks going undetected or ignored [34]. In combating automation
bias, studies comment that accuracy cannot be the only metric evaluated during tool devel-
opment and integration. To instill analyst confidence, automation must disclose confidence
levels in its decisions [29,36]. Another study extended this by promoting an interactive
environment where analysts can query why specific actions have been taken [28]. Propos-
ing the Influence, Impact, and Mitigation of the Automation Bias model [65] contends that
security analysts fall victim to automation bias because of the path of least cognitive effort,
the diffusion of responsibility, and the perception of superiority and authority. Furthermore,
they argue that automation bias can lead to a loss of situational awareness, cognitive skill
degradation, task complacency, and a lack of vigilant information seeking.

Findings: To avoid bias and complacency, trust in automation must be calibrated so that
well-performing tools are utilized accordingly and inconsistent tools are treated apprehen-
sively. Factoring in the findings from previous sections showcases that providing clear
interpretations of events to analysts will assist in preventing situations in which objectively
well-performing tools are underutilized (i.e., preventing automation disuse). Additionally,
the exposure to bias and complacency can be reduced by applying higher levels of automa-
tion to well-defined processes and against well-modeled, less severe threats. Contrary to
that, ambiguous processes must be overseen and managed by security analysts [12]. The
automatic execution of mitigation and restoration strategies is increasingly recognized
in the literature. For instance, ref. [13] introduced an Action Recommendation Engine
(ARE) that continually monitors network systems, offering tailored recommendations for
actions to respond to identified malicious traffic. Based on raw data, alert reports, system
feedback from previously recommended actions, and the severity of the threat, the engine
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is built to either provide an action recommendation or directly apply the action itself. When
following the latter approach, the authors acknowledge that this leads to the “human-out-
of-the-loop”. The action recommendation engine illustrates the degree to which levels of
automation can be applied.

3.4. SOC Automation Human Factor Sentiment

Security analysts are important because of their decision-making skills and tacit
domain knowledge. One way to partially mitigate automation is to limit where automation
is applied. One study participant mentioned that “automation recommendations are fine,
but the final decision should be on the incident handler,” advocating for limited (if any)
automation in the response phase [61] (p. 16). Another study credited security analysts
for their ability to handle intuitive tasks, with automation better catered to resource-
intensive repetitive tasks [62]. Studies suggested that the SOC marks a prime environment
for human-AI collaboration whereby analysts can train automation and automation can
improve efficiency for analysts [37,39].

Findings: To achieve a mutually beneficial relationship between security analysts and
automation, involving the analysts during the development and integration of new tools
is critical. Automation will only be as skilled as the analysts who program it. Therefore,
recognizing the domain knowledge that analysts possess, specifically concerning Tier 3
analysts, will result in more intelligent technical solutions being identified. It is important
to note that an organization will derive little benefit from an environment purely analyst or
automation-based. Instead, the two entities must complement each other.

4. Discussion

Throughout the results and findings, it was repeatedly shown that automation can be
implemented to varying degrees. In addition to that, our findings in the SOC automation
implications on analysts’ section revealed that varying levels of automation can be applied
(i.e., only to provide recommendations or to action-specific responses autonomously). It is
worth distinguishing the difference between these two concepts: degrees of automation
and levels of automation:

1. Degree of Automation: The number of processes that a SOC automates. For example,
SOCs with high degrees of automation will have automated processes throughout the
incident response lifecycle. SOCs with low degrees of automation may only automate
the detection of alerts. This can also be described as the breadth of automation.

2. Level of Automation: The level of autonomy that automated SOC processes possess.
For example, high levels of automation in the response phase will recommend and
implement response actions, with the analyst’s option to intercede if necessary. Con-
versely, lower levels of automation in the response process may only provide analysts
with several alternative response strategies. This can also be described as the depth of
automation.

Therefore, a high degree of automation does not necessarily equate to high levels of
automation. This is supported by [66] who define automation’s breadth as the number of
tasks and contexts that automation can handle and define automation’s depth as the level
of improvement that automation can achieve on specific tasks.

4.1. The SOC Automation Matrix

The SOC Automation Matrix (see Figure 6) represents our main contribution. Our
solution drew inspiration from the structure of the Boston Matrix, but it is important to
note that it reads differently. Where the Boston Matrix analyzes a portfolio of products
worthy of continued investment [67], the SOC Automation Matrix requires continued
investment until optimization is reached. This is because SOCs are essential to modern-day
organizations. Therefore, it is a matter of how efficient and effective a SOC can be rather
than whether an organization should have one. Reading from left to right (x-axis), the
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automation present within a SOC increases. Our matrix will address both the degrees and
levels of automation implemented in SOCs. Reading from bottom to top (y-axis), the degree
of SOC analyst involvement increases. Each of the four quadrants is marked by the filled
orange circle in the top left corner and discussed in terms of effectiveness and efficiency:
Effectiveness concerns the human factor skillset and efficiency concerns automation.

