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Abstract: In this paper, we present an innovative approach inspired by the Path-scan model to detect
paths with k adjacent edges (k-path) exhibiting unusual behavior (synonymous with anomaly) within
network communications. This work is motivated by the challenge of identifying malicious activities
carried out in vulnerable k-path in a small to medium-sized computer network. Each observed edge
(time series of the number of events or the number of packets exchanged between two computers in
the network) is modeled using the three-state observed Markov model, as opposed to the Path-scan
model which uses a two-state model (active state and inactive state), to establish baselines of behavior
in order to detect anomalies. This model captures the typical behavior of network communications,
as well as patterns of suspicious activity, such as those associated with brute force attacks. We take
a perspective by analyzing each vulnerable k-path, enabling the accurate detection of anomalies on
the k-path. Using this approach, our method aims to enhance the detection of suspicious activities in
computer networks, thus providing a more robust and accurate solution to ensure the security of
computer systems.

Keywords: cybersecurity; cyberattacks; Markovian model; generalized maximum likelihood ratio;
computer networks; network traffic

1. Introduction

In the context of information systems, a widely accepted definition by Hawkins
(Hawkins, 1980) describes an anomaly as an observation that deviates so significantly from
other observations that it raises suspicions that it was generated by a different mecha-
nism [1]. Anomalies are of paramount importance in computer networks because they
can signal unusual but significant activities. For instance, a sudden increase in network
traffic to an unknown destination might indicate an attempt at hacking or a security breach,
necessitating immediate response to protect data and systems from potential threats [2].
Therefore, anomaly detection is a crucial issue in many fields, especially cybersecurity.
It involves detecting unexpected or rare events in data streams, commonly referred to
as abnormal events. Anomaly detection in networks encompasses various methods and
approaches, each with its own strengths and applications. It aims to identify unusual
behaviors that might indicate intrusions or other cyberattacks. An overview of anomaly
detection in networks using network flows is provided in [3]. A promising method in this
domain is the k-path approach [4], which leverages network flow events to identify paths
exhibiting anomalies using a time series of flow events between pairs of computers.

In 2007, Estonia was the target of a series of large-scale cyberattacks that specifically
targeted several of its major banks [5]. These attacks were significant enough to force the
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country’s leading bank to shut down its online services for several hours, disrupting finan-
cial transactions and causing widespread concern among the populace. Moving forward
to May 2017, the world witnessed the emergence of WannaCry, a ransomware attack that
quickly became one of the most notorious cyberattacks in history. WannaCry spread rapidly
across the globe, infecting over 200,000 computers in more than 150 countries within a
matter of days. The attack crippled critical systems in various sectors, including healthcare,
finance, and government, causing billions of dollars in damages [6]. These incidents bru-
tally remind us of the growing threat posed by cyberattacks to our interconnected digital
systems. However, most attackers operate using brute-force attacks, resulting in abnor-
mal spikes in network traffic. Other attackers prefer a more subtle approach by sending
low-rate streams, thus blending in with normal flows generated by trusted sources on the
network [7]. These low-rate tactics highlight the different strategies used by cybercriminals
to infiltrate and disrupt digital systems, with intrusion being the predominant objective for
most attackers.

By definition, when an individual undertakes an action for which they are not legally
authorized, it is termed intrusion. This intrusion can originate from external sources,
through attacks such as unauthorized access attempts or exploitation of security vulnera-
bilities, or it can result from an intruder exceeding their authorized limits [8]. The actions
taken by an intruder, whether from an external or internal source, may follow a well-defined
pattern, often represented by the intrusion path. This path can be illustrated by several
stages, as shown in Figure 1:

• Initial infection and local research: The intruder often starts by infecting a system or
network via various vectors, such as malware or social engineering techniques. Once
infiltrated, the intruder conducts local research to identify other potential resources to
compromise.

• First Traversal and Further Exploration: After the initial infection, the first traversal of
the network occurs. The intruder explores accessible systems to gather information
and identify their potential target.

• Complete Traversal and Malicious Actions: Once the intruder has identified their
target and obtained the necessary privileges, they can undertake malicious actions.

Let us consider an example where an attacker launches a phishing attack targeting
employees of a company:

Step 1:

• An employee opens a malicious email containing a link to a compromised site.
• The compromised site exploits a vulnerability in the employee’s browser to install

malware on their workstation.
• The malware begins scanning the local network for other vulnerable systems. It

identifies an internal server used for storing sensitive data.

Step 2:

• Once on the internal server, the malware begins collecting information about the
system, such as credentials stored in plain text in configuration files.

• The intruder uses the retrieved credentials to log in to the server and explore the stored
data. They discover a database server containing customer information.

Step 3:

• Using the access privileges obtained on the internal server, the intruder accesses
the database server and extracts sensitive customer data, including credentials and
financial information.

• The intruder uses this information to conduct fraudulent transactions and access
sensitive user accounts.

Each of these steps represents a critical phase of the attack, and detecting these behav-
iors at an early stage can be crucial in preventing damage and limiting the impact of the
intrusion.
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Figure 1. Representation of an intrusion.

Typically, an intrusion is rarely direct. It often employs the tactic of “lateral move-
ment” [9] to traverse multiple servers within the computer network and form a path leading
to its target. Despite significant advancements in cybersecurity, the persistent demand
for solutions to identify these paths, which are often vulnerable, indicates that challenges
remain. Researchers are, therefore, working on developing methods capable of detecting
and characterizing unusual behaviors within these paths, aiming to enhance network
security against intrusions.

