Journal of .
Cybersecurity
and Privacy

Article

An Evaluation of the Security of Bare Machine Computing
(BMC) Systems against Cybersecurity Attacks

Fahad Alotaibi I'*, Ramesh K. Karne 1*, Alexander L. Wijesinha !, Nirmala Soundararajan 2 and Abhishek Rangi !

check for
updates

Citation: Alotaibi, F.; Karne, RK.;
Wijesinha, A.L.; Soundararajan, N.;
Rangi, A. An Evaluation of the
Security of Bare Machine Computing
(BMC) Systems against Cybersecurity
Attacks. J. Cybersecur. Priv. 2024, 4,
678-730. https://doi.org/10.3390/
jcp4030033

Academic Editor: Steve Schneider

Received: 12 June 2024
Revised: 20 August 2024
Accepted: 10 September 2024
Published: 18 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer & Information Sciences, Towson University, Towson, MD 21204, USA;
awijesinha@towson.edu (A.L.W.); arangil@students.towson.edu (A.R.)

Department of Computer & Physical Sciences, Southeastern Oklahoma State University,
Durant, OK 74701, USA; nsoundararajan@se.edu

* Correspondence: falota3@students.towson.edu (F.A.); rkarne@towson.edu (R K.K.)

Abstract: The Internet has become the primary vehicle for doing almost everything online, and
smartphones are needed for almost everyone to live their daily lives. As a result, cybersecurity is
a top priority in today’s world. As Internet usage has grown exponentially with billions of users
and the proliferation of Internet of Things (IoT) devices, cybersecurity has become a cat-and-mouse
game between attackers and defenders. Cyberattacks on systems are commonplace, and defense
mechanisms are continually updated to prevent them. Based on a literature review of cybersecurity
vulnerabilities, attacks, and preventive measures, we find that cybersecurity problems are rooted in
computer system architectures, operating systems, network protocols, design options, heterogeneity,
complexity, evolution, open systems, open-source software vulnerabilities, user convenience, ease of
Internet access, global users, advertisements, business needs, and the global market. We investigate
common cybersecurity vulnerabilities and find that the bare machine computing (BMC) paradigm is
a possible solution to address and eliminate their root causes at many levels. We study 22 common
cyberattacks, identify their root causes, and investigate preventive mechanisms currently used to
address them. We compare conventional and bare machine characteristics and evaluate the BMC
paradigm and its applications with respect to these attacks. Our study finds that BMC applications are
resilient to most cyberattacks, except for a few physical attacks. We also find that BMC applications
have inherent security at all computer and information system levels. Further research is needed to
validate the security strengths of BMC systems and applications.

Keywords: bare machine computing; operating system; computer architecture and design; security
by design; Internet security; cybersecurity; bare Internet; cyberattacks

1. Introduction

Cybersecurity has become a national and global problem due to globalization and
billions of users (5.3 billion) on the Internet [1]. Also, the proliferation of IoT devices on
the Internet has introduced new challenges for cybersecurity. There is a veritable ocean
of information concerning cybersecurity spanning across many disciplines and systems.
Cyberattacks impact all layers of computing and information, including hardware, software,
firmware, applications, policies, and other system components. The three dimensions
of cybersecurity consisting of information states (storage, processing, and transmission),
security principles (confidentiality, integrity, and availability), and countermeasures (policies
and practices, technologies, and users) [2] can be extended to ten dimensions, as shown in
Figure 1.

There are many permutations and combinations of this ten-dimensional space. Many
releases and versions {2} apply to all other nine dimensions during evolution. Many
end-user applications {1} meet user requirements in many areas. Depending on their domains,
these end-user applications may be implemented in various computer programming

J. Cybersecur. Priv. 2024, 4, 678-730. https:/ /doi.org/10.3390/jcp4030033

https://www.mdpi.com/journal /jcp

https://doi.org/10.3390/jcp4030033
https://doi.org/10.3390/jcp4030033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://doi.org/10.3390/jcp4030033
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp4030033?type=check_update&version=1

J. Cybersecur. Priv. 2024, 4

679

languages {3}. A given end-user application may use a variety of networks and protocols
{4} and user interfaces {5}. Most end-user applications run on top of some operating
system (OS) {6}, and all computing systems run on some processor architecture such as
Intel, AMD, and RISC {7}. Many processor chips exist {8} with multiple cores and other
features. There are also many vendors {9} for software, hardware, and other components.
Furthermore, there are a variety of cybersecurity methodologies, computer architectures,
and implementations {10}. There is heterogeneity and redundancy in the above dimensions
and rapid obsolescence. The ever-changing hardware, software, and related products
contribute to increased complexity and related cybersecurity issues [3] in computer and
information systems, resulting in a waste of resources and human skills, recurring costs,
dumping of hardware, and reinventions in many dimensions. The attributes discussed
here are mainly due to obsoleting products before their life span [4]. Surprisingly, many
other aspects of obsolescence, including planned obsolescence [5-7], focus on sustained
revenues and profits for the industry. Microprocessor and OS obsolescence are the main
contributors to fast changes in computing and information systems.

1

End-User
Applications

< User Interfaces

Vendors >
Security >

Figure 1. Ten dimensions of cybersecurity space.

Cybersecurity vulnerabilities are rooted in many dimensions and layers. Given the
multidimensional nature of cybersecurity, it is possible to reduce this space by eliminating
some of the dimensions. We present a radical solution that eliminates the OS. When the OS
is eliminated, computing is based on the bare machine computing (BMC) paradigm, and
applications become BMC applications, as discussed in Section 3 below. This paradigm
makes computing devices bare and is inherently secure by design.

Some background on cyberattacks is necessary before discussing our methods to
evaluate the BMC paradigm. We have chosen 22 cyberattacks to investigate in our study.
In general, an attack always uses one or more vulnerabilities to create an attack. For
example, a buffer overflow vulnerability can be used to craft many different types of
attacks. Similarly, SQL injection may be used to attack a database system.

1. Buffer Overflow: A buffer overflow is a condition that exists when a program can
put more data in the buffer than its allocated size. According to [8], “buffer overflow
attacks played a major role in the propagation of malicious worms from machine
to machine”.

2. Phishing: This is one of the most used attacks in the cybersecurity world. Social
engineering techniques are mostly used in phishing attacks [9]. Attackers persuade or
lure users to share private information that can be used later to exploit their personal
accounts, such as banking, credit cards, social security information, and personal
assets. They can also use this information to damage their computer system.

J. Cybersecur. Priv. 2024, 4

680

10.

11.

12.

13.

14.

Ransomware: Ransomware is malware that captures the victim’s data or device
and renders it unusable till some ransom amount is paid. There are two types of
ransomwares: locker and cryptographic [10]. Locker ransomware is intended to lock
computer access to users or delete files. Cryptographic ransomware encrypts files with
hacker keys and demands a ransom to recover files. The main goal of ransomware is
to extort money from victims.

Denial of Service (DoS): DoS [11] is an attack that can flood a victim’s server with
a variety of packets, such as UDP, SYN, HTTP, and ICMP. The goal is to slow down or
crash the machine completely. The same attack can be carried out on a server using
distributed systems known as distributed denial of service (DDoS) [11] to accomplish
a larger and faster attack on a victim.

Man in the Middle (MitM): MitM [12] involves an attacker successfully inserting
themselves between two communicating parties. The attack can be conducted within
the same network or on the Internet. There are a variety of ways to conduct a MITM
attack using protocols such as ARP, DNS, ICMP, DHCP, SSL/TLS, and BGP.
Password: This is the most common and obvious way to attack computer systems
or smartphones. The attackers use a variety of techniques, including brute force,
dictionary, phishing, shoulder surfing, key loggers, video recording, replay, credential
surfing, and password spraying [13].

Trojan Horse: This is a malicious program in the guise of a standard harmless program.
It can initiate actions without the user’s approval once it is installed. Trojan horse
attacks involve hiding a hacking program and dispatching it at the right time. There
are many such Trojan horse techniques [14], including ArcBombs, Backdoors, Banking
Trojans, Clickers, DDoS, Downloaders, Droppers, FakeAV, Game Thieves, Instant
Messaging, Loaders, Mail Finders, Notifiers, Proxies, Password-stealing ware, and
SMS. Almost any software is vulnerable to Trojan horse attacks.

Virus: A virus is malicious code that attaches to a host’s executable file. The code
executes whenever the file is opened. When the infected file is sent across computer
systems, the virus spreads [15]. They are usually spread through emails or shared
mass storage devices.