Figure 6. SOC Automation Matrix.

Quadrant 1—Low Automation + High Human

This quadrant represents where most SOCs currently are due to manual, timely, and
repetitive processes that are over-reliant on human analysts. Here, it is stated that activities
are effective in that skilled SOC analysts tackle issues and apply their contextual knowl-
edge to threat mitigation. However, their effectiveness alone is only valid until a certain
point, whereby complex alerts and sophisticated attacks require additional competencies.
Additionally, efficiency is lacking as the volume of alerts exceeds the resources available to
cope with them. As SOCs grow in the information they monitor, alert fatigue presents itself
as the central challenge, with others such as ineffective identification of threats and lack
of cyber threat intelligence information also occurring, necessitating automation. SOCs in
this quadrant do not have sufficient automation implemented. Reasons for this could vary,
including a lack of trust, unwanted technological reliance, or financial limitations. This
quadrant is characterized by automation disuse, i.e., the under-utilization of automation
where it would otherwise be beneficial. The current narrative within a large body of lit-
erature states that the solution to all SOC challenges is full automation (i.e., integrating
more automation into the SOC). Based on this, ill-advised SOCs deem their next logical
step to move to Q4 (high automation + low human)—marked by the dashed red arrow in
Figure 6. However, we suggest that instead of jumping diagonally down to Q4, SOCs strive
for lateral movement toward Q2 (high automation + high human)—marked by the dashed
green arrow exiting Q1.

Quadrant 2—High Automation + High Human
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This quadrant represents the most desirable state that SOCs should strive towards,
as sufficient automation exists to assist SOC analysts. Here, activities are effective in that
skilled SOC analysts are teaming with intelligent automated agents in threat mitigation
and efficient in that automation takes care of routine and manual operations. Consequently,
the human analyst is efficient and effective, and so is automation. Overall, tasks are
performed swiftly and more accurately. The benefits of socio-technical system design are
realized in Q2, and the SOC design is intended to “optimize the organization’s social and
technical systems jointly” [20] (p. 459). Strong human-automation collaboration exists
in this quadrant, leveraging each entity’s skills. An applicable example of such a tool
is DeepLog, proposed by [68], which organizes and structures vast amounts of log data.
This is achieved by automatically collecting logs generated concurrently, ordering them
sequentially, grouping them according to their workflow, and separating them based on
the task or event they relate to. Similar log mining and analysis techniques are mentioned
in [69]. This allows analysts to identify the current point of threat execution better and
conduct root cause analysis. Furthermore, the tool extracts contextual information beyond
commonly collected data (log keys, for instance) to give analysts a complete understanding
of the event. DeepLog represents an example of a mutually beneficial human–automation
relationship in that it incorporates analyst feedback in situations where log entries were
incorrectly classified as anomalies [68]. The premise of this quadrant is that neither entity
overpowers the other. The system characteristics of automation (as per Figure 5) are fully
implemented (see Figure 7). However, the potential for automation bias exists depending
on the degree of automation implemented and the level of automation applied.

Figure 7. Fully implemented system characteristics.

Quadrant 3—Low Automation + Low Human

This quadrant represents the least desirable state for SOCs as there is insufficient
human involvement and automation implementation. Here, activities are ineffective
because there is a lack of skilled SOC analysts and inefficient, as the lack of human resources
is coupled with the lack of assistive automation. The few analysts that are present quickly
become overwhelmed by the volume of alerts. Privacy fatigue, defined by [70] as the
process whereby users experience exhaustion and cynicism about preserving privacy over
an extended period is likely to occur. In the instance of SOC analysts, this fatigue represents
itself as alert fatigue. Improper management of alerts ensues, and there is an increased
potential to miss threats. A move to any other quadrant would be better for SOCs in this
position but would require substantial investment. Therefore, to better understand what
tools are required to match the needs of the SOC in question, skilled analysts should be
advised. Moving vertically up to Q1 is recommended—marked by the dashed purple
arrow in Figure 6.

Quadrant 4—High Automation + Low Human
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This quadrant represents a step in the right direction for SOCs but lacks complete
optimization due to the primarily discredited human factor. Here, activities are partially
ineffective in that automation’s abilities are prioritized ahead of skilled SOC analysts.
Efficiency gains are realized due to the degree of automation implemented. A relevant
example of such is discussed by [69], who introduces SCOUT to identify anomalous outliers
by grouping streams of log data into their relevant activities. While there exist encouraging
system features such as grouped log examination (on the premise that alerts/logs may
appear benign when analyzed individually, but when examined in conjunction with the
events in which they were related, malicious intent can be discovered), the authors state
that SCOUT operates on unsupervised learning models and can operate without human
interaction. Thus, we posit that this tool is better positioned in Q4 than in Q2. It was
mentioned that to appropriately classify activities and identify threats, domain experts (i.e.,
skilled security analysts) must be able to differentiate between well-modeled malicious
and benign actions and rely on automated systems to identify threats and classify activities.
Thus, reliance on automation is evident and can be justified if the automation is explainable,
providing reasoning to analysts [37,69].