In this article, we address the problem of anomaly detection within these paths through
the analysis of network flow data. We begin our discussion by presenting flow data, its
processing, and modeling. Then, we review previous work on anomaly detection, such
as the work by Joshua Neil and his colleagues [4]. Their work forms the basis of our
contribution, which involves considering the number of packets exchanged between two
connected servers and applying a three-state observed Markov model to account for
the three types of behavior in exchanges between two connected servers: no exchange,
exchanges corresponding to a flux peak, or exchanges are moderate. We propose replacing
the Active state of the Path Scan model [4], which represents an exchange of flow between
two servers, with two new states. We introduce the Peak state, indicating a massive increase
in flows, indicating periods where the system is at maximum load, and the Moderate state,
which characterizes less intense but still significant flow levels. This modification provides
a more nuanced representation of the system conditions, facilitating better adaptation. By
integrating these new states into the Path Scan model, our contribution aims to improve its
ability to detect anomalies in the system.

The rest of the document is organized as follows: Section 2 discusses the processing
and modeling of flow data. Then, Section 3 presents related work. Section 4 describes
the methodology used in our research. Section 5 presents the results obtained using the
generated datasets. Finally, Section 6 concludes the paper.

2. Data Processing and Modeling

In computer science, an event is an action or occurrence recognized by a software
system. This occurrence can come from various sources such as operating systems, net-
works, servers, firewalls, antivirus software, database queries, hardware infrastructures, etc.
Events are typically recorded in special files called event logs [10]. They come from different
sources, such as firewalls, routers, and switches, thus providing an external perspective on
activities that may be internal to the network or occur between an internal server and an
external server. To collect event streams, organizations usually use automated collection
methods such as NetFlow [11].

NetFlow, the most widely used standard for flow data statistics enables the monitoring
and recording of all traffic entering or exiting an interface (A physical or logical connection
point on a network device such as a router, switch, or a computer’s network card), as
illustrated in Figure 2.

Figure 2 shows the NetFlow data collection process on a network. Computers and
printers send data through routers. The router, enabled with NetFlow, analyzes and



J. Cybersecur. Priv. 2024, 4 452

aggregates this traffic into distinct flows. These flows are then grouped into flow export
datagrams and exported using the User Datagram Protocol (UDP).

Figure 2. Flow event collection process.

These datagrams are received and processed by a flow collector. The format of each
NetFlow record contains at least the following information:

• The date the flow was recorded.
• The duration for which the flow was active was often measured in seconds.
• The source and destination IP addresses (data can be replaced by the source name).
• The type of IP protocol (e.g., TCP = 6; UDP = 17; ICMP = 1).
• The source and destination TCP/UDP port numbers.
• The number of packets in the flow.
• The number of bytes in the flow’s packets.

However, to effectively utilize this data for detecting suspicious behaviors, careful
preparation is essential. Firstly, it is crucial to select relevant features for analysis. Among
these, commonly included are the number of exchanged packets, the total volume of
transferred bytes, the source and destination ports used, the duration of the flow record,
the date and time of the event, and the involved communication protocol.

Furthermore, we recorded flow events per minute and packets exchanged per minute
between 9:00 and 9:30 on a pair of connected addresses in the LNLA network [12]. Figure 3a,b
illustrates the number of events and the number of packets recorded per minute.

(a) (b)
Figure 3. (a) Event count per minute between 9:00 and 9:30; (b) Packet count per minute between
9:00 and 9:30.

Examining Figure 3a we observe a dynamic showing the number of events per minute
against the date we notice a pronounced variability with several event peaks exceeding
100 events per minute. In contrast to Figure 3a, Figure 3b illustrates a notable packet peak
occurring at 9:18 a.m., indicating a sudden increase in traffic at that precise moment. These
two behaviors exhibit irregular and potentially intense network activity at certain times,
suggesting transitions between periods of no activity, moderate activity, and activity spikes.
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However, to effectively use this data to detect suspicious behavior, careful preparation
is essential. First and foremost, it is crucial to select relevant features for analysis. Among
these, commonly included are the number of exchanged packets, the total volume of
transferred bytes, the source and destination ports used, the duration of the flow record,
the date and time of the event, and the involved communication protocol. These features
provide a basis for detecting suspicious activities in network traffic. Additionally, it is
important to model the mapping of the studied network from these event logs in order
to identify active paths (each pair of computers, which compose this path, communicates
through network flows) and analyze them. This simplifies the detection work. This
graphical modeling involves grouping events associated with each pair of connected
network equipment. These aggregated data also allow the construction of actionable time
series, describing activity between well-defined time periods for each pair of network
equipment.

A graph [13], denoted G, is defined as a pair (V, E), where V is a set of vertices and E
is a set of edges, disjoint from V. This pair is accompanied by an incidence function ψ that
associates with each edge of G a pair of vertices (which are not necessarily distinct) from
V. If e is an edge and u and v are the vertices such that ψ(e) = {u, v}, then we say that e
connects u and v, and these vertices u and v are called the endpoints of e. The numbers of
vertices and edges of G are denoted v(G) and e(G); these two parameters are called the
order and size of G, respectively. In the context of a computer network, each vertex of the
graph can represent an IP address. The edges can represent exchanges between these IP
addresses. From this graph, we can now identify the set of active paths. These will be paths
of multiple adjacent edges. In Joshua Neil and colleagues’ article, these paths are called
k-paths of G.

