Individual Differences in Psychological Stress Associated with Data Breach Experiences
Abstract
:1. Introduction
The Present Study
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Demographic Questions
2.2.2. Use of Digital Devices and Online Services
2.2.3. Digital Security Ratings
2.2.4. Data Breach Experiences
2.2.5. Experiences with Anxiety and Depression
2.2.6. Negative Emotionality
2.2.7. Generalized Anxiety Disorder-7
2.2.8. Penn State Worry Questionnaire
2.2.9. Impact of Events Scale—Revised
2.2.10. Data Breach Severity Index
2.3. Data Preparation and Statistical Analyses
3. Results
3.1. Comparisons between Student and Community Participants
3.2. Comparisons between Men and Women
3.3. Types of Data Breach Incidents
3.4. Correlational Analyses
3.5. Hierarchical Multiple Regression Predicting IES-R Scores
4. Discussion
Limitations and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Data Breach Severity Index (DBSI)
Score | Breach Extent | Sensitivity | Recovery |
---|---|---|---|
1 | Low: credit card or debit card number; password(s) exposed in a leaked list; Netflix, gaming, or online shopping account. | Low: publicly available information; personal information of limited utility; Netflix or Spotify access; gaming account; email address. | Low: no financial loss; contact credit card company to remove charges and cancel card; typical account recovery process; change passwords; remove credit card from online shopping account or delete the account; minimal or no effort. |
2 | Medium: access to accounts with a multitude of information (e.g., email, Facebook or other social media, Equifax, health insurance provider breach); personal pictures; driver’s license; GPS tracking. a | Medium: financial information; credit rating; driver’s license; SIN/SSN; medical information. | Medium: small financial costs; requires more than minimal effort to recover (e.g., undo edits to social media account after retrieval; request new SSN/SIN); typical account recovery does not work (e.g., cannot recover SM account using recovery email); dispute with bank about fraudulent charges to credit or debit account. |
3 | High: breach of multiple accounts (email, social media, financial, etc.); multiple sources of personal information stolen; audio or video recordings; access to entire phone or computer. | High: personal communications (email, social media messaging, IMs, DMs, etc.); social media account access; phone access; personal/sensitive photos. | High: permanent loss; cannot return to “normal”; significant financial loss; financial audit, safeguarding financial assets; unable to recover or delete social media account; must contact websites to remove material (photos, etc.); sexually explicit photos no longer private. |
4 | Very High: sexually explicit material (nude photos, audio, or video recordings, etc.); GPS tracking data. |
References
- Elhai, J.D.; Chai, S.; Amialchuck, A.; Hall, B.J. Cross-cultural and gender associations with anxiety about electronic data hacking. Comput. Hum. Behav. 2017, 70, 161–167. [Google Scholar] [CrossRef]
- Identity Theft Resource Center. 2022 Data Breach Report. Available online: https://www.idtheftcenter.org/post/2022-annual-data-breach-report-reveals-near-record-number-compromises/ (accessed on 14 July 2024).
- Schumacher, S.; Kent, N. 8 Charts on Internet Use around the World as Countries Grapple with COVID-19. Pew Research Report. 2020. Available online: https://www.pewresearch.org/short-reads/2020/04/02/8-charts-on-internet-use-around-the-world-as-countries-grapple-with-covid-19/ (accessed on 1 August 2024).
- Identity Theft Resource Center. 2023 Data Breach Report. Available online: https://www.idtheftcenter.org/publication/2023-data-breach-report/ (accessed on 14 July 2024).
- Office of the Privacy Commissioner of Canada, 2019. A Full Year of Mandatory Data Breach Reporting: What We’ve Learned and What Businesses Need to Know. Available online: https://www.priv.gc.ca/en/blog/20191031/ (accessed on 17 August 2024).