Worm: A worm is a type of malware that replicates itself and spreads across computers
without any interaction from the user [16]. They consume memory and network resources,
thus causing the system to hang. They can also allow access to attackers remotely.
Spyware: This is software secretly installed on the victim’s computer or a computer
belonging to an organization that monitors and gathers information on a user’s online
activity, websites visited, and other personal information. Spyware, also known as
privacy-invasive software, is a prevalent issue in today’s computing landscape, often
installed without a user’s full knowledge or consent [17].

Adware: This is a kind of spyware that runs unwanted advertisements and may
contain malware that can get installed on the user’s computer when the user clicks on
the links [18]. It could also be installed due to unintentional drive-by downloads.
Rootkit: This is a software tool used to take over control of the intended computer
and run commands on it with administrator privileges as it operates inside or near
the kernel. It can hide keyloggers that capture the keystrokes and steal information
such as passwords, credit card numbers, and online banking details [19].

Botnet: A botnet is a group of interconnected malicious computers that coordinate to
attack other machines [20]. A single attacker (botmaster) can create an interconnected
robot network (a botnet) with malicious code and control it for attacking. The attacker
can initiate various types of cyberattacks, such as DDoS, phishing, click fraud, and spam.
Data Breach: A data breach is when unauthorized personnel gain access to sensitive
data or confidential information. Some examples of sensitive data include social
security information, bank accounts, healthcare data, and corporate information.
Sensitive information can be stored in paper files, hard disks, thumb drives, and
intellectual property. In these attacks, the confidentiality of breached data is lost [21].

J. Cybersecur. Priv. 2024, 4

681

15.

16.

17.

18.

19.

20.

21.

22.

Advanced Persistent Threat (APT): An APT remains undetected for an extended
period after an attacker gains unauthorized access to a computer network [22]. This is
a sequential and long-term attack that persists in the system. These attackers have
a planned goal consisting of theft of data, gaining access to system resources, using
social engineering techniques to lure users, staying in the system as long as possible,
and moving around the system with the best attacking strategy without being noticed
by any existing preventive tools.

SQL Injection: This attack consists of accepting SQL queries as inputs into a vulnerable
database system that leads to exploitation of the database. The malicious SQL query
allows the attacker to gain unauthorized access to the database. An SQL injection attack
consists of the insertion or “injection” of a SQL query via the input data from the client to
the application [23]. A successful SQL injection exploit can read sensitive data from the
database, modify database data (Insert/Update/Delete), execute administrative operations
on the database (such as shutting down the DBMS), recover the content of a given file
present on the DBMS file system, and in some cases issue commands to the OS.
Supply Chain: A supply chain attack [24] is one in which many vendors in the chain
are rendered vulnerable when a single vendor is compromised. The attackers can
obtain maximum benefit by concentrating their attack on a single vendor and then
gain access to global data through the chain of connected vendors. A supply chain
system consists of many vendors for a given customer. If one of the vendors is
breached or attacked in the chain, it may influence other vendors. One of the vendors
may have been breached due to security vulnerabilities in their site. When there
are many suppliers, one or more of them may be prone to security vulnerabilities.
Multiple targets can be compromised from a single vendor.

URL Interpretation: URL interpretation [25] exploits the vulnerability of URLs by
changing and manipulating the URL meaning without changing or altering the syntax,
which allows the attackers to access unauthorized data from the server associated with
the URL. Attackers can alter and fabricate URL addresses to access victims’ private
data and information. It is also known as URL poisoning. An attacker may use this
fake URL to gain administrative privileges and launch other attacks.

Insider Threat: Insider threats [26] happen when employees within an organization
have privileged access to critical information and misuse their credentials for personal
gain. This could render the organization system vulnerable to security attacks. These
employees may have current credentials to access private data at an employer site. They
may be seeking financial gains to extort the employer using the accessed private data.
Eavesdropping: Eavesdropping [27] is stealing transmitted information over an unsecured
network. It consists of capturing network traffic. The attacks can be static or modification
attacks. In static attacks, the data may be used later to capture valuable information.
In modification attacks, the data are only useful if an attacker can modify it while the
communication is in progress. A MitM attack can be used with the captured data.
Cookies: Cookies contain information about a machine, sites browsed, clicks made,
location, and possibly login information [28]. Attackers can steal or hijack a cookie
and capture this data. When a user visits a website, cookies may be enabled to play
advertisements and capture the user’s browser activity. Although cookies help speed
up access to visited websites, they help attackers piggyback malicious programs along
with legitimate ads.

Social Engineering: These attacks [29] are used to convince a victim to share private data
or perform some actions that will enable an attacker to inject some illegitimate code into
the system. This is one of the ways attackers can install malware on the victim’s site.

There are many standards that classify security vulnerabilities and cyberattacks. With

respect to these standards, such as CVE [30], CWE [31], and MITRE ATT & CK [32],
their root causes and mapping to attacks are based on current systems, products, and
software engineering methodologies. Bare machine computing is a different concept and
approach. In this paper, we only consider generic attributes that can be compared with the

J. Cybersecur. Priv. 2024, 4

682

BMC paradigm and its applications. To provide a comprehensive evaluation of the BMC
paradigm, we chose to compare conventional systems and BMC systems. First, we identify
and discuss conventional system guidelines and conventional system characteristics. Next,
we give an overview of the BMC paradigm, the compilation process in BMC development,
and the integration of direct hardware interfaces in BMC code. We include code snippets
that give insight into how BMC applications directly control the hardware. Then, we
identify and discuss BMC system guidelines and characteristics and compare them with
conventional system guidelines and characteristics to determine the resilience or exposure
of each system to cybersecurity vulnerabilities. Using the above 22 common cyberattacks,
we examine their primary root causes and preventive mechanisms given in the existing
literature. We evaluate the BMC paradigm with respect to these cyberattacks by analyzing
how the attacks are related to their root causes and preventive mechanisms. We then look at
the applicability of root causes and preventive mechanisms to BMC systems. This enables
us to evaluate the security strengths of the BMC paradigm and its ability to resist these
cyberattacks. We also discuss the significant contributions of this research. Our evaluation
using the relevant existing literature demonstrates that BMC systems are more resilient than
conventional systems to cybersecurity vulnerabilities. Overall, this comparison highlights
the advantages of using the BMC paradigm to build more secure computing systems.

The rest of this article is organized as follows: Section 2 provides an overview of
conventional computing systems, including their applications, guidelines, and characteristics.
Section 3 provides details on BMC systems, including their background, guidelines, and
characteristics. It also establishes a knowledge base for evaluating the security potential of
BMC systems. Section 4 compares BMC systems and conventional computing systems with
respect to cybersecurity vulnerabilities using the respective guidelines and characteristics.
Section 5 identifies cyberattacks’ root causes and preventive mechanisms and evaluates
the resilience of BMC systems to these cyberattacks. Section 6 discusses the significant
contributions of this study. Section 7 concludes the article and suggests more research in
secure computing systems.

2. Conventional Systems

Conventional systems evolved from mainframes, resulting in desktops, laptops,
smartphones, and IoT devices. Most of these systems use some form of an OS or kernel.
During the mainframe era, there was no Internet and no online users. The OS was used
as a mediator for many users and application programs to provide their services. The OS
protected itself from users and protected users from each other. As computers evolved over
the years, OSs continued to play a significant role in building computer and information
systems. Later, when the Internet became the primary vehicle for communication between
users, communication merged with computing, thus extending the OS’s role to provide
communication. Now, most computing systems have computing and communication
on a single device. For example, smartphones perform computing, communication, and
control as part of the same system, and they are seamlessly homogenized to work on the
Internet. Smartphones resulted in user-centric computing serving client applications.

Figure 2 illustrates how computer applications use system calls or APIs provided
by the OS. Application programmers are isolated from hardware and focus on writing
applications in each programming language. There is heterogeneity at every level, including
communication protocols, system libraries, device drivers, third-party software, network
interface cards, standards, OSs, and computer architectures. They follow an evolutionary
path and continue changing and enhancing products rapidly.

During this evolution, open systems, standards, free software, free access, remote
control of devices, and globalization proliferated worldwide, resulting in billions of users [1]
and the IoT [33]. A given application’s security depends on the security of the underlying
OS and may be compromised due to OS vulnerabilities [2]. As OS versions and releases
often change, its platform-related entities change accordingly. These fast changes in
hardware and software may also introduce more security vulnerabilities.