Although Figure 4a represents the network structure for a small to medium-sized
enterprise, it shows the absence of communication in the network, although the links
(edges) may represent potential communication flow opportunities between IP addresses
in the future. Whereas Figure 4b depicts the network using flow data over a 30-min period,
using this flow data we are able to illustrate the active side of the network with the aim
of identifying only paths with flow activities. For example, the four-path in red and the
three-path in green.

(a) (b)
Figure 4. (a) represents the graphical depiction of a computer network of a small to medium-sized
enterprise, and (b) illustrates the graphical representation of the network using active paths during
a 30-min period. In (b), we have depicted an example of a four-path in red, and an example of a
three-path in green.

The vulnerable k-path captures the essence of many network attacks, which traverse
a path through the network. In Section 4, we will address the methodology for detecting
these attacks using modeling of the number of events or the number of packets per minute
on each edge of the active k-path, based on the work of [4].

As a reminder, the Path-scan model, associated with the observed Markov model, is a
detection technique developed to identify abnormal subgraphs, such as paths (k-path). This
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model relies on a probabilistic representation of flow data, where two states are observed:
the active state and the inactive state.

The active state indicates the presence of positive records on an edge, meaning that
there have been events or packets recorded on this edge during the considered time period.
In contrast, the inactive state corresponds to the absence of activity on this edge during
the studied period. Under the assumption that the attacker’s behavior leads to an increase
in the transition probability from the inactive state to the active state, a hypothesis test is
conducted for each edge.

3. Related Works

Anomaly detection using continuous data has become a crucial area of research due to
the proliferation of data in recent decades and the need to detect events indicating that a
process has changed significantly from its previous behavior. This is particularly true in
the fields of audiology [14], imaging [15,16], engineering [17], and computer science [18]...

In the field of cybersecurity, various anomaly detection systems have been proposed
in the literature, notably in the work of Neil el al., 2013 [4]; Kimura et al., 2014 [19]; Céline
Lévy-Leduc, 2014 [20]; Evangelou et al., 2016 [21]; Evangelou et al. 2020 [22] and Corentin
Larroche, 2021 [23]. Some of these studies have focused on developing models using data
flows to detect anomalies in network communications. For example, in the 2018 study by
Bo Zong et al. [24], the authors introduced a model called Deep Autoencoding Gaussian
Mixture Model (DAGMM) for unsupervised anomaly detection. This model combines
a deep autoencoder with a Gaussian Mixture Model (GMM) to detect anomalies in data
streams. The anomaly detection process involves using the deep autoencoder to generate a
low-dimensional representation and reconstruction error for each input data point. This
information is then fed into the Gaussian mixture model to estimate the probability of
each data point being generated by the model. In the 2020 study by Sajjad Hosseinzadeh
et al. the Gamma-Normal Mixture Model (GNM) is presented as a crucial component
for statistical anomaly detection in network traffic. The authors propose a fast statistical
anomaly detector at the aggregate level for two types of anomalies: DDoS and Flood. They
then study the compatibility between this model and network traffic using various tests.

Although these anomaly detection methods are capable of identifying irregularities,
they are based on specific assumptions about the distribution of packets exchanged or
events. The difficulty lies in the lack of precise knowledge of these distributions, which
leads us to consider the observed Markov model. This model evaluates the probability
of transition from one state to another as a function of network flow events, as shown in
the 2013 study by Joshua Neil and colleagues. While this model is effective at detecting
anomalies on specific paths through network flow data, it has limitations. In particular,
it can struggle to spot anomalies when there is a rapid succession of exchanges. In other
words, an unusual sequence of events over a very short period may escape the detection
system associated with the observed Markov two-state model. Furthermore, this model
does not take into account the quantity of packets exchanged and the spikes in flux that
occur in these exchanges but rather focuses on the number of exchanges. These limitations
can be problematic in scenarios where the quantity of exchanged packets is crucial for
anomaly detection, such as in a brute force attack or a DoS attack, where the volume of
exchanged packets can be a key indicator.

In this paper, time series of communications are analyzed using the three-state Markov
model and the generalized likelihood ratio test (GLRT) to detect anomalies, in particular,
those resulting from brute force behavior that is often human-induced.

4. Three-State Markovian Approach

This section presents a framework for anomaly detection in an active k-path, based on
the observed Markov model and the generalized likelihood ratio.
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4.1. Definition of the States

Most anomaly detection methods based on the observed Markov model and the
generalized likelihood ratio detect network anomalies using information extracted from
flows, even though some flows may persist for a considerable duration. These methods are,
therefore, more suitable for offline detection [4]. In order to detect malicious traffic at an
early stage, Joshua Neil et al. [4] aim to identify an anomaly based on the specific number
of exchanges between two IP addresses. In this paper, aimed at furthering the method
described in [4], we present an approach to identify such anomalies, based on the specific
number of packets exchanged between two IP addresses.

From an active graph, let us consider a k-path of adjacent edges, denoted as

γ = {e1, e2, · · · , ek−1, ek} ⊂ E.

By collecting flow data along each edge of this path, we gather information about the
number of packets exchanged per minute between the involved IP addresses.