- Malhotra, A.; Malhotra, C.K. Evaluating customer information breaches as service failures: An event study approach. J. Serv. Res. 2010, 14, 44–59. [Google Scholar] [CrossRef]
- Schatz, D.; Bashroush, R. The impact of repeated data breach events on organisations’ market value. Inf. Comput. Secur. 2016, 24, 73–92. [Google Scholar] [CrossRef]
- Rosati, P.; Deeney, P.; Cummins, M.; van der Werff, L.; Lynn, T. Social media and stock price reaction to data breach announcements: Evidence from US listed companies. Res. Int. Bus. Financ. 2019, 47, 458–469. [Google Scholar] [CrossRef]
- Aivazpour, Z.; Valecha, R.; Chakraborty, R. The impact of data breach severity on post-breach online shopping intention. ICIS 2018 Proc. 2018, 13. Available online: https://aisel.aisnet.org/icis2018/security/Presentations/13 (accessed on 1 July 2024).
- Janakiraman, R.; Joon, H.L.; Rishika, R. The effect of a data breach announcement on customer behavior: Evidence from a multichannel retailer. J. Mark. 2018, 82, 85–105. [Google Scholar] [CrossRef]
- Martin, K.D.; Borah, A.; Palmatier, R.W. Data privacy: Effects on customer and firm performance. J. Mark. 2018, 81, 36–58. [Google Scholar] [CrossRef]
- Zetter, K. Hackers Finally Post Stolen Ashley Madison Data. 2015. Available online: https://www.wired.com/2015/08/happened-hackers-posted-stolen-ashley-madison-data/ (accessed on 12 June 2024).
- Doffman, Z. Ashley Madison Hack Returns to ‘Haunt’ Its Victims: 32 Million Users Now Watch and Wait. 2020. Available online: https://www.forbes.com/sites/zakdoffman/2020/02/01/ashley-madison-hack-returns-to-haunt-its-victims-32-million-users-now-have-to-watch-and-wait/?sh=6f776c375677 (accessed on 27 July 2024).
- Schager, N. ‘The Ashley Madison Affair’ Puts Cheaters on Blast. 2023. Available online: https://www.thedailybeast.com/the-ashley-madison-affair-review-putting-cheaters-on-blast (accessed on 12 June 2024).
- BBC Ashley Madison Hack Victims Receive Blackmail Letters. BBC News: Technology. 2015. Available online: http://www.bbc.com/news/technology-35101662 (accessed on 13 September 2023).
- Cross, C.; Parker, M.; Sansom, D. Media discourses surrounding ‘non-ideal’ victims: The case of the Ashley Madison data breach. Int. Rev. Vict. 2019, 25, 53–69. [Google Scholar] [CrossRef]
- Chai, S.; Bagchi-Sen, S.; Morrell, C.; Rao, H.R.; Upadhyaya, S.J. Internet and online information privacy: An exploratory study of preteens and early teens. IEEE Trans. Prof. Commun. 2009, 52, 167–182. [Google Scholar] [CrossRef]
- Elhai, J.D.; Hall, B.J. Anxiety about internet hacking: Results from a community sample. Comput. Hum. Behav. 2016, 54, 180–185. [Google Scholar] [CrossRef]
- Elhai, J.D.; Levine, J.C.; Hall, B.J. Anxiety about electronic internet hacking: Predictors and relations with digital privacy protection behavior. Internet Res. 2017, 27, 631–649. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Lowe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Joinson, A.D.; Dixon, M.; Coventry, L.; Briggs, P. Development of a new ‘human cyber-resilience scale’. J. Cybersecur. 2023, 9, tyad007. [Google Scholar] [CrossRef]
- Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: Psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–814. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.S.; Marmar, C.R. The Impact of Event Scale—Revised. In Assessing Psychological Trauma and PTSD; Wilson, J.P., Keane, T.M., Eds.; Guilford Press: New York, NY, USA, 1997. [Google Scholar]
- Weiss, D.S. The Impact of Event Scale: Revised. In Cross-Cultural Assessment of Psychological Trauma and PTSD; Wilson, J.P., Tang, C.S., Eds.; International and Cultural Psychology Series; Springer: Boston, MA, USA, 2007. [Google Scholar]
- Soto, C.J.; John, O.P. The Next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. J. Personal. Soc. Psychol. 2017, 113, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Topper, M.; Emmelkamp, P.M.G.; Watkins, E.; Ehring, T. Development and assessment of brief versions of the Penn State Worry Questionnaire and the Ruminative Response Scale. Br. J. Clin. Psychol. 2014, 53, 402–421. [Google Scholar] [CrossRef]
- McLean, C.P.; Asnaani, A.; Litz, B.T.; Hofmann, S.G. Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity, and burden of illness. J. Psychiatr. Res. 2011, 45, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Shchebetenko, S.; Kalugin, A.Y.; Mishkevich, A.M.; Soto, C.J.; John, O.P. Measurement invariance and sex and age differences of the Big Five Inventory-2: Evidence from the Russian version. Assessment 2020, 27, 472–486. [Google Scholar] [CrossRef]
- Dear, B.F.; Titov, N.; Sunderland, M.; McMillan, D.; Anderson, T.; Lorian, C.; Robinson, E. Psychometric comparison of the Generalized Anxiety Disorder Scale-7 and the Penn State Worry Questionnaire for measuring response during treatment of Generalised Anxiety Disorder. Cogn. Behav. Ther. 2011, 40, 216–227. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; text rev.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Creamer, M.; Bell, R.; Failla, S. Psychometric properties of the Impact of Event Scale-Revised. Behav. Res. Ther. 2003, 41, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.G.; Grant, D.M.; Read, J.P.; Clapp, J.D.; Coffey, S.F.; Miller, L.M.; Palyo, S.A. The Impact of Event Scale-Revised: Psychometric properties in a sample of motor vehicle accident survivors. J. Anxiety Disord. 2008, 22, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Gard, M.G.; Kring, A.M. Sex differences in the time course of emotion. Emotion 2007, 7, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Kret, M.E.; De Gelder, B. A review on sex differences in processing emotional signals. Neuropsychologia 2012, 50, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Matud, M.P. Gender differences in stress and coping styles. Personal. Individ. Differ. 2004, 37, 1401–1415. [Google Scholar] [CrossRef]
- Endler, N.S.; Kocovski, N.L. State and trait anxiety revisited. J. Anxiety Disord. 2001, 15, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Rapee, R.M. The development of generalized anxiety. In The Developmental Psychopathology of Anxiety; Vasey, M.W., Dadds, M.R., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 481–503. [Google Scholar]