J. Cybersecur. Priv. 2024, 4 683

0S-Based Applications

End-User Applications

Middleware Software

System Calls / APIs i i

Operating System

s

CPU / Hardware

Mass
Storage
(Disk)

Computing Device (e.g., PC)

0S-Based System

Figure 2. OS-based system.

Figure 3 illustrates a typical application development process and its development
and execution environments. A given application only controls the functional flow and
plays no role in maintaining an execution environment. When an application is created, it is
linked with the system or external libraries. When an application is running, its execution
is dependent on a variety of OS components. In addition, there may be other applications
running in a multi-programming model. Today’s Internet applications running on a device
may be affected by cookies, network programs, sockets, shared memory, and background
downloads. As the current OS provides computing, communication, and control in each
box, a running application may be exposed to the side effects of the host OS and other
applications running at the same time.

Application Program

Object Module

System Libraries

Executable
Module

Other Executable Operating System
Modules Modules

Hardware

Figure 3. Conventional application development process.

J. Cybersecur. Priv. 2024, 4

684

Conventional system properties are typically classified into two categories: system

guidelines and system characteristics.

2.1. Conventional System Guidelines

In our literature review spanning many references, some of which are included in this

article, we have identified 20 conventional system guidelines as described below. This list
is not exhaustive; however, it serves as a basis for comparison with BMC system guidelines.

1.

System Approach: Over a 50-year period, computer architectures have been following
an evolutionary path in processors and OSs, which are the backbone of all computing
and information systems.

Open Systems: During the 1960-1990 period, most computer and information systems
were closed systems and proprietary in nature, thus protecting a given industry’s
intellectual property. These systems and their know-how were limited to confidential
and authorized users based on their need-to-know policy. Due to the emergence
of the Internet and globalization, most of the systems and their knowledge became
open to the world. While an open system allows for easier resolution of security
vulnerabilities, it also means that attackers and developers have access to the same
information, which implies that it is not more secure.

Global Focus: Many information systems are architected, designed, and implemented
for a global market, as this market is much larger than a given country’s local market.
This resulted in large-scale commercialization on the Internet and more revenues and
profits for related industries.

Global Users: Computer and information system users are all over the world, and
they are not always easily identifiable and trackable.

Equal Access: With an Internet connection, any global user has access to most
information on the Internet; this includes attackers as well.

Learning and Knowledge: Information about system internals and system security
is often posted on the web. This helps the attackers to easily access the information
they need at a faster pace. Defenders also put problems and fixes on the Internet as
soon as they are discovered. This enables attackers to create new attacks with less
effort. The following two quotations from [34] clearly illustrate the side effects of free
learning and knowledge on the Internet. (a) “Open-source Intelligence (OSINT) tools
could gather data from various publicly available platforms and thus help hackers
identify vulnerabilities and develop malware and attack strategies against targeted
CI sectors.” (b) “OSINT tools: indirect reconnaissance data, proof-of-concept codes,
and educational materials. The thematic results from this study reveal an increasing
amount of open-source information useful for malicious attackers against industrial
devices, as well as the need for programs, training, and policies required to protect
and secure industrial systems and CI”.

Unrestricted Internet access: Many Internet and web applications are available for
all users worldwide with an Internet connection. Advertisements swamp systems
almost instantly after access to the Internet. Searching online for a particular product
or service immediately results in advertisements for related products or services.
The advertisements may continue persistently for an extended period. This may
be beneficial for some users to quickly learn about products and services. Still, it
has many side effects, including a waste of time for users, distraction from a user’s
current tasks, and loss of privacy of email addresses, phone numbers, and other
personal information. Personal information shared with online vendors to conduct
any transaction on the Internet may be distributed to other vendors.

Layered Systems: All computer and information systems are layered with respect to
architectures, protocols, interfaces, and security. Attackers may exploit these layers to
suit their attack environment.

Heterogeneity: Current computer and information systems encourage heterogeneity
at every stage of building computer and information systems, assuming that it will

J. Cybersecur. Priv. 2024, 4

685

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

promote innovation and productivity [35]. Instead, heterogeneity and incompatibility
at every level interfere with the main goal of building end-user applications. With
today’s high-performance processors coupled with cheap hardware, due to heterogeneity,
tweaking small improvements may not pay off as much as before. There is a need to
reduce heterogeneity by developing basic building blocks for computing at every level
that are long-lived. Heterogeneity exists in processors, OSs, protocols, user interfaces,
programming languages, hardware, software, including third-party software, and more.
This increases the complexity of computers and information systems [36] and provides
more avenues for attackers to exploit cybersecurity vulnerabilities.

User/Developer Convenience: User convenience takes higher priority over other
design issues in defining system guidelines. For example, it is convenient for users
to choose a short-length PIN code for bank transactions, which may not be secure.
Online teaching is convenient for faculty and students, but it may not be secure.
As it is convenient for businesses to use the Internet for all transactions, physical
security and privacy may be ignored. Many online transactions require personal
information, causing a loss of privacy. In fact, without a smartphone, it is impossible
to do many Internet transactions today. These actions may indirectly result in system
vulnerabilities and cybersecurity weaknesses. In addition, developer conveniences,
such as using a different programming language for a special purpose, using DLLs,
downloading files and software, remote logins, remote administration, and third-party
software, may also affect cybersecurity [37].

Training: All users and customers must obtain training as needed.

Software Installation: This is conducted online due to convenience and frequent changes.
Wi-Fi: Wireless connections are commonly used for computing devices such as
a mouse, keyboard, headphones, and Internet access. Most Internet transactions
are conducted using Wi-Fi and often with a smartphone.

Scripts and Batch Files: Scripts and batch files are used by administrators locally and
remotely for convenience. This enables them to work remotely.

Attachments and Links: Email attachments are commonly used for convenience. Web
links are also allowed in the emails for user convenience.

Social Media Platforms: They have become a part of everyday lives due to globalization,
enabling speedy communication and sharing of information online.
Advertisements: There are advertisements appearing continually in social media,
smartphones, TVs, computers, and websites.

Unsolicited Web Sites: Mostly for commercial and marketing reasons, unsolicited
links to websites frequently appear in email and other Internet applications. It is not
easy to distinguish between a link to a good site or a bad one.

Automated Tools: Automated tools such as Wireshark and reverse engineering tools
such as Object-dump are available on the Internet. There are many such tools available
for attackers to use.

Cookies: Cookies are used to track visits to websites for marketing purposes and user
convenience, but they can also be used to launch malware.

2.2. Conventional System Characteristics

The following characteristics were obtained from our literature review of the security

papers listed in this article. We have identified 20 conventional system characteristics as
described below. This list is by no means exhaustive; however, it serves as a basis for
comparison with BMC system characteristics.

1.

OS/Kernel/Embedded: Most systems have an OS or kernel. They can also be
embedded systems. Due to the complexity and size of modern OSs, lean operating
systems were designed to improve security and reduce complexity. Some middleware
(e.g., the OS) makes software systems easy to build and isolates programmers from
hardware intricacies.

J. Cybersecur. Priv. 2024, 4

686

10.

11.

12.

13.

14.

15.

16.
17.

Applications: Computer and information system applications are platform-centric
and computing device-dependent. No proper abstractions have been used to build
applications. Thus, applications are redundant on different platforms. A web browser
on a smartphone is different from that on a PC. Email systems are also different on
various platforms. Due to this redundancy and lack of proper abstractions, an end-user
application may be duplicated many times, resulting in a large application space.
Programming Languages: Multiple programming languages are used in conventional
systems. Different languages are often chosen based on the type of application,
programmer’s skills, convenience, and performance. Performance may not make
much difference as current processor speeds are increasing in a short period.
Executables: Different operating systems support different executable formats. Some
applications may have many executables, thus creating multiple address spaces.
Inter-module communication may require message passing between modules.
Linking: Dynamic linking is used for many reasons. It reduces the executable sizes, as
some modules can be linked at runtime. It is also convenient, as the compiler does
not know where the system libraries and other modules are loaded in memory at
compile-time. In addition, in multi-module design, the interfaces to other modules
are not known at compile time.

Loading: Dynamic loading and linking are related. Dynamic loading at run time is
also very convenient, as noted above for linking. In modern OSs, dynamic loading
and linking (DLL) is commonly used to make the executables smaller and to enable
use of external modules as needed at run time.

Multi-tasking: Multi-tasking or multi-programming is necessary for all computing
systems, as the CPU cannot be kept busy all the time. Most programs need I/O; they
cannot run when an I/O request is pending. In conventional systems, when one
program is idle, other programs and the OS can run. A given program may not be
running alone until its completion.