Let e ∈ γ ; at discrete time points t ∈ {t0, t1, · · · , tn} with ti = t0 + i where t0 is the
initial date and n is the total number of minutes in the sequence, we designate a time
window (e, I), where I = {[ti−1, ti[, i = 1, · · · , n}.

Let Xt(e) be the number of packets recorded on e during the period [t − 1, t]. Let
X(e, I) represent the data in window (e, I) we have:

X(e, I) = (Xti (e))i=1,··· ,n.

For each value of Xti (e), we can deduce a state for the edge e. Figure 5 associated with
Figure 3b illustrates the three zones where the variable Xt can be located. Each zone
represents a state of the edge during the given period.

Figure 5. Zones of different states.

The first zone, State 1, corresponds to the absence of packets; it represents periods
of one minute where the counters are zero. In this configuration, we qualify this state as
inactive.

The second zone, State 2, is characterized by the presence of activity resulting in
an exchange of packets, but at a moderate level. This means that the number of packet
exchanges is controlled and does not exceed a defined threshold. In this regard, we describe
this state as moderate.

Finally, the third zone corresponds to cases where exchanges explode, far exceeding
the defined threshold. This scenario, State 3, represents periods of intense activity where
the number of packet exchanges is well beyond the established threshold. We qualify this
state as Peak.

In summary, these three zones describe the different possible states of the edge, ranging
from inactivity to moderate activity, up to intense activity. This classification helps to better
understand and analyze the behavior of the edge in different contexts and levels of activity.
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We have a data process Sti (e) representing the state of the edge during the period
[ti−1, ti[; it takes values in S = {1, 2, 3} with

Sti (e) =


1 if Xti (e) = 0
2 if 0 < Xti (e) ≤ XPeak(e)
3 if Xti (e) ≥ XPeak(e).

In this formulation, XPeak(e) represents the threshold of Xti (e), determining the transition
from the moderate state to the peak state.

A network data flux peak occurs when there is a sudden and significant increase in the
volume of data traversing through a computer network over a defined period. However,
determining an appropriate threshold to conclude that a flux peak has occurred can be
challenging. One commonly used approach is to employ statistical analysis techniques
to model the distribution of network data flux. These models help determine threshold
values based on features such as the mean, standard deviation, quantiles, or other statistics
(see the works of Standardization Working Group No. 5 [25]). The threshold values thus
defined can then be used to detect periods where the data volume significantly exceeds
expected levels, indicating the presence of a flux peak.

In the future, we plan to propose a study on selecting the threshold XPeak(e) for
detecting data traffic peaks. In our simulation, we will use the mean (µ) and standard
deviation (σ) to define this threshold. The mean represents the typical value of data flux,
while the standard deviation measures the dispersion of data around the mean. By setting
the threshold at a certain number of standard deviations above the mean, we can identify
periods where the data volume exceeds what is considered moderate. We define:

XPeak(e) = µ(e) + h × σ(e),

where µ(e) is the mean of the data Xti (e), σ(e) is the standard deviation of the data Xti (e), h
is a coefficient that determines the number of standard deviations above the mean to define
the threshold. The larger h is, the higher the threshold will be, and thus more stringent in
terms of peak detection.

4.2. Modeling, Estimation, and Hypothesis Testing

We thus define the observed Markov model over e, characterized by nine parameters,

pα,β(e) = P(St(e) = β|St−1(e) = α) for (α, β) ∈ S2,

where pα,β(e) represents the transition probability from state α to state β.
We assume that the initial state of the model is fixed and known. Thus, the likelihood

of the model is formulated as follows:

L
(
(pα,β(e))(α,β)∈S2 |s(e, I)

)
= ∏

(α,β)∈S2

(
pα,β(e)

)nα,β(e),

where s(e, I) = (st1(e), st2(e), · · · , stn(e)) is the sequence of observation states on (e, I) and
nα,β(e) is the number of times the consecutive pair {α, β} has been observed in s(e, I) with

∑
(α,β)∈S2

nα,β(e) = n − 1

Estimating the maximum likelihood parameters of the model is a crucial step in fitting
the model to the observed data. The most commonly used method for this task is the
Maximum Likelihood Estimation (MLE).
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The log-likelihood (ℓ) is then obtained by taking the natural logarithm of the likelihood
function, thus transforming the product into a sum:

ℓ
(
(pα,β(e))(α,β)∈S2 |s(e, I)

)
= ∑

(α,β)∈S2

nα,β(e) log(pα,β(e))

The objective is to maximize this log-likelihood function with respect to the parameters
θ(e, I) = (pα,β(e))(α,β)∈S2 . This can be achieved using numerical optimization techniques.
Sometimes it is necessary to consider constraints on the parameters; one common constraint
is that for a given state α ∈ S, the total transition probability from that state must be
equal to 1:

∑
l∈S

pα,l(e) = 1.

We can introduce a Lagrange multiplier, denoted cα, and modify the likelihood func-
tion to include the penalty term cα(∑l∈S pα,β(e)− 1). The parameter estimation problem
then becomes that of maximizing this penalized likelihood function:

L(pα,β(e), cα) = ∑
(ϵ1,ϵ2)∈S2

nϵ1,ϵ2(e) log(pϵ1,ϵ2(e))− cα(∑
l∈S

pα,l(e)− 1).