- Beckwé, M.; Deroost, N.; Koster, E.H.; De Lissnyder, E.; De Raedt, R. Worrying and rumination are both associated with reduced cognitive control. Psychol. Res. 2014, 78, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Zareian, B.; Wilson, J.; LeMoult, J. Cognitive control and ruminative responses to stress: Understanding the different facets of cognitive control. Front. Psychol. 2021, 12, 660062. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.A.; Dobson, K.S.; Sears, C.R. Does a high working memory capacity attenuate the negative impact of trait anxiety on attentional control? Evidence from the antisaccade task. J. Cogn. Psychol. 2014, 26, 400–412. [Google Scholar] [CrossRef]
- Hauser, D.J.; Paolacci, G.; Chandler, J. Common concerns with MTurk as a participant pool: Evidence solutions. In Handbook of Research Methods in Consumer Psychology; Kardes, F.R., Herr, P.M., Schwarz, N., Eds.; Routledge: London, UK, 2019; pp. 319–337. [Google Scholar]
- Paolacci, G.; Chandler, J. Inside the Turk: Understanding Mechanical Turk as a participant pool. Curr. Dir. Psychol. Sci. 2014, 23, 184–188. [Google Scholar] [CrossRef]
- Miller, J.D.; Crowe, M.; Weiss, B.; Maples-Keller, J.L.; Lynam, D.R. Using online, crowdsourcing platforms for data collection in personality disorder research: The example of Amazon’s Mechanical Turk. Personal. Disord. Theory Res. Treat. 2017, 8, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Hodgins, D.C. Reliability and validity of data obtained from alcohol, cannabis, and gambling populations on Amazon’s Mechanical Turk. Psychol. Addict. Behav. 2017, 31, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, D.N.; Chandler, J.; Mueller, P.A. Using Mechanical Turk to study clinical populations. Clin. Psychol. Sci. 2013, 1, 213–220. [Google Scholar] [CrossRef]
Total Sample | Student | Community | ||||
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | t | p | ES | |
Age | 35.2 (13.6) | 20.4 (3.9) | 41.9 (10.7) | 33.47 | <0.001 | 2.35 |
Education (years) | 14.9 (2.2) | 14.1 (1.7) | 15.3 (2.3) | 6.55 | <0.001 | 0.56 |
n (%) | n (%) | n (%) | χ2 | p | ES | |
Gender | 44.30 | <0.001 | 0.290 | |||
Males | 190 (36.2) | 26 (15.7) | 164 (45.7) | |||
Females | 335 (63.8) | 140 (84.3) | 195 (54.3) | |||
Ethnicity | 119.79 | <0.001 | 0.48 | |||
White | 355 (67.6) | 69 (41.6) | 286 (79.7) | |||
Asian | 96 (18.3) | 71 (42.8) | 25 (7.0) | |||
Black or African American | 24 (4.6) | 2 (1.2) | 22 (6.1) | |||
Hispanic or Latin American | 21 (4.0) | 7 (4.2) | 14 (3.9) | |||
Other | 29 (5.5) | 17 (10.2) | 12 (3.3) | |||
Smartphone use (per day) | 100.39 | <0.001 | 0.44 | |||
12+ h | 10 (1.9) | 5 (3.0) | 5 (1.4) | |||
6–12 h | 67 (12.8) | 39 (23.5) | 28 (7.8) | |||
3–6 h | 170 (32.4) | 85 (51.2) | 85 (23.7) | |||
1–3 h | 200 (38.1) | 36 (21.7) | 164 (45.7) | |||
0–1 h | 72 (13.7) | 1 (0.6) | 71 (19.8) | |||
No smartphone | 6 (1.1) | 0 (0.0) | 6 (1.7) | |||