System Calls/API: OSs provide system calls to communicate with the hardware. OSs
also provide APlIs, enabling programmers to access hardware interfaces. System calls
use interrupts to invoke OS services.

Sockets: Operating systems provide socket interfaces to communicate between processes
within a node or with a remote node.

Open Ports: When a packet arrives at an OS, it uses the destination port number in
the packet to deliver the packet to its application. A given application running in the
machine uses a designated port number to communicate with other nodes. There may
be some ports open in an OS to accommodate unexpected applications running in
the machine.

During Execution: In an OS environment, a given application, other applications, and
OS processes and threads run concurrently. Some of them may interact with others
intentionally or unintentionally.

Event/Interrupt Driven: Most conventional systems use event-based and interrupt-
based processing.

Shared Memory/Message Passing: Both are used for local communication, and
message passing is used for remote communication.

Concurrency Control: Inter-process communication in an OS environment may
require concurrency control mechanisms. Locking and semaphores are used to
handle concurrency.

I/0: Most I/0 is interrupt-driven in an OS.

Third-Party Software: Usually, there is software from many vendors in current systems.
Network Interfaces: Protocols such as TCP or QUIC have many interactions between
a server and a client during connection establishment, data transfer, and connection
termination. Security protocols such as TLS also require many interactions to ensure
secure data transfer.

J. Cybersecur. Priv. 2024, 4

687

18. Internet Communication: In conventional systems, most communications are conducted
through the global Internet. There are billions of users on the Internet while a given
communication is in progress.

19. Internet Downloads: For convenience and data sharing, users download software,
applications, files, pictures, private data, etc. on the Internet. During downloads,
a user may have to enter personal data, resulting in a loss of privacy.

20. IoT: The IoT is growing at an exponential rate. Currently, there are 17 billion IoT
devices [38].

3. Bare Machine Computing (BMC) Systems

This section describes the BMC paradigm [39] and gives some insight into BMC system
development. The following subsections provide some details on building applications
using this paradigm. A variety of real-world BMC applications have been built, demonstrating
the feasibility of this paradigm. BMC is an alternative approach for building computer
applications without running a centralized kernel or an OS. The BMC paradigm provides
other benefits, including significantly reducing obsolescence and cybersecurity risks.

3.1. BMC Paradigm

The BMC paradigm was originally motivated by the rapid obsolescence [4] and
continuously emerging security vulnerabilities in computer and information systems.
Obsolescence impacts computers and information systems, causing hardware and software
to be replaced before their useful life span. The topic of obsolescence is not within the scope
of this paper. The BMC approach resembles computing when it started in the 1960s using
bare hardware operated with switches and buttons. In current technology, hardware is
cheap, provides many functionalities, and allows more logic to be placed on a single chip.
It also allows computing devices to be bare, as a processor can provide needed hardware
interfaces to application programmers.

In a BMC system, as shown in Figure 4, applications directly communicate with the
hardware without any middleware. For example, suppose we want to print the text “Hello”
on the screen. Figure 5 illustrates how a programmer can directly control writing on the
screen without using an OS. This simple example shows how a programmer can directly
access the hardware through C++ -> C -> assembly as a single thread of execution without
interruption. It also shows how a programmer views the underlying hardware in the BMC
paradigm. It is possible to automate this process to make it user-friendly for developers.
In this example, the assembly call writes string data to the video memory location at
0x000b8000. A BMC programmer controls all the code shown here. There are no other
dependencies in the BMC code. This philosophy is carried throughout the development
process of any BMC application. Using this approach, we can write all direct hardware
interfaces needed for information systems applications and development. Eventually,
these direct hardware interfaces can be built on the processor chip. If the output must
go to graphics memory, the same logic is used with the help of a bare graphics driver.
A BMC system is not the same as a bare metal system or embedded Linux [40], as BMC
is a general-purpose computing paradigm. BMC servers are not the same as bare-metal
servers or virtual servers in the cloud [41], which require some OS to provide services.

The BMC paradigm is based on an application-oriented approach. It divides all computer
applications into domain-specific applications using object-oriented abstractions. Examples
include banking, online transactions, manufacturing, payroll, desktop and office applications,
accounting, email, chat, and browsers. A given domain-specific application may contain one or
more applications bundled as a single domain application suite used at a given time. One such
example is text processing, spreadsheets, and Internet search. Each domain-specific application
suite contains all the necessary code to run on a given bare machine. Although BMC currently
chooses Intel processors and their instruction set architecture, it can be adapted to work with
any other computer architecture as needed. The BMC paradigm assumes hardware integrity.
The paradigm is applicable to any computing device, including a smartphone.

J. Cybersecur. Priv. 2024, 4

688

Bare D in-Specific Application Suite

Direct Hardware
Interfaces (HAPIs)

CPU / Memory / Other Hardware

K

Bare Computing Device (e.g., PC) \\\

External Mass
Storage
(e.g., USB Flash
Memory)

BMC-Based System

Figure 4. BMC-based system.

[ASM Implementation \

C++ Call printcharasm64 PROC public
AOAProtected io; push rbp
0. AOAPrinfText64("Hello!", Line13'+20); C Implementation mov rbp, rsp
I extern int printcharasm64(char, int); push rbx
int CprintChar64(char p, int len){ cli
int retcode = 0; mov al, cl
N brintcharasmeA(pYIErIT: mov ah, 1fh

C++ Implementation v
void AOAProtected::AOAPrintText64(char *str, int base) {
int pos = base;
for (inti=0;i<AOAStrLen(str); i++) {

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, pop rbp
pos += sti
} ret

Figure 5. Hello program using the BMC paradigm. * Refers to a pointer declaration in C++.

return retco mov rbx, 0b8000h
} add rbx, rdx
mov WORD PTR [rbx], ax
pop rbx

A\ 4

In BMC, the first step is to make the computing device bare. This means it has
no operating system, no hard disk (such as mass storage), and uses the BIOS for now.
Eventually, the BIOS can be bundled with the associated application suite. The code can
run on older or newer Intel processors, which are x86 and x64 compatible. The second
step is to write the software in C/C++ and a small amount of assembly code where needed.
The BMC paradigm is based on a single programming language environment. Boot, loader,
and interrupts are written in assembly. One or more applications can be compiled as
an application suite, generating a single monolithic executable. This is statically compiled
and linked with no external software or libraries. The small executable contains all the
required code to run its application suite. A given application suite executable is typically
less than 2 MB. It carries the necessary bare drivers [42] and code to support the required
functions. There are no kernel or system calls and no OS-related management functions.

The application programmer controls the hardware and required interfaces, and the
application suite directly communicates with the hardware without using any middleware.
The BMC paradigm also uses bare devices to communicate on the Internet, forming a bare
Internet [43]. Only authorized bare users can communicate on bare Internet.

Each application suite can define its own memory map, as shown in Figure 6. This
memory map shows how content in an application suite USB is copied into main memory.
The boot code from sector 0 is copied into memory location address 0x7c00 (for IBM
Compatible PCs). The start program from the USB is copied at memory location 0x600 and
includes two header sectors. The start program is loaded in the real memory area. After the
boot program runs, it jumps to 0x3900 in real memory to run the start program. When the
start program runs, it copies the domain-specific application suite executable from the USB
into the memory location starting at 0x 00111000, which is above 1 MB and is in protected

J. Cybersecur. Priv. 2024, 4

689

memory. When the start program is completed, it starts executing at 000111000 (which is
a main () entry point). All these numbers are extracted by using Microsoft tools to identify
entry points and other components in the executable. Notice that there is no need for virtual
memory in BMC systems, as there is no OS and only a few applications are bundled and
run at a time. Each domain-specific application suite has its own characteristics and can be
loaded in custom locations in memory accordingly. This process can also be automated in
BMC systems. The above memory map can be customized for domain-specific application
suites, which shows simplicity and flexibility in building BMC applications.

Sector

Number USB Map |:{> Main Memory Map

0x0000 >
Boot Sector Sector
newboot.bin Number
1 Sector A
512 Bytes 0x0800 >
Start Program Enty, Boint
Prcycle.exe ™
0x2008 >
Start Program
Prcycle.exe
45 Sectors
22,723 Bytes 0X7C00 A
0x2038 = Boot Sector
newboot.bin
JMP WORD 0x3900
Jump Address =
Code Segment (0x3100)
+
. = e Offset (0x0800)
Domaln-Sptest:lfltc Application 0x00111000 R
uite Above 1 MB i
Test .exe
Code = 252 Sectors
Data = 35 Sectors
Domain-Specific Application
Suite
Test .exe

Figure 6. Memory map.