Using the method of Lagrange multipliers, we seek the value of the parameter pα,β(e)
and the Lagrange multipliers cα that nullify the partial derivatives of the Lagrange func-
tion L(pα,β(e), cα) with respect to the parameters pα,β(e) and the Lagrange multipliers
cα. Differentiating L(pα,β(e), cα) with respect to pα,β(e) and setting the derivative to zero,
we obtain:

∂L(pα,β(e), cα)

∂pα,β(e)
=

nα,β(e)
pα,β(e)

− cα = 0

Furthermore, since ∑δ∈S pα,δ(e) = 1, we then have:

cα = ∑
δ∈S

nα,δ(e),

p̂α,β(e) =
nα,β(e)

∑δ∈S nα,δ(e)
.

Now, we are discussing hypothesis testing within a statistical framework, specifically
regarding the determination of whether new observations in a particular path (γ) are likely
to have been generated by a known function of the parameters of the model associated with
that path (θ0(γ) = (θ0(e1), θ0(e2), · · · , θ0(ek))), as opposed to hypotheses indicating that
these parameters have changed. In other words, given new observations S(γ, I1) = s(γ, I1),
the goal is to test the null hypothesis H0 : θ(γ, I1) = θ0(γ) against the alternative hypothesis
that can be formed by restricting the global parameter space Θ to a subset ΘA ⊂ Θ. The
statistical test of the generalized likelihood ratio is a relevant measure to use in this context.
It is defined as follows:

λ(γ, I1) = −2 log

(
L(θ0(γ)|s(γ, I1))

supθ∈ΘA
L(θ(γ, I1)|s(γ, I1))

)

with
γ = {e1, e2, · · · , ek−1, ek} ⊂ E.

In other words, this statistic measures the divergence between the likelihood of the model
under the null hypothesis and the maximum likelihood under all alternative hypotheses.
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In Joshua Neil et al. [4], the authors introduce the assumption of independence
between the edges of a k-path. This assumption translates to:

λ(γ, I1) = ∑
e∈γ

−2 log

(
L(θ0(e)|s(e, I1))

supθ∈ΘA
L(θ(e, I1)|s(e, I1))

)
.

So, this assumption gives us the ability to model the behavior of each edge of the k-path to
deduce a modeling of the k-path, γ.

To design a generalized likelihood ratio test, it is imperative to constrain our global
parameter space to include alternatives reflecting the behaviors of attackers we seek to
detect. These alternatives must be formulated generically to encompass a variety of
behaviors. Our underlying hypothesis is that the attacker’s behavior leads to an increase in
the maximum likelihood estimators of the model parameters. Specifically, we posit that the
attacker’s actions result in an increase in certain transition probabilities between specific
pairs of states such as (α, β) ∈ S2 where (α ≤ β) ∈ S2. Additionally, the attacker’s behavior
will also manifest as a decrease in the frequency of observing state 1 in the sequences of
observations.

For each e ∈ γ, this concerns the transition probabilities from state α to state β with
β ≥ α where β > 1.{

H0 : ∀α, β, p̂α,β(e) ≤ p̃α,β(e) with β ≥ α or f̂1(e) ≥ f̃1(e)
H1 : ∃α, β, p̂α,β(e) > p̃α,β(e) with β ≥ α and f̂1(e) < f̃1(e),

where ( p̃α,β(e))(α,β)∈S2 are the historical parameter values on e, f̃1(e) is the frequency of
observing the state 1 in the historical observations on e, ( p̂α,β(e))(α,β)∈S2 are the parameter
values that maximize the likelihood of the model for a new series of observations on e, and
f̂1(e) is the frequency of observing the state 1 for the new series of observations on e.

Thus, for any edge e ∈ γ, we can determine the statistic of the generalized likelihood
ratio λ(e, I1) given by:

λ(e, I1) = −2 log

L
(
( p̃α,β(e))(α,β)∈S2 |S(e, I1) = s(e, I1)

)
L
(
( p̂α,β(e))(α,β)∈S2 |S(e, I1) = s(e, I1)

)
.

We are seeking a p-value for the observed generalized likelihood ratio test, λ(γ, I1).
The assumption of independence among network communications [4] implies:

λ(γ, I1) = ∑
e∈γ

λ(e, I1).

Under conditions of moderate regularity, the generalized likelihood ratio test λ(e, .) is
asymptotically distributed according to a χ2 distribution with degrees of freedom equal
to the number of free parameters. However, this only applies under certain conditions
(see Casella and Berger, 2001, p. 516 [26]). Let Λ(e, ·) denote the distribution of λ(e, ·). Let
Λ(e, ·) be defined as follows:

Λ(e, ·) = B(e, ·)× G(e, ·) where B(e, ·) ∼ Bernoulli(pe)

and
G(e, ·) ∼ Gamma(ξe, η)

where pe and ξe are specific parameters exclusively for Λ(e, ·), and η is specific exclusively
for Λ(γ, ·) = ∑e∈γ Λ(e, ·).

Given that λ(e, ·) could be zero, Λ(e, ·) must have a point mass at zero, captured by
B(e, ·). To model the positive part of the distribution of Λ(e, ·), the Gamma distribution is
appealing as it equals a χ2 distribution with degrees of freedom νe when ξe =

νe
2 and η = 2.
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The asymptotic distribution of λ(e, ·) is then the sum of independent random variables
distributed according to a χ2 distribution with zero inflation.