Social media use (per day) | 109.05 | <0.001 | 0.46 | |||
12+ h | 0 (0.0) | 0 (0.0) | 0 (0.0) | |||
6–12 h | 13 (2.5) | 12 (7.2) | 1 (0.3) | |||
3–6 h | 85 (16.2) | 58 (34.9) | 27 (7.5) | |||
1–3 h | 264 (50.3) | 79 (47.6) | 185 (51.5) | |||
0–1 h | 163 (31.0) | 17 (10.2) | 146 (40.7) | |||
Browser use (per day) | 11.96 | 0.018 | 0.15 | |||
12+ h | 37 (7.0) | 9 (5.4) | 28 (7.8) | |||
6–12 h | 162 (30.9) | 46 (27.7) | 116 (32.3) | |||
3–6 h | 195 (37.1) | 73 (44.0) | 122 (34.0) | |||
1–3 h | 113 (21.5) | 28 (16.9) | 85 (23.7) | |||
0–1 h | 18 (3.4) | 10 (6.0) | 8 (2.2) |
Total Sample | Student | Community | ||||
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | t | p | ES | |
Impact of Events Scale—R | ||||||
Total score | 15.36 (13.28) | 17.84 (15.94) | 14.21 (11.69) | 2.63 | 0.009 | 0.28 |
Intrusion | 4.40 (5.48) | 5.21 (6.56) | 4.02 (4.87) | 2.08 | 0.038 | 0.22 |
Avoidance | 7.17 (5.68) | 8.18 (6.41) | 6.71 (5.25) | 2.59 | 0.010 | 0.26 |
Hyperarousal | 3.79 (4.04) | 4.45 (4.92) | 3.48 (3.52) | 2.29 | 0.023 | 0.24 |
Psychological Measures | ||||||
Negative emotionality | 37.81 (3.62) | 38.68 (3.72) | 37.41 (3.50) | 3.79 | <0.001 | 0.36 |
PSWQ | 46.81 (9.71) | 51.10 (7.81) | 44.82 (9.87) | 7.85 | <0.001 | 0.68 |
GAD-7 | 13.26 (5.58) | 15.90 (5.61) | 12.04 (5.14) | 7.54 | <0.001 | 0.73 |
Digital Security Measures | ||||||
Digital security practices | 4.27 (1.48) | 4.10 (1.48) | 4.35 (1.48) | 1.79 | 0.073 | 0.17 |
Digital security expertise | 4.28 (1.12) | 3.84 (1.19) | 4.49 (1.03) | 6.44 | <0.001 | 0.60 |
Digital threat awareness | 4.03 (0.84) | 3.83 (0.90) | 4.12 (0.79) | 3.76 | <0.001 | 0.35 |
Post-DB security | 22.03 (7.03) | 21.78 (7.02) | 22.14 (7.04) | 0.55 | 0.584 | 0.05 |
Total Sample | Men | Women | ||||
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | t | p | ES | |
Age | 35.16 (13.61) | 37.61 (11.78) | 33.77 (14.38) | 3.31 | 0.001 | 0.29 |
Education (years) | 14.94 (2.17) | 15.22 (2.17) | 14.79 (2.15) | 2.19 | 0.029 | 0.20 |
n (%) | n (%) | n (%) | χ2 | p | ||
Ethnicity | 4.69 | 0.321 | 0.09 | |||
White | 355 (67.6) | 137 (72.1) | 218 (65.1) | |||
Asian | 96 (18.3) | 29 (15.3) | 67 (20.0) | |||
Black or African American | 24 (4.6) | 8 (4.2) | 16 (4.8) | |||
Hispanic or Latin American | 21 (4.0) | 9 (4.7) | 12 (3.6) | |||
Other | 29 (5.5) | 7 (3.7) | 22 (6.6) | |||
Smartphone use (per day) | 35.32 | <0.001 | 0.26 | |||
12+ h | 10 (1.9) | 1 (0.5) | 9 (2.7) | |||
6–12 h | 67 (12.8) | 17 (8.9) | 50 (14.9) | |||
3–6 h | 170 (32.4) | 43 (22.6) | 127 (37.9) | |||
1–3 h | 200 (38.1) | 84 (44.2) | 116 (34.6) | |||
0–1 h | 72 (13.7) | 43 (22.6) | 29 (8.7) | |||
No smartphone | 6 (1.1) | 2 (1.1) | 4 (1.2) | |||
Social media use (per day) | 20.63 | <0.001 | 0.20 | |||
12+ h | 0 (0) | 0 (0) | 0 (0.0) | |||
6–12 h | 13 (2.5) | 2 (1.1) | 11 (3.3) | |||
3–6 h | 85 (16.2) | 15 (7.9) | 70 (20.9) | |||
1–3 h | 264 (50.3) | 100 (52.6) | 164 (49.0) | |||
0–1 h | 163 (31.0) | 73 (38.4) | 90 (26.9) | |||
Browser use (per day) | 0.71 | 0.950 | 0.04 | |||
12+ h | 37 (7.0) | 15 (7.9) | 22 (6.6) | |||