As per our knowledge, there is no true bare machine research/development/product
like BMC. However, there is ample related work in making the OS lean, moving OS
functions to application space, bypassing the OS to gain fast access to hardware resources,
and designing an OS for IoT devices. Examples include the exokernel OS architecture
enabling applications to manage the hardware and improve performance [44]; Tiny-OS
for low-power wireless devices [45]; and Palacios and Kitten, a lightweight OS and VMM
(virtual machine monitor) for high-performance computing [46]. Microkernel and related
approaches [47,48] keep only essential OS services in the kernel to increase performance in
applications such as cloud computing. IO-Lite and kernel bypass techniques [49] provide
direct I/O access to applications to speed up I/O. For data center servers, a customized
OS [50] can be used to bypass kernel services. RIOT is a small OS suited for IoT devices [51].
Tradeoffs in designing minimalist instead of functionality-rich platforms are analyzed
in [52]. The BMC approach is a minimalist approach, where there is no OS or kernel.

3.2. Compilation Process

This section illustrates compilation and the BMC development process. It shows
that developing BMC applications is simple and independent of other development
environments, which change often. It also shows that the BMC application suite is a single
monolithic executable with one address space for a given set of applications. All the batch
files used are shown in Figure 7.

J. Cybersecur. Priv. 2024, 4

690

ﬁnk.bat \ asmb.bat
remdrive:d4,e5,f6,97 asmb.bat

call asmb.bat

format g: /fs:FAT32 /q /Y rem nasm compiler, FAT32 format

copy entry.bin g: erase boot.bin

erase test64.exe \nasm\nasm boot.asm -oboot.bin

copy .\webserver\test64.exe test1.exe \nasm\nasm -f bin -0 entry.bin entry.asm -l entry.Ist

PEfmt test1.exe test64.exe 400h 0 0
copy test64.exe g:
lehd -m 7 boot.bin /

ﬂ:pp.bat asm.bat
cpp.bat

..\bin64\cl /c /FA/Fa/Zl /Os /Gy IGS-

test64.cpp aoatask1.cpp aoatask2.cpp ..\bin64\mI64 /c /Cx /F| asmfiles64.asm
aoatask3.cpp wstack.cpp wstack1.cpp wstack2.cpp

wstack3.cpp apptask.cpp wlinlistf.cpp wecirlist1.cpp

weirlists1.cpp wecirlist2.cpp wecirlists2.cpp wcirlist3.cpp

\wcirlists&cpp wlinlist1.cpp

i)

cls

rem erase *.obj

attrib /S

erase test64.exe

..\bin64\link /MAP /BASE:0000 /NODEFAULTLIB /OPT:NOREF

/MERGE:.rdata=.data /MERGE:.bss=.data /MERGE:.const=.data

/LIBPATH:"..\doscLIB" /ENTRY:

main test64.obj aoaprotected.obj asmfiles64.0bj cfiles64.obj chkstk.obj aoatask1.obj aoatask2.obj
aoatask3.obj etherobjrcv.obj etherobjsend.obj isupport.obj cisupport.obj wstack.obj wstack1.obj
wstack2.obj wstack3.obj apptask.obj udpobj.obj udpobj2.obj udpobj3.obj arpobj.obj udpobj1.obj ipobj.obj
ipobj1.0bj ipobj2.obj ipobj3.obj wilinlist0.obj wlinlist1.obj wlinlist2.obj wlinlist3.obj wlinlistf.obj parserobj.obj
parserobj1.obj parserobj2.obj parserobj3.obj ftpobj.obj fhashindex.obj rand.obj rand1.obj rand2.obj
wd&obj ftopobj.obj wcirlist1.obj wcirlists1.0bj wcirlist2.obj wcirlists2.0bj wcirlist3.obj wcirlists3.obj /

Figure 7. Compilation process. * Refers to all file names with the .obj extension in the command rem
erase *.obj.

Currently, the development process in the BMC uses batch files and takes complete
control by using a particular version of Visual Studio (VS 64-bit) as it changes often. These
batch files allow us to conduct a compilation process independent of any version of the OS
release. At present, we use a Visual Studio/bin directory to compile and link our bare code.
The development environment does not use/lib and/include files. A boot.asm has a boot
code, and entry.asm has an entry code for the 64-bit application suite. The asmb.bat file is
used to generate these binary files, which are written in the NASM assembler. The mk.bat
file is used to create a bootable USB, which has boot, entry, and test64.exe (application
suite). The PEfmt tool is written for BMC to properly organize code and data segments as
needed for the Microsoft PE format.

The asm.bat file is used to compile MASM assembly code that provides direct hardware
interfaces. There is a cpp.bat file in every directory that has C/C++ code. The cpp.bat file
shown below is for the main directory in the application suite. Similarly, there is a separate
cpp.bat file in each directory, where there is C/C++ code. The object files from each directory
are used together to run a link process. The In.bat file creates an application suite executable
named test64.exe. This description of batch files refers to creating a multicore web server
using the BMC paradigm. This total control of compiling, linking, and creating a static
executable prevents other malware from being linked with this application suite at run time.

3.3. Sample Direct Hardware Interfaces

Some sample direct hardware interfaces, such as tasking, reading data from an Ethernet
buffer, and processing a received packet, are discussed in the following sections. The code
snippets demonstrate how the BMC code integrates all components seamlessly without
any layers. It also shows that a programmer controls all hardware elements and software
structures, such as Ethernet buffers.

J. Cybersecur. Priv. 2024, 4

691

3.3.1. Creating, Inserting, and Running a Task

The code snippets in Figure 8 from a 32-bit application suite for a web server show
how a task is created in the BMC paradigm. Notice that task generation is bundled with
the application suite and is not visible to outsiders, which prevents intrusion into the code.
This code is generated, statically compiled, and linked. A given application suite decides
the task creation and its control flow. The deleting task is not shown here. The code is
self-explanatory and follows chronological order.

No. Code Snippet

/I** Get the function address to create a task **//
This function returns the address of a C++ member function which is then
used to create a task in the BMC system.
long *getFunPtrOthers(pmfdOthers abe2) {
This uses xyz as a stack pointer to locate the function address
long *abl;
long *xyz; // Stack pointer
pmfdOthers abcl; // Instance of a member pointer
apptask first; // Instance of a class
xyz = (long *) &first;
abcl = abc2; // Initialize the pointer with a function
Xyz--3
abl = (long *) *xyz;
return(long *) abl; };

/I** Capture the address of the task **/
HttpTask is a C++ member function for a task Initialize pointer with HttpTask
2 function address.
FunPuX = &apptask: :HttpTask:
Store function pointer in an array.
FunAddrArray[7] = (long)getFunPtrOthers(FunPtrX);

/I** Create the task and push task ID onto the stack **//
The following two lines can be repeated for as many tasks as needed.
Task IDs are pushed onto stack and then popped to be inserted into a circular list.
3 This circular list acts as a "ready queue" in the BMC system.
Create a task using a function address and return a unique task ID.
Task_ID = createTask((long) FunAddrArray[7], 0):
stk.push(Task_ID); // Push this task ID onto a stack.

/I** Insert the task into the Circular List **//
When HTTP request arrive in TCP the following insert function is called.
tsk.insertHttp Task(TCBRecordNumber, io.AOAgetTimer ()):
This function inserts the task into a circular list.
int apptask::insertHttpTask(int tcbrno, long timerc) {
int taskid;
long timer;
Code not shown ...
if(stk.empty() ==0) {
stk.pop(&taskid); // Get task ID from the stack.
Code not shown ...
cir.insert(taskid, 0, 0x05, tcbrno, timerc);
Code not shown ...
} return 0; };

/I** Run a task from a circular list **//
5 In main loop, a task ID "n" from the circular list is used to run the task.
task. AOArunTask(n);: / C++ member function

/I** Run task call in C **//
6 The above C++ function calls the following C funtion
runTask(Task_ID):

//** Run task in assembly **//
7 The above C call invokes the following assembly function
runTaskasm32(Task_ID);

/I** Run task call implementation in assembly**//
;: The assembly call for runTask32 is shown below.
; Notice that it invokes an interrupt Oefh to run a task.
runTaskasm32 PROC C public Task_ID:DWORD

8 ; Code not shown ...

int Octh

; Code not shown ...

ret

runTaskasm32 ENDP

Figure 8. Task creation.