Automation in Q4 will assist in CTI information, incident detection, alert context,
reports, and response. However, the system characteristics of automation (as per Figure 5)
are limited. Only the high-level system characteristics are implemented, marked by the
green-shaded characteristics in Figure 8. Moreover, despite the presence of automation, it is
incorrectly leveraged, and it is likely to possess restrictive characteristics (see Appendix D)
and be dominated by the identified challenge of alert reporting constraints. These lead to
behavioral changes whereby the SOC analysts do not learn from automation but adapt their
behavior to do what automation says. At this point, there is too much trust in automation
and its ability, increasing the potential for automation complacency. As with Q2, there exists
a possibility of automation bias. Trust must be calibrated by implementing the remainder
of the system characteristics. Hence, SOCs in Q4 are encouraged to move vertically up to
Q2—marked by the dashed green arrow exiting Q4 in Figure 6.

Figure 8. Partially implemented system characteristics.

To derive practical application from the matrix, SOCs can view the four quadrants as a
maturity model that outlines their path toward efficient and effective practices. By mapping
their challenges against those mentioned in the paper, real-world SOCs can identify that
they likely fall on the left-hand side of the matrix. Conversely, suppose SOCs are confident
that they have a high degree of automation implemented (regardless of its characteristics).
In that case, they can identify that they likely fall on the right-hand side of the matrix.
SOCs in this position should ultimately strive to be in Q2 over Q4 and can achieve this by
working toward implementing the 15 system characteristics shown in Figure 7. In summary,
SOCs begin in Q3 and are classified as being in an “initial and immature” phase. As SOCs
grow and become better managed, they move into Q1. Their challenges cause them to
rush toward implementing increased automation, finding themselves in Q4. Here, they
are more defined in their operations, but SOC analysts’ learning is prohibited. As SOCs



J. Cybersecur. Priv. 2024, 4 403

mature, realizing they need to take advantage of analyst and automation skill sets, they
work toward Q2, whereby optimization occurs.

4.2. The SOC Automation Matrix—Considering Levels of Automation

Making use of the level of automation (LOA) framework put forward by [71] (compris-
ing ten levels of human–automation collaboration delineating the split of responsibilities
between human operators and machines), levels 2–9 split the responsibilities of humans
and automation, respectively, with levels 1 and 10 being the complete responsibility of
either entity. A SOC may possess a high degree of automation (Q2 and Q4) but exercise
more control in terms of its human responsibility and opt for level 3—where automation
throughout the IR lifecycle assists in determining available options and providing sugges-
tions that analysts are not required to follow [72]. Alternatively, the same SOC may opt to
automate many processes at level 8—whereby automated tools perform the entire job and
inform the analyst what was performed if prompted.

We have illustrated this in Figure 9, focusing on Q2 and the levels of automation that
could be applied. We can visually portray this phenomenon by looking at an adapted
version of the matrix in Figure 9. It has been discussed that high degrees of automation
are present on the matrix’s right-hand side, but to illustrate the levels of automation, a
dashed diagonal line originating from the model’s center and extending outward has been
included. The red dots signify points in the quadrant with different levels of automation.
Hence, we can immediately discern that it is plausible for SOCs in the same quadrant (high
automation + high human) to possess different levels of automation (i.e., points 2A and 2B,
with the former having lower LOA than the latter). Appendix E provides two scenarios of
two different SOCs operating with varying levels of automation.

Figure 9. SOC levels of automation.

4.3. Limitations and Future Research

Due to the article’s brevity and available resources, only four databases for relevant
literature were explored. Additionally, we formulated the search terms based on our
knowledge of the research domain. Therefore, when sourcing literature, the likelihood of
error or missing data exists due to the human factor. Future studies aim to develop an
instrument that empirically measures automation bias and complacency among security
analysts. This, coupled with observations and interviews in real-world SOCs, will permit
SOCs to position themselves on the matrix and work toward optimization.