6–12 h | 162 (30.9) | 56 (29.5) | 106 (31.6) | |||
3–6 h | 195 (37.1) | 73 (38.4) | 122 (36.4) | |||
1–3 h | 113 (21.5) | 40 (21.1) | 73 (21.8) | |||
0–1 h | 18 (3.4) | 6 (3.2) | 12 (3.6) |
Total Sample | Men | Women | ||||
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | t | p | ES | |
Impact of Events Scale—R | ||||||
Total score | 15.36 (13.28) | 12.30 (10.22) | 17.09 (14.46) | 4.42 | <0.001 | 0.37 |
Intrusion | 4.40 (5.48) | 3.18 (4.26) | 5.09 (5.95) | 4.25 | <0.001 | 0.35 |
Avoidance | 7.17 (5.68) | 6.37 (4.87) | 7.63 (6.04) | 2.61 | 0.009 | 0.22 |
Hyperarousal | 3.79 (4.04) | 2.76 (2.93) | 4.37 (4.44) | 5.01 | <0.001 | 0.41 |
Psychological Measures | ||||||
Negative emotionality | 37.81 (3.62) | 37.41 (3.19) | 38.04 (3.83) | 1.93 | 0.055 | 0.18 |
PSWQ | 46.81 (9.71) | 43.68 (9.45) | 48.60 (9.41) | 5.75 | <0.001 | 0.52 |
GAD-7 | 13.26 (5.58) | 11.81 (4.92) | 14.09 (5.77) | 4.79 | <0.001 | 0.42 |
Digital Security Measures | ||||||
Digital security practices | 4.27 (1.48) | 4.60 (1.42) | 4.09 (1.48) | 3.87 | <0.001 | 0.35 |
Digital security expertise | 4.28 (1.12) | 4.75 (1.02) | 4.02 (1.09) | 7.50 | <0.001 | 0.68 |
Digital threat awareness | 4.03 (0.84) | 4.20 (0.74) | 3.93 (0.87) | 3.54 | <0.001 | 0.32 |
Post-DB security | 22.03 (7.03) | 21.46 (7.01) | 22.36 (7.03) | 1.41 | 0.160 | 0.13 |
Data Breach Type | N | % |
---|---|---|
Instant messages intercepted | 31 | 5.9 |
Email hacked | 168 | 32.0 |
Social media account hacked | 175 | 33.3 |
Theft of personal information | 157 | 29.9 |
Theft of personal photos | 23 | 6.2 |
Password compromised | 151 | 28.8 |
Debit card breach | 37 | 9.3 |
Credit card breach | 119 | 29.8 |
3rd party account linked to credit card (e.g., Amazon) | 21 | 5.3 |
Computer/phone accessed | 18 | 4.5 |
Cloud storage hacked | 12 | 2.3 |
GPS tracking | 1 | 0.3 |
Gaming account breach | 15 | 3.8 |
1. | 2. | 3. | 4. | 5. | 6. | 7. | |
---|---|---|---|---|---|---|---|
1. IES-R total score | — | ||||||
2. IES-R intrusion | 0.92 ** | — | |||||
3. IES-R avoidance | 0.82 ** | 0.56 ** | — | ||||
4. IES-R hyperarousal | 0.89 ** | 0.86 ** | 0.54 ** | — | |||
5. Negative emotionality | 0.12 * | 0.08 | 0.11 | 0.11 | — | ||
6. PSWQ | 0.28 ** | 0.29 ** | 0.15 ** | 0.31 ** | 0.15 ** | — | |
7. GAD-7 | 0.32 ** | 0.32 ** | 0.21 ** | 0.33 ** | 0.11 * | 0.77 ** | — |
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | |
---|---|---|---|---|---|---|---|---|
1. IES-R total score | — | |||||||
2. IES-R intrusion | 0.92 ** | — | ||||||
3. IES-R avoidance | 0.82 ** | 0.56 ** | — | |||||
4. IES-R hyperarousal | 0.89 ** | 0.86 ** | 0.54 ** | — | ||||
5. Digital security practices | −0.06 | −0.06 | −0.04 | −0.07 | — | |||
6. Digital security expertise | −0.13 * | −0.11 | −0.11 * | −0.11 * | 0.38 ** | — | ||
7. Digital threat awareness | −0.09 | −0.08 | −0.09 | −0.04 | 0.29 ** | 0.50 ** | — | |
8. Post-data breach security | 0.18 ** | 0.18 ** | 0.12 * | 0.18 ** | 0.27 ** | 0.22 ** | 0.14 ** | — |
R | R2 | ΔR2 | ΔF | p | |
---|---|---|---|---|---|
Model 1 (with DBSI) | 0.240 | 0.057 | 0.057 | 31.78 | <0.001 |