3.3.2. Reading and Processing an Ethernet Packet

In the BMC paradigm, device drivers are part of an application suite. They are written
to work without using any OS system calls or APIL. All device drivers must be written from

J. Cybersecur. Priv. 2024, 4

692

scratch and are known as bare device drivers. There are two data structures in the Ethernet
driver, known as the transmit and receive descriptor lists. These are circular lists with 4096
entries. When a packet arrives, the hardware sets a bit known as descriptor done (DD).
Application programmers can read this bit to check if a packet is received. Similarly, when
a packet is transmitted, the hardware sets the transmitter DD bit. An application program
can examine these DD bits to communicate with the Ethernet control hardware.

For receiving a packet, if a given slot’s DD bit is set, then this packet will be read and
passed onto the application, as shown in Figure 9. The function isRDescDone0() in Code
Snippet 1 shows how an application can peek into the Ethernet receive buffer for an HTTP
GET request and copy the GET data into another buffer. After copying the data, it calls
discardPacket() to reset the DD bit. Code Snippet 2 shows how a received packet invokes
the RevCalll() function to process a request, and Code Snippet 3 shows how it calls the
IPHandler() function. Code Snippet 4 illustrates how it calls the UDPHandler() function,
and Code Snippet 5 shows the processing of the UDP packet with comments, as this step
has a large amount of code, which is not shown here. In essence, this code demonstrates
that all the Ethernet packet processing is done as a single thread of execution without any
layers. In addition, this is application code designed and controlled by an application
programmer without the intervention of any middleware. It is event-driven with polling to
receive packets. Send is not shown as it is like receive.

No. Code Snippet

/I Reading and processing an Ethernet Packet
retcode = EQ.isRDescDone0(bcoreid, 1, &pkisize, &pregid);

/I Peeking at an Ethernet packet in an application code
int EtherObjRcv::isRDescDone0(int cid, int takeget, long long *pktlen, long long *reqgid){

WStack stkO0;

/I Other variables are not included
unsigned long long *ul2;

*pktlen = 0;

*reqid = 0;

/I Each descriptor is 16 bytes in size

Iptr = (long long *) (RDLPointer + ReceiveOutPtr * 16);
dptr =*Iptr; // Data pointer for the packet arrived

cptr = (char *) (dptr);

iptr = (long long *) (cptr);

Iptr++;

temp = *Iptr; // Status, checking for the D bit

/I Reading receive descriptor and checking if the packet arrived
temp = temp & Ox H

if(temp!=0){
*pktlen = (*Iptr) & 0x ; /1 Get the packet length.
retcode = 0;

/I Check if it is a GET packet
if (cptr[0+42]1=="G"&& cptr[1+42] =="C" && cptr[2+42] =="T"){
Icounter++;

/I Checking if the stack has any indexes
if (stkO.empty() == 0
preqgid = stk0.pop();

*reqid = preqid;
rtype =1;

/I A round-robin algorithm is used to load balance cores.
for (i=0;i<("pktlen); i++)
dataptr[i] = cptr[|]; // Copying received data into a buffer.

/I Inserting packet into a circular list for a given core (code not shown)
discardPacket();
} // End of if statement for stkO has the indexs
} // End of if statement for GET.

} // End of if statement for temp
} // End of isRDescDone0 function

Figure 9. Cont.

J. Cybersecur. Priv. 2024, 4

693

No. Code Snippet

/I Processing a received packet

/I Core 1 processing requests

/I Check if there are any pending requests for Core 1 in circular list
if (cirl.getCount() > 0) {

2 /I Get a packet from its circular list

/I Code not shown

/I Process the arrived request

RevCall1(preqid, pkisize, type);

/I (The rest of the code is not shown)

/I Implementation of RCV call1
void AOATask1::RevCall1(int reqid, int pkisize, int type){
3 /I Code not shown
retcode = ip.IPHandlerlICMP(pkisize - 14, starttime, type); // Call IP Handler
/I Code not shown
}// End of RCV call1

/I Implementation of IP Handler.
int IPObj1::IPHandler(int reqid, char *IPPack, int size,
char *macaddr, long starttime, int currenttask) {
/I Check IP header formats and errors. Remove header.
/I Code not shown
if (protocol == UDP) {
4 /I Code not shown
/I Call UDP Handler.
retcode = udp.UDPHandler(reqid, & PPack[HeaderLength],
(TotalLength - HeaderLength), & PPack[121,
&IPPack[16], protocol, macaddr, currenttask);
}// End of if statement
} /1 End of IPHandler function

/Il Implementation of UDP Handler.
int UDPODbj1::UDPHandler(int reqid, char *UDPPack, int size,
char *SourcelP, char *TargetIP,
int Protocol, char *dmac, int currenttask) {

/I UDP header processing, checking errors

5 /I Code not shown

/I Process UDP request

/I Send header and data; putting the data in an output circular list for the core
/I Core 0 takes this data and puts it into the Ethernet buffer.

/I Code not shown

}// End of UDPHandler function

Figure 9. UDP-based protocol.

3.4. Summary of the Above Code Snippets

In the above Sections 3.1-3.3, we discussed the use of direct hardware interfaces,
the BMC development methodology, and some application code snippets. It is evident
from these discussions that this approach is different from conventional methods. When
a machine is made bare, the programmer controls software development at compile time
and run time. The programmer also controls run-time behavior and does not allow any
unintended functions to interfere with a given application suite. Hardware interfaces
are included at development time, and flow control cannot be altered at runtime by
other applications. This is truly an application-oriented model with a security-by-design
approach. The task creation code shows how it is intertwined with an application suite, thus
allowing the system to perform only intended tasks. The Ethernet peeking demonstrates
that all device drivers are also seamlessly integrated with a given application suite. The
packet processing shows how Ethernet, IP, and UDP are integrated as a single thread of
execution instead of going through different layers. In this approach, packet processing
goes through a simple invocation of calls from one protocol to another. Overall, a given
application suite is custom-designed and simple; there is only one user mode; the machine
is bare and has no valuable resources; and the programmer has control at all stages.

3.5. Properties of the BMC Paradigm

There have been many real-world applications built to demonstrate the feasibility
of bare systems using the BMC paradigm, including chat [43], Web servers [53], USB

J. Cybersecur. Priv. 2024, 4

694

drivers [42], and Web mail servers with TLS [54]. These real systems are used to identify
system guidelines and system characteristics.

3.5.1. BMC System Guidelines

1.

P NG

10.

11.
12.

13.
14.
15.
16.

17.

18.
19.

20.

System Approach: It is a revolutionary approach that was invented to address
obsolescence and security problems. It makes applications independent from the
execution environment, and all computing devices are bare.

Open/Closed System: It is a closed system. Injecting an attacker’s code is not possible.
Open source must not be confused with open systems. The BMC is a closed system.
The computing box is bare, and the application running in the bare box is not accessible
to hackers. In case hackers create a similar system, they can only hack their own
system, not others. If we make an open system, security vulnerabilities are easy to fix,
but hackers and developers are at the same knowledge level.

Global Focus: It has a local focus. It is architected, designed, and implemented to
avoid global users.

User USBs: There are dual USBs (the first for booting and the second for an application
suite). Both USBs must be physically secured.

Equal Access: All bare users have equal access.

Education and Knowledge: Restricted to authorized bare users.

Layers: There are no layers at any level.

Bare Internet: To make BMC viable, a bare Internet concept [43] is introduced. In
a bare Internet, all intermediate nodes, such as routers and gateways, must be bare,
and they must be physically secured. At present, a bare Internet is overlaid on the
existing Internet.

Heterogeneity: No heterogeneity is allowed in programming languages, hardware,
and software. The security of systems and applications is more controllable.
User/Developer Convenience: User convenience takes lower priority over other
design issues in defining system guidelines. For example, a system administrator
must physically distribute user accounts to guarantee the authentication of users. This
is not convenient, but all other electronic means may not be secure. The BMC systems
are not global, and the users are limited within a given domain-specific application.
These systems are designed for secure domains, not for a global world. Non-bare
users can use conventional systems if BMC systems do not fit their needs. BMC
systems provide an alternative approach to current computing systems.

Training: All authorized bare users must have consistent training and education.
Software Installation: Online installation is not allowed. There is nothing to install
in a bare machine. The user carries secure USBs. These USBs are distributed to
authorized bare users by physical means.

Wi-Fi: Wi-Fi is currently not supported due to its security issues.

Script and Batch Files: These are not allowed.