Let λr(e) = λ(e, Ir) be the statistic of the generalized likelihood ratio test on e for a
sequence of observations s(e, Ir); through maximum likelihood estimation, for a sample of
size m, (λ1(e), λ2(e), · · · , λm(e)), we estimate the parameters pe and ξe. The likelihood of
the sample is given by:

L(pe, ξe, η|λ1(e), λ2(e), · · · , λm(e)) =
m

∏
q=1

(1 − pe)
I(λq(e)=0) ×

λq(e)ξe−1 exp− λq(e)
η

Γ(ξe)ηξe

I(λq(e)>0)

.

The log-likelihood is given by:

ℓ(pe, ξe, η|λ1(e), λ2(e), · · · ,λm(e)) =
m

∑
q=1

I(λq(e) = 0)log(1 − pe) + I(λq(e) > 0)

×
(
(ξe − 1)log(λq(e))−

λq(e)
η

− ξelog(η)− log(Γ(ξe))

) (1)

• Estimation of pe: To achieve this, we advocate for the use of maximum likelihood
estimation. Upon differentiation, we obtain:

∂ℓ(pe, ξe, η|λ1(e), λ2(e), · · · , λm(e))
∂pe

= −
m

∑
q=1

I(λq(e) = 0)
1 − pe

+
m

∑
q=1

I(λq(e) > 0)
pe

.

Setting

−
m

∑
q=1

I(λq(e) = 0)
1 − pe

+
m

∑
q=1

I(λq(e) > 0)
pe

= 0,

we obtain:
∑m

q=1 I(λq(e) = 0) + ∑m
q=1 I(λq(e) > 0)

∑m
q=1 I(λq(e) > 0)

=
1
pe

,

m
∑m

q=1 I(λq(e) > 0)
=

1
pe

.

Hence

p̂e =
∑m

q=1 I(λq(e) > 0)

m
.

• Estimation of ξe: To estimate ξe, we will directly use numerical optimization of

ℓ(pe, ξe, η|λ1(e), λ2(e), · · · , λm(e)).

• Estimation of η: For this, we recommend using the derivative of

ℓ(pl , ξl , η|λ1(e), λ2(e), · · · , λm(e))

with respect to η and setting it to zero, we obtain:

m

∑
q=1

I(λq(e) > 0)
(

λq(e)
η2 − ξe

η

)
= 0 with η > 0

∑m
q=1 I(λq(e) > 0)λq(e)

η
=

m

∑
q=1

I(λq(e) > 0)ξe with η > 0
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∑e∈γ ∑m
q=1 I(λq(e) > 0)λq(e)

η
= ∑

e∈γ

m

∑
q=1

I(λq(e) > 0)ξe with η > 0

η

∑e∈γ ∑m
q=1 I(λq(e) > 0)λq(e)

=
1

∑e∈γ ∑m
q=1 I(λq(e) > 0)ξe

with η > 0

η =
∑e∈γ ∑m

q=1 I(λq(e) > 0)λq(e)

∑e∈γ ∑m
q=1 I(λq(e) > 0)ξe

with ∑
e∈γ

m

∑
q=1

I(λq(e) > 0)ξe ̸= 0

η̂ =
∑e∈γ ∑m

q=1 I(λq(e) > 0)λq(e)

∑e∈γ ∑m
q=1 I(λq(e) > 0)ξ̂e

with ∑
e∈γ

m

∑
q=1

I(λq(e) > 0)ξ̂e ̸= 0

We denote the maximum likelihood parameters on e of a path by ( p̂e, ξ̂e, η̂).
Let Ir be defined by Ir = {[t1 + i, t1 + i + 1[, i = 0, · · · , 30} where t1 is the initial date.
The p-value is computed by:

p-value(γ, Ir) =P(Λ(γ, Ir) > λ(γ, Ir))

=
1

∑
be1=0

1

∑
be2=0

· · ·
1

∑
bek=0

P(Λ(γ, Ir) > λ(γ, Ir)|b1, b2, · · · , bk)

× ∏
e∈γ

P(B(e, Ir) = be)

=
1

∑
be1=0

1

∑
be2=0

· · ·
1

∑
bek=0

(
∏
e∈γ

(1 − pe)
1−I(B(e,Ir)=be)(pe)

I(B(e,Ir)=be)

)

×
(

1 − FΓ

(
λ(γ)| ∑

e∈γ

I(B(e, Ir) = be)ξ̂e, η̂

))

where FΓ is the cumulative distribution function of the Gamma distribution.
The threshold for p-values is a pre-selected threshold, denoted as r0, representing the

significance level of the statistical test. It indicates the maximum probability of incorrectly
rejecting the null hypothesis when it is actually true. In other words, the p-value threshold
is used to determine if a p-value obtained from a statistical test is sufficiently low to reject
the null hypothesis. The threshold, r0, in these cases, could be defined as follows:

• If the p-value (γ, Ir) > r0, then the observation on (γ, Ir) is considered normal.
• If the p-value (γ, Ir) ≤ r0, then the observation on (γ, Ir) is considered abnormal.

5. Results

In this section, we describe the simulation process used to evaluate the performance
of the three-state model compared to the Path-scan model.

Thus, as part of our evaluation of the performance of the three-state model, we rely on
this model as a reference to compare the effectiveness of our anomaly detection approaches
in flow data.

5.1. Generation of Flow Data

We generated simulated flow data to represent network communications over a three-
path, γ, defined by:

γ = {(A, B), (B, C), (C, D)}

and represented by the Figure 6:

A B C D

Figure 6. Graphical representation of γ.
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Each data record includes information such as the date and time of communication,
communication duration, source and destination addresses, the protocol used, the num-
ber of packets exchanged, etc. These data were randomly generated using appropriate
distributions for each attribute.