Model 2 (with gender, sample, age, years of education) | 0.285 | 0.081 | 0.024 | 3.31 | 0.011 |
Model 3 (with NE, PSWQ, GAD-7 scores) | 0.417 | 0.174 | 0.093 | 19.26 | <0.001 |
Model 4 (with smartphone use, social media use, browser use) | 0.423 | 0.182 | 0.008 | 1.75 | 0.157 |
Model 5 (with digital security expertise, post-data breach security) | 0.448 | 0.201 | 0.019 | 6.01 | 0.003 |
B | SE | Beta | t | p | |
---|---|---|---|---|---|
Model 1 | |||||
DBSI | 2.286 | 0.406 | 0.240 | 5.64 | <0.001 |
Model 2 | |||||
DBSI | 2.076 | 0.424 | 0.218 | 4.90 | <0.001 |
Gender | 3.732 | 1.227 | 0.135 | 3.04 | 0.002 |
Sample | 2.038 | 1.902 | 0.071 | 1.07 | 0.285 |
Age | 0.069 | 0.062 | 0.070 | 1.11 | 0.267 |
Years of education | −0.018 | 0.268 | −0.003 | 0.07 | 0.948 |
Model 3 | |||||
DBSI | 2.218 | 0.404 | 0.233 | 5.49 | <0.001 |
Gender | 2.429 | 1.187 | 0.088 | 2.05 | 0.041 |
Sample | −0.238 | 1.839 | −0.008 | 0.13 | 0.897 |
Age | 0.100 | 0.059 | 0.103 | 1.70 | 0.089 |
Years of education | 0.035 | 0.256 | 0.006 | 0.14 | 0.890 |
Negative emotionality | 0.254 | 0.150 | 0.069 | 1.69 | 0.092 |
PSWQ score | 0.106 | 0.088 | 0.077 | 1.20 | 0.230 |
GAD-7 score | 0.594 | 0.152 | 0.250 | 3.91 | <0.001 |
Model 4 | |||||
DBSI | 2.169 | 0.406 | 0.227 | 5.34 | <0.001 |
Gender | 2.131 | 1.197 | 0.077 | 1.78 | 0.076 |
Sample | −1.069 | 1.881 | −0.037 | 0.57 | 0.570 |
Age | 0.120 | 0.060 | 0.123 | 2.00 | 0.046 |
Years of education | 0.018 | 0.256 | 0.003 | 0.07 | 0.944 |
Negative emotionality | 0.232 | 0.150 | 0.063 | 1.54 | 0.124 |
PSWQ score | 0.105 | 0.088 | 0.077 | 1.19 | 0.235 |
GAD-7 score | 0.564 | 0.152 | 0.237 | 3.70 | <0.001 |
Smartphone use | 0.721 | 0.670 | 0.053 | 1.08 | 0.282 |
Social media use | 1.257 | 0.883 | 0.071 | 1.42 | 0.155 |
Browser use | −0.013 | 0.573 | −0.001 | 0.02 | 0.982 |
Model 5 | |||||
DBSI | 1.923 | 0.411 | 0.202 | 4.68 | <0.001 |
Gender | 1.587 | 1.220 | 0.057 | 1.30 | 0.194 |
Sample | −1.359 | 1.906 | −0.048 | 0.71 | 0.476 |
Age | 0.090 | 0.061 | 0.093 | 1.49 | 0.137 |
Years of education | 0.100 | 0.255 | 0.016 | 0.39 | 0.696 |
Negative emotionality | 0.248 | 0.149 | 0.067 | 1.66 | 0.098 |
PSWQ score | 0.100 | 0.087 | 0.073 | 1.14 | 0.255 |
GAD-7 score | 0.541 | 0.151 | 0.228 | 3.58 | <0.001 |
Smartphone use | 0.585 | 0.665 | 0.043 | 0.88 | 0.379 |
Social media use | 1.222 | 0.876 | 0.069 | 1.40 | 0.164 |
Browser use | −0.004 | 0.574 | 0.000 | 0.01 | 0.994 |
Digital security expertise | −0.727 | 0.545 | −0.061 | 1.33 | 0.183 |
Post-data breach security | 0.274 | 0.080 | 0.145 | 3.44 | <0.001 |
R | R2 | ΔR2 | ΔF | p | |
---|---|---|---|---|---|
Model 1 (with DBSI scores) | 0.375 | 0.141 | 0.141 | 17.85 | <0.001 |
Model 2 (with gender, sample, age, years of education) | 0.476 | 0.227 | 0.086 | 2.92 | 0.025 |
Model 3 (with NE, PSWQ, GAD-7 scores) | 0.517 | 0.267 | 0.040 | 1.88 | 0.138 |
Model 4 (with smartphone use, social media use, browser use) | 0.584 | 0.341 | 0.074 | 3.70 | 0.014 |
Model 5 (with digital security expertise and post-data breach security) | 0.634 | 0.402 | 0.061 | 4.97 | 0.009 |
B | SE | β | t | p | |