Attachments and Links: Attachments and links are not allowed in emails.

Social Media Platforms: There is no support for social media applications. Social
media can use the conventional Internet, which is isolated from a bare Internet. This
approach will reduce the number of users on a bare Internet.

Advertisements: Advertisements are not allowed. All domain-specific applications
and their users are properly authorized and tracked on a bare Internet.

Unsolicited Websites: Only access to authenticated bare websites is allowed.
Automated Tools: Automated tools are designed to work with only bare computing
devices and applications. Their use is restricted to bare users only.

Cookies: No cookies are allowed.

3.5.2. BMC Characteristics

1.

OS/Kernel/Embedded: The OS/kernel/embedded concept is eliminated. There is
no such centralized program; each domain-specific application is a self-controlled,

J. Cybersecur. Priv. 2024, 4

695

self-managed, and self-executed entity. There is no interaction with entities outside
an application suite. As there is no OS/kernel, a user carries a flash drive with boot
code and a domain-specific application suite. Figure 6 shows a memory map for
a flash drive containing a client’s UDP-based chat program.

Applications: All computer applications are polarized as domain-specific entities.
They are independent of any platform. In conventional systems, they are dependent
on platforms and execution environments.

We have developed and demonstrated numerous domain-specific applications, including
web sites, webmail, email, VoIP, text-only browsers, editors, file systems, database
applications, and chat. In these systems, there are bare servers and clients that run
on bare machines. For example, in the chat domain, there are physically vetted users
who communicate in their own domain. All these users are vetted and use bare
machines. We use context-based authentication to validate users. This is one example
of a domain. All the above domain applications were tested on the Internet with
bare servers and clients. On the Internet, domain-specific applications are used to
communicate securely within a domain using bare devices.

Programming Languages: A single programming language (C/C++) is used to write
applications, thus avoiding all heterogeneity in writing applications.

Executable: It is a single monolithic executable, which implies a single address space.
Only one executable format is allowed.

Linking: Uses static linking, which prevents expanding the code segment to load
foreign code. This provides ultimate security for the BMC applications, as malware
code cannot be linked.

Loading: Uses static loading, which prevents extending the code segment to load
malware code.

Multi-tasking: Multi-tasking is offered within an application suite controlled by
an application programmer through events and its control flow.

System Calls/API: There are no system calls or APIs available to the outside world
(outside an application suite). It uses a direct hardware API, integrated within
an application suite.

Sockets: No sockets exist in the BMC paradigm, as there is no OS. Remote computer
communication is implemented within a process and hidden inside an application suite.

For example, attackers use sockets to create man-in-the-middle attacks. In the BMC

paradigm, sockets are not used as we build domain-specific applications with no open
ports, not allowing users to create their own threads or processes. That is, items such as
sockets are not needed in implementing BMC applications. The BMC paradigm inherently
does not need such security-prone facilities as it does not have an OS. This approach is
different from the “security through obscurity” concept. There are many such facilities that
are not needed in the BMC paradigm, which offers inherent security in BMC applications.
The following quote also supports your concern.

10.

11.

12.

13.

14.

Open Ports: There are no open ports in BMC programs. As it is a domain-specific
application suite, IP addresses and port numbers are managed within each application
code in a hardcoded manner. This is not visible outside the application suite. When
a packet arrives, its corresponding event (pre-defined) will call an appropriate method
to process it.

During Execution: During execution, only one application suite runs. There is no
interaction with other application suites or external modules in a bare computing
device. No exploits are possible for an attacker.

Event/Interrupt Driven: The application suite is event-driven. Limited user interrupts
are used for input.

Shared Memory/Message Passing: Only a shared memory approach is used within
an application suite.

Concurrency Control: Concurrency control is avoided by using circular lists. The code
is simpler and more directly accessible to the program.

J. Cybersecur. Priv. 2024, 4

696

15. I/O: There are direct hardware APIs that are hidden within an application suite.

16. Third-Party Software: There is no third-party software used in applications.

17. Network Interfaces: All network interfaces are hidden from the outside world.
Attackers cannot use this direct hardware API.

18. Internet Communication: Communication on the Internet is restricted to a bare
Internet and its bare users only.

19. Internet Downloads: No downloads are allowed.

20. IoT: All IoT devices must be bare computing devices and follow the BMC paradigm
and its characteristics as described in this paper.

21. Application Program Control: A given application has its own control flow as intended
at design time.

22. Computing Device: A computing device (PC, laptop, smartphone, or other) is bare,
meaning that it has no intelligence, no OS, and no mass storage. It cannot boot or
run until external media runs the boot code and loads an application suite controlled
by the owner. The bare device has no valuable resources. Thus, a bare computing
device can be used by any user at any time. When one application suite is running,
another one cannot run; therefore, there is no intrusion from other applications. There
is nothing in the bare computing device to be attacked, as there are no valuable
resources when it is not running. When a bare device is running, it must be physically
secured by the owner. Physical security at the bare box is not convenient, but it is
required to guarantee security of the device and the running application suite.

23. Users: Only bare users can communicate with each other. For a given domain-specific

application, there are a limited number of bare users. They must be physically
authorized, authenticated, and controllable. We have not defined any formal methods
for authentication at this point; however, we can use existing models in banking,
driver’s license, etc.
Our BMC system is totally controlled by its owner, with physical security. If a trusted
user changes roles and tries to exploit other bare systems, this user can only damage
his/her own system and not those of others. This is because an owner’s valuable
resources can only be accessed by the owner’s application suite. When a BMC
application suite is running, it is a closed system that performs only intended functions.
In addition, when the roles of trusted users change, their privileges are changed in
the system.

In the bare machine computing model, each bare box and an application suite is
owned by an owner, and it is physically secured. If an outsider or insider gained the
same knowledge as the original developer, then they could reconstruct a similar system
of their own. However, they will be using their own system at their own location. All
valuable resources are accessible only by the owner and stored in an owner’s detachable
mass storage. Moreover, if they come through the network, they will not be able to access
resources, as only trusted users are allowed to communicate within the domain. Users
within the domain are vetted and authenticated to communicate within the group for each
transaction. In this model, all users in the group must be physically trusted. This system
cannot solve insider attacks and physical security violations. All the bare nodes in the
system as well as on the network must be bare and physically secure. This is a harsh
requirement, but it is necessary to build highly secure systems.

24. Messages: Each message is encrypted, integrity-protected, and authenticated using
credentials physically given to authorized users by an administrator.

25. User-Secured USBs: Uses two USBs, one bootable and one with an encrypted application
suite. These USBs must be physically secured by a user.

26. BIOS/Firmware: Bundled with a domain-specific application suite (not implemented
currently).

27. Protocols: A bare machine connects to a network via wired Ethernet. Network protocols
are limited to IP and UDP (TCP/TLS is used for demonstration only) implemented
within the bare application. Other protocols are not available outside the application

J. Cybersecur. Priv. 2024, 4

697

running on the machine. Each application communicates only with its peers to ensure
reliability and proper functionality. Furthermore, protocols are integrated within the
application, and there are no protocol layers as in a conventional system. The attacker
does not have the path to invoke these protocols. Although an attacker can spoof IP
addresses, such packets will fail user authentication and be dropped. Every packet
has bare user authentication, encryption, an integrity check, and replay protection.

28. Passwords: No password files are stored on bare machines. Context-based authentication
is used in bare systems.

The above BMC system guidelines and characteristics impose many restrictions for
user options. This does not mean that the BMC applications have limited their user
functionality. Any features or functions offered by conventional systems can also be
provided by BMC applications. The functional requirements, design, and implementation
are conducted in many ways to achieve the highest security possible by design. In many
cases, a given functionality, protocols, and interfaces are hidden in an application. This is
referred to as an A-to-A (application-to-application) approach.

For example, email attachments and downloads are not allowed in BMC characteristics.
Users can still receive an attachment as a set of packets without explicitly providing
attachment features. A sender and a receiver of an email application handle the disassembly
and assembly of packets in their respective applications with a hidden knowledge of
file characteristics. All emails and additional packets are encrypted when transmitted
on a network. At the receiving site, it is ensured that this file data cannot be executed.
Thus, attachments are handled differently than in conventional systems. Many other
convenient features in conventional systems are implemented in BMC applications in
a hidden manner.

Similarly, in BMC, software downloads are not allowed. All software that runs on
a bare machine must be physically installed on a bootable USB by an authorized vendor for
an authorized bare user. It is not convenient for bare users, but it is the most secure way to
design BMC applications.