5.2. Training the Models

We generated training and adjustment data for three edges (A, B), (B, C), and (C, D)
over a period from January 1st to January 31st. The total number of events for each edge is
set to 13,780, 14,210, and 14,880, respectively, with specific means and standard deviations
for the number of packets: 325 (standard deviation 50) for edge (A, B), 357 (standard
deviation 47) for edge (B, C), and 332 (standard deviation 62) for edge (C, D). For each
edge, packets were generated following a normal distribution, with randomly added peaks
of 451 for edge (A, B), 672 for edge (B, C), and 405 for edge (C, D), simulating extreme
variations. Timestamps were randomly assigned to these packets.

Furthermore, we identified a traffic peak when the number of packets exceeded XPeak,
determined using training data under normal conditions, with

XPeak = µ + 4σ,

where µ is the mean of Xt during the training phase and σ is its standard deviation. This
approach ensures that the threshold is positioned significantly above the mean, making it
less sensitive to minor fluctuations and more robust for detecting significant variations.

The Tables 1 and 2 summarize the values of the training parameters for each edge
according to the model:

Table 1. Observed two-state Markov model, active and inactive states (Path-scan model).

Index Src Dest pinactive,inactive pinactive,active pactive,inactive pactive,active p τ η

0 A B 0.681 0.318 0.679 0.320 0.479 0.330 6.045
1 B C 0.670 0.329 0.672 0.327 0.533 0.367 6.045
2 C D 0.654 0.345 0.657 0.342 0.520 0.330 6.045

Table 2. Observed three-state Markov model using the number of packets exchanged per minute.

Index Src. Dest. XPic f1 p11 p12 p13 p21 p22 p23 p31 p32 p33

0 A B 505 0.680 0.681 0.310 0.007 0.680 0.311 0.007 0.632 0.361 0.005
1 B C 545 0.671 0.670 0.317 0.012 0.672 0.315 0.011 0.682 0.302 0.015
2 C D 505 0.655 0.654 0.336 0.008 0.657 0.332 0.010 0.651 0.333 0.014

Index Src. Dest. p τ η

0 A B 0.610 0.557 6.068
1 B C 0.610 0.557 6.068
2 C D 0.564 0.515 6.068

These models have identical transition probabilities from the inactive state to the
inactive state, which is reflected as

pinactive,inactive(e) = p1,1(e), ∀ e ∈ γ.

The transition probability from the active state to the inactive state in the Path-scan model
is equivalent to the average of the transition probabilities from the moderate state to the
inactive state and the transition probability from the peak flow state to the inactive state.
This combination is represented by

pactive,inactive(e) =
p3,1(e) + p2,1(e)

2
, ∀ e ∈ γ.
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The transition from the inactive state to the active state (pinactive to active) in the adjusted
model is equivalent to the transition from the inactive state to the moderate state or the
peak flow state. This increased responsiveness is represented by

pinactive,active(e) = p1,3(e) + p1,2(e), ∀ e ∈ γ.

The transition from the active state to the active state in the adjusted model is equivalent to
the transition from the moderate state or the peak flow state to the moderate state or the
peak flow state. This integration of different activity levels is represented by

pactive,active(e) =
p2,3(e) + p2,2(e) + p3,3(e) + p3,2(e)

2
, ∀ e ∈ γ.

5.3. Determination of the p-Value Threshold (r0)

To establish the threshold (r0) for each model, we implemented a process to generate
a scenario reflecting normal behavior. For the period from February 1 to February 28, we
generated data packets for three edges with specific means and standard deviations: 200
(standard deviation of 45) for the edge (A, B), 205 (standard deviation of 48) for the edge (B,
C), and 151 (standard deviation of 41) for the edge (C, D). Peaks were introduced randomly
within intervals according to a specific distribution. Each peak was assigned based on
predefined values for each edge, using a set of defined weights. For example, the number
of peaks was selected from the values 0 and 1 with respective weights of 0.9 and 0.1, thus
favoring the value 0 more frequently. This process aims to simulate extreme variations that
can occur under real network conditions. Additionally, we ensured that no edge could be
involved in more than 14 different exchanges within 30 min. Timestamps were randomly
assigned to the generated data packets for each edge. To achieve a false alarm rate of one
alarm per day, we selected the tenth smallest p-value from the resulting list of p-values, as
chosen in the two-state scan path model [4]. The Table 3 illustrates the p-value thresholds
for each model.

Table 3. Thresholds (r0) for the models.

Models Path-scan model associated with
the observed Markov model

Three-state model using the num-
ber of packets exchanged per
minute

Threshold (r0) 0.13846332431809666 0.3322934604988478

5.4. Comparison of Models

We evaluated the performance of different models to detect unusual behaviors on the
studied path. Specifically, we compared the Path-scan model associated with the Observed
Markov Model (OMM) with two states, as presented in Joshua Neil et al.’s article [4], against
a three-state model using the number of exchanged packets. The latter model considers the
occurrences of the inactive state observed in the observations. These models underwent
several rounds of simulations. To reduce false positives, we adjusted the hypothesis test by
adding 0.2 to the historical parameters.