---|---|---|---|---|---|
Model 1 | |||||
DBSI | 2.633 | 0.623 | 0.375 | 4.23 | <0.001 |
Model 2 | |||||
DBSI | 2.254 | 0.632 | 0.321 | 3.57 | <0.001 |
Gender | 4.362 | 2.336 | 0.176 | 1.87 | 0.065 |
Sample | 3.797 | 3.243 | 0.174 | 1.17 | 0.244 |
Age | −0.033 | 0.103 | −0.043 | 0.32 | 0.751 |
Years of education | 0.623 | 0.410 | 0.139 | 1.52 | 0.132 |
Model 3 | |||||
DBSI | 2.479 | 0.632 | 0.353 | 3.92 | <0.001 |
Gender | 3.973 | 2.320 | 0.160 | 1.71 | 0.090 |
Sample | 3.158 | 3.252 | 0.145 | 0.97 | 0.334 |
Age | −0.022 | 0.103 | −0.029 | 0.21 | 0.834 |
Years of education | 0.616 | 0.406 | 0.137 | 1.52 | 0.132 |
Negative emotionality | 0.145 | 0.227 | 0.057 | 0.64 | 0.523 |
PSWQ score | 0.124 | 0.193 | 0.083 | 0.64 | 0.522 |
GAD-7 score | 0.263 | 0.255 | 0.129 | 1.03 | 0.306 |
Model 4 | |||||
DBSI | 2.428 | 0.610 | 0.346 | 3.98 | <0.001 |
Gender | 4.142 | 2.280 | 0.167 | 1.82 | 0.072 |
Sample | 0.443 | 3.261 | 0.020 | 0.14 | 0.892 |
Age | −0.002 | 0.100 | −0.003 | 0.02 | 0.982 |
Years of education | 0.537 | 0.396 | 0.120 | 1.36 | 0.178 |
Negative emotionality | 0.047 | 0.222 | 0.019 | 0.21 | 0.832 |
PSWQ score | 0.295 | 0.193 | 0.196 | 1.53 | 0.129 |
GAD-7 score | 0.086 | 0.254 | 0.042 | 0.34 | 0.735 |
Smartphone use | 1.016 | 1.211 | 0.086 | 0.84 | 0.403 |
Social media use | 3.900 | 1.517 | 0.266 | 2.57 | 0.012 |
Browser use | −0.967 | 1.044 | −0.081 | 0.93 | 0.357 |
Model 5 | |||||
DBSI | 2.185 | 0.598 | 0.311 | 3.65 | <0.001 |
Gender | 3.065 | 2.250 | 0.123 | 1.36 | 0.176 |
Sample | 0.329 | 3.149 | 0.015 | 0.11 | 0.917 |
Age | 0.012 | 0.098 | 0.016 | 0.12 | 0.905 |
Years of education | 0.522 | 0.382 | 0.116 | 1.37 | 0.175 |
Negative emotionality | 0.007 | 0.214 | 0.003 | 0.03 | 0.975 |
PSWQ score | 0.371 | 0.188 | 0.246 | 1.97 | 0.051 |
GAD-7 score | 0.031 | 0.246 | 0.015 | 0.13 | 0.900 |
Smartphone use | 1.009 | 1.168 | 0.085 | 0.86 | 0.390 |
Social media use | 4.225 | 1.464 | 0.288 | 2.89 | 0.005 |
Browser use | −0.740 | 1.009 | −0.062 | 0.73 | 0.465 |
Digital security expertise | −2.108 | 0.892 | −0.212 | 2.36 | 0.020 |
Post-data breach security | −0.150 | 0.142 | −0.091 | 1.05 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sears, C.R.; Cunningham, D.R. Individual Differences in Psychological Stress Associated with Data Breach Experiences. J. Cybersecur. Priv. 2024, 4, 594-614. https://doi.org/10.3390/jcp4030028
Sears CR, Cunningham DR. Individual Differences in Psychological Stress Associated with Data Breach Experiences. Journal of Cybersecurity and Privacy. 2024; 4(3):594-614. https://doi.org/10.3390/jcp4030028
Chicago/Turabian StyleSears, Christopher R., and Daniel R. Cunningham. 2024. "Individual Differences in Psychological Stress Associated with Data Breach Experiences" Journal of Cybersecurity and Privacy 4, no. 3: 594-614. https://doi.org/10.3390/jcp4030028
APA StyleSears, C. R., & Cunningham, D. R. (2024). Individual Differences in Psychological Stress Associated with Data Breach Experiences. Journal of Cybersecurity and Privacy, 4(3), 594-614. https://doi.org/10.3390/jcp4030028