As per the following quotation, “In recent years, more advanced versions of “security
through obscurity” have gained support as a methodology in cybersecurity through Moving
Target Defense and cyber deception. NIST’s cyber resiliency framework, 800-160 Volume 2,
recommends the usage of security through obscurity as a complementary part of a resilient
and secure computing environment” [55].

BMC code can run on older and new Intel processors without any (or just a few)
changes. The variety and breadth of the BMC work [43,53,54,56] show that it is possible to
build similar systems for secure applications in computer and information systems. The
BMC paradigm can thus be an alternative to existing OS-based platforms and applications
with security by design.

3.5.3. BMC Limitations

As described before, the bare machine computing paradigm has unique system
guidelines and characteristics to reduce obsolescence and provide inherent security in
computer and information systems. However, this approach has its own limitations, as
listed below:

It is not a general-purpose global system.

It requires physical security.

It needs all users to be authenticated and vetted.

It uses a domain-specific application approach (by dividing applications into domains).
Only users within a domain can communicate.

When domain-specific users change roles, their authentication privileges are revoked.
All nodes in the network must be bare to guarantee high security.

Uses the bare Internet, where all nodes are bare and physical security is assumed.

NI L=

J. Cybersecur. Priv. 2024, 4 698

4. Comparison of Conventional and BMC Systems

This section compares system guidelines in Table 1 (20 items) and system characteristics
in Table 2 (28 items). The system guidelines are informal requirements or policies needed
to build a system. The system characteristics are inherent properties of a system. Some
system guidelines and characteristics may be prone to security attacks. Some system
guidelines and characteristics may be resilient to security attacks. Thus, we define two
terms to compare conventional and BMC systems: PECSV indicates possible exposure to
cybersecurity vulnerabilities, and PRCSV designates possible resilience to cybersecurity
vulnerabilities. The references obtained from the literature review are shown in the tables
to determine possible vulnerabilities and resiliency in BMC systems.

Table 1. Comparison of System Guidelines.

Seq. System Guidelines Conventional Systems PECSV BMC Systems PRCSV
1 System Approach Evolutionary Revolutionary
A
2 Open/Closed Open Conventional Closed ¥ BMC Guideline 2
Guideline 2
3 Global Focus Yes Local Focus
4 Global Users Yes AT1,2] Local Users
5 Equal Access Yes Restricted ¥ BMC Guideline 5
6 Free Learning Yes A [57] Restricted ¥ BMC Guideline 6
7 Free Internet Yes Bare Internet ¥ BMC Guideline 7
8 Layered Systems Yes A [58] No ¥ BMC Guideline 8
9 Heterogeneity Yes A [59] No ¥ BMC Guideline 9
10 l(;jJser/Dfeveloper Yes A[37] Not Top Priority ¥ BMC Guideline 10
onvenience
11 Training Yes Yes ¥ BMC Guideline 11
12 Software Installation Online Yes A [60] No ¥ BMC Guideline 12
13 Wi-Fi Yes A [61,62] Not Supported Yet ¥ BMC Guideline 13
14 Scripts and Batch Files Yes A [63] No ¥ BMC Guideline 14
15 Attachments and Links Yes A [64,65] No ¥ BMC Guideline 15
16 Social Media Yes & [66,67] No ¥ BMC Guideline 16
17 Advertisements Yes A [68,69] No ¥ BMC Guideline 17
18 Unsolicited Websites Yes A[70,71] No ¥ BMC Guideline 18
19 Automated Tools Yes A[72,73] Restricted ¥ BMC Guideline 19
20 Cookies Yes A [74] No ¥ BMC Guideline 20

4\ PECSV: Possible Exposure to Cybersecurity Vulnerabilities. ¥ PRCSV: Possible Resilience to Cybersecurity
Vulnerabilities. N/A: Not Applicable.

J. Cybersecur. Priv. 2024, 4

699

Table 2. Comparison of System Characteristics.

Seq. System Characteristics Conventional Systems PECSV BMC Systems PRCSV
v
1 OS/Kernel/Embedded Yes A [75] No BMC Characteristic 1
1- cfc J
2 Applications Environment-centric Domain-specific BMC Characteristic 2
3 Programming Languages Many ASM/C/C++ BMC Characteristic 3
4 Executable Format varies Single monolithic v
depending on OS executable BMC Characteristic 4
v
5 Linking Dynamic (DLLs) A [76] Static (No DLLs) BMC Characteristic 5
. . . J
6 Loading Dynamic Static BMC Characteristic 6
Yes (Only within 2
7 Multi-tasking Yes a dor'nalln-speaﬁc BMC Characteristic 7
application)
No (Direct Hardware v
8 System Calls/ AP Yes A7 Interfaces) BMC Characteristic 8
k A v
9 Sockets Yes [78] No BMC Characteristic 9
O Ye VAN v
10 pen Ports ©s [79] No BMC Characteristic 10
. - Only a given
11 During execution A given app hCE?thlil, 05, domain-specific BMC Characteristic 11
and other applications .. .
application-suite
v
12 Event/Interrupt driven Both Event-driven BMC Characteristic 12
13 Shared memory/Message Both Shared Memory v
Passing (Single Address Space) = BMC Characteristic 13
Uses circular lists as 2
14 Concurrency control Semaphores and other buffers, avoids BMC Characteristic 14
concurrency controls
. Direct Hardware v
15 1/0 Interrupt driven 4 180] Interfaces BMC Characteristic 15
v
16 Third-Party Software Yes A [81,82] No BMC Characteristic 16
Many interactions
. during the session Only a few interactions v
17 Network interfaces between a client and 4 [83,84] (Short data sessions) BMC Characteristic 17
a server
Communication on the v
18 Internet Global Internet A\ [85] Bare Internet BMC Characteristic 18
v
19 Downloads on the Internet Yes A [86-89] No BMC Characteristic 19
Small OS, Embedded @
20 ToTs Nodes a0l Must be bare nodes BMC Characteristic 20

J. Cybersecur. Priv. 2024, 4 700
Table 2. Cont.
Seq. System Characteristics Conventional Systems PECSV BMC Systems PRCSV
Valuable Resources No valuable resources @
21 ing Devi A i
Computing Device (Storage, OS, Other) Obvious (Bare) BMC Characteristic 21
Yes, Domain-specific
» Application-program No. OS controls it application suite v
Control ! controls the control BMC Characteristic 22
flow as designed
Only Bare Users v
23 U Global, All A2 - ’
Sers oba 2] Authorized BMC Characteristic 23
. Each message contains
May not have valid @
24 Messages authentication A 2] encrypt.ed ‘t.)are user BMC Characteristic 24
authentication
Uses two USBs, boots, 2
2 - d USB N/A d ted
5 User-Secured USBs / and an encrypte BMC Characteristic 25
application suite
Bundled with the 2
2 BI Fi Not bundled with A 91 d in- ifi
6 OS/Firmware ot bundled with OS [91] omain-specific BMC Characteristic 26
application suite
Integrated with the v
27 P 1 L 1 A[92 . .
rotocols ayered protocols [92] application-suite BMC Characteristic 27
. No password files
Password files part of - ¢
28 Passwords OS structures 4115931 (authentication stored BMC Characteristic 28

in program structures)

A PECSV: Possible Exposure to Cybersecurity Vulnerabilities. ¥ PRCSV: Possible Resilience to Cybersecurity
Vulnerabilities. N/A: Not Applicable.

Using these two tables, we make the following observations. In Table 1, in conventional
system guidelines, 15 out of 20 have possible exposure to cybersecurity vulnerabilities,
whereas in BMC systems, 17 out of 20 have possible resilience to cybersecurity vulnerabilities.
Similarly, in Table 2, in conventional system characteristics, 17 out of 28 have possible
exposure to cybersecurity vulnerabilities, whereas in BMC systems, 26 out of 28 have possible
resilience to cybersecurity vulnerabilities. Overall, BMC systems show possible resiliency,
and conventional systems indicate possible exposure to cybersecurity vulnerabilities. This
indicates that BMC systems are inherently secure by design.

5. Cyberattacks and Analysis

An attack can have many stages, such as reconnaissance, weaponization, delivery,
exploitation, installation, command, and control (C2), and actions on objectives [94].
An attacker may select the stages in their attack methodology based on suitability for their
execution plan. Each cyberattack can be traced to one or more root causes in an information
system: hardware, software, firmware, OS, protocols, layers, complexity, programming
language, humans, and more. Most of the literature on cybersecurity indicate that