In the first scenario, we generated data reflecting the normal behavior of the studied
path. To conduct this, we followed the data generation process used during the threshold
determination phases for p-value. A total of 100 × 100 tests, each lasting 30 min, were
conducted, all reflecting normal behavior. Subsequently, we randomly divided the tests into
100 series of 100 tests to determine the prediction accuracy percentages with a confidence
interval. The results obtained for the different series for each model are presented in
Figure 7. Figures 8 and 9, respectively, illustrate the box plots for the predictions of the
Path-scan model associated with the observed Markov model and the three-state model
using the number of packets exchanged per minute.
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(a) (b)

Figure 7. Scenario No. 1: In green, the evolution of the number of times a model predicts “normal”
behavior across the series of 100 tests is observed. In blue, the expected values for “normal” behaviors
are depicted. (a) Path-scan model associated with the observed Markov model; (b) Three-state model
using the number of packets exchanged per minute.

Figure 8. Scenario No. 1: Path-scan model associated with the observed Markov model.

Figure 9. Scenario No. 1: Three-state model using the number of packets exchanged per minute.

The results of the first scenario indicate that both models have comparable sensitivities
for detecting normal behaviors. However, the observed two-state Markov model, combined
with the Path-scan method, slightly outperforms our three-state model for this specific task.
Indeed, our three-state model shows a false positive rate ranging from 1.71% to 2.25%,
whereas the observed two-state Markov model exhibits a false positive rate between 0.74%
and 1.22%. These results highlight the effectiveness of the two-state model in identifying



J. Cybersecur. Priv. 2024, 4 464

normal behaviors while minimizing false positives. However, a more in-depth analysis is
necessary to evaluate the sensitivity of these models under different data flow conditions,
particularly in the presence of brute force attacks. Such an evaluation would help determine
if the models maintain their effectiveness in more complex and varied scenarios.

In the second scenario, 100 × 100 tests were conducted, equally divided between tests
reflecting the normal behavior of the studied path and tests reflecting abnormal behavior
with one to three peaks per test. Following this data generation phase, the tests were
randomly distributed into 100 series of 100 tests each, with each series containing exactly
50 normal tests and 50 abnormal tests. This random distribution creates realistic and
varied conditions to evaluate the accuracy of prediction models by testing their ability to
effectively distinguish between normal and abnormal behaviors in a given environment.

The results obtained for the different series for each model are presented in Figure 10.
Figures 11 and 12, respectively, illustrate the box plots for the predictions of the Path-scan
model associated with the observed Markov model and the three-state model using the
number of packets exchanged per minute.

(a) (b)

Figure 10. Scenario No. 2: In green, the evolution of the number of times a model predicts “normal”
behavior across the series of 50 tests is observed. In red, the evolution of the number of times a
model predicts “abnormal” behavior across the series of 50 tests is presented. In blue, the expected
values for “abnormal” and “normal” behaviors are depicted. (a) Path-scan model associated with the
observed Markov model; (b) Three-state model using the number of packets exchanged per minute.

Figure 11. Scenario No. 2: Path-scan model associated with the observed Markov model.
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Figure 12. Scenario No. 2: Three-state model using the number of packets exchanged per minute.

The results of the second scenario indicate that both models exhibit comparable
sensitivities for detecting normal behaviors, as observed in the first scenario. However,
considering the injection of attacks such as brute force attacks and other types of attacks,
our three-state model slightly outperforms the observed two-state Markov model combined
with the Path-scan method for this specific task. Indeed, our three-state model shows a
false negative rate ranging from 0.02% to 0.22%, whereas the observed two-state Markov
model exhibits a false negative rate between 13% and 14%. These results suggest that
the three-state model is more effective in detecting abnormal behaviors, with a lower
likelihood of missing these behaviors (false negatives). This superiority can be attributed
to the three-state model’s ability to capture greater variability in data patterns, enabling it
to better distinguish between normal and abnormal behaviors even in environments with
highly active attacks.

These initial results indicate that the three-state model using the number of packets
exchanged per minute demonstrates similar or even superior capability in detecting ab-
normal behaviors compared to the Path-scan model associated with the observed Markov
model.

6. Conclusions

In this article, we propose an innovative approach for anomaly detection in computer
networks, focusing on the analysis of k-paths. By utilizing the observed Markov model
and generalized likelihood ratio test (GLRT), we have developed a robust methodology
to characterize normal behavior and detect suspicious activities. Our results have demon-
strated the effectiveness of our approach in identifying anomalies in network data flows,
particularly when associated with significant changes. Through well-established hypoth-
esis testing and rigorous parameter estimation of the model, we have provided accurate
tools for early detection of malicious behaviors along these paths.

Ultimately, our approach makes a significant contribution to computer network secu-
rity by providing advanced tools for detecting malicious activities. One research direction
involves applying the model using the hidden Markov model [4], while considering the
three states of the model and packet flows. Indeed, the model associated with the observed
Markov model does not account for the distribution of packet counts exchanged. Addi-
tionally, it is crucial to consider work hours, downtime, and tool update times within a
company to model a system capable of accounting for a more complex dimension. Another
research direction concerns anomaly detection on each host, particularly supporting vul-
nerable path assets; queries (generating network flows) are indeed sent and received by
hosts. Therefore, analyzing the behavior of individual hosts can provide valuable insights
for attack detection. New processes and services, as well as file accesses, are potential
data sources for identifying suspicious activities. However, collecting these data requires
significant software engineering effort.
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