5. Conclusions and Contribution

This review emphasized the core challenges that security operation center analysts
face, necessitating automation integration. Following this, we highlighted the application
areas of SOC automation and illustrated the degrees and varying levels to which it can be
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implemented. The optimal system characteristics, represented in Figure 5, were derived
from understanding where and how automation is effectively used in SOCs. The applica-
bility of automation throughout the incident response lifecycle indicates the technological
advancement in this domain, moving beyond static incident detection and primarily driven
by AI and ML solutions. Coupled with its application areas and the system characteristics
that automation should incorporate for a conducive ideal analyst-in-the-loop environment,
the human factor implications and sentiment illustrate that, based on its implementation,
automation effects in a SOC can vary. Therefore, the SOC Automation Matrix marks this
study’s primary contribution, representing four quadrants comprising varying human-
automation collaboration strategies. The characteristics of each quadrant were delineated,
with Q2 being identified as the most desirable. This matrix permits SOCs to position
themselves based on current practices and take active steps toward optimal performance.
We posit that most SOCs fluctuate between Q1 and Q4 in today’s technological landscape
due to the plethora of automated tools on the market. However, optimization of these
tools appears to be a work in progress. Furthermore, we provided a clear distinction be-
tween the degrees and levels of automation, showcasing how the two phenomena interact.
Combined with the system characteristics discussed, the matrix allows for a conducive
human–automation environment to be established—one that prioritizes the socio-technical
design elements. To our knowledge, this appears to be the first human–automation frame-
work within the SOC context. Theoretically, this study works towards developing explicit
constructs to measure automation bias and complacency. Together, the matrix and system
characteristics assist in mitigating automation bias and complacency.
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Appendix A. Search Strings by Select Database

Table A1 displays the two search strings that were applied to the ScienceDirect
database. Each search string relates to the research objectives. The same search string
was applied to the other databases, factoring in their semantic requirements.

https://www.mdpi.com/article/10.3390/jcp4030020/s1
https://www.mdpi.com/article/10.3390/jcp4030020/s1
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Table A1. ScienceDirect Search Strings.

Database Search String Results

ScienceDirect (199)

Secondary Objective #1
Title, abstract, or author-specified keywords (“Security Operations Center” OR “Network
Operation Center” OR “Cybersecurity Operation” OR “Cyber Security Operation” OR “Incident
Response”) AND (“Automate” OR “Automation” OR “Decision Support” OR “Decision Aid”)

39

Secondary Objective #2
Title, abstract, or author-specified keywords (“Security Operations Center” OR “Network
Operations Center” OR “Cybersecurity” OR “Cyber Security”) AND (“SOC Analyst” OR
“Analyst” OR “Security Analyst” OR “Human”) AND Find articles with these terms (“Automate”
OR “Automation” OR “Decision Support” OR “Decision Aid” OR “Technical Control”) AND
(“Complacency” OR “Bias” OR “Trust”)

160

Total after removing duplicates: 193

Appendix B. SOC Challenges Thematic Maps

Figure A1. The thematic map above displays the SOC challenges that necessitate automation, broken
down into four sub-themes.

Appendix C. Automation Application Areas Thematic Map

Figure A2. The thematic map above displays the SOC automation application areas, broken down
into two sub-themes and discussed in terms of the incident response lifecycle.
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Appendix D. SOC Automation Restrictive Characteristics

Table A2 displays restrictive characteristics of SOC automation, describes each charac-
teristic, and mentions the study’s results that informed it.

Table A2. SOC Automation Restrictive Characteristics.

Characteristic Details Results Informing Characteristic

Black-box automation Automation lacks transparency in how it operates.
- Alert Reporting Constraints
- Automated Alert Reports

(Explainable and Interpretable)

Automation competes on low
false-negative rates

The premise is not to let any alert slip through.
This comes at the cost of not fine-tuning sensors,
resulting in high alert volumes.

- Ineffective Identification of Threats
- Alert Fatigue (Volume of Alerts)
- Automated Incident Detection

Tool overload SOCs are inundated with new automated tools
instead of optimizing the use of select tools.

- Ineffective Identification of Threats
- Alert Fatigue (Tool Overload)

Unsupervised machine learning Tools are not trained based on the expertise of SOC
analyst insights but learn independently.

- Automated Incident Response
- AI and ML in IR

Appendix E. SOC Automation Scenarios

Table A3 delineates the two scenarios shown in Figure 9; representing different levels
of SOC automation

Table A3. SOC Automation Scenarios.

SOC Automated Processes and Levels of Automation

SOC 2A

• Automation is likely to be implemented and utilized in the IR lifecycle’s detection, prioritization, analysis, and
containment phases.

• Decision support systems are adopted.
• The levels of automation fall between levels 3 and 5.

o L3: Automation generates a variety of options that analysts do not have to follow.
o L4: Automation selects an action, but analysts approve or disapprove.
o L5: Automation selects an action to be taken and implements it if analysts approve.

SOC 2B

• Automation is likely to be implemented in the same phases as SOC 2A and the response phase (eradication
and recovery procedures).

• Decision support systems are adopted.
• The levels of automation fall between levels 6 and 8.

o L6: Automation selects an action intending to implement it but provides analysts ample time to reverse
the action.

o L7: Automation performs a task and informs analysts what was performed.
o L8: Automation performs a task and informs analysts only if prompted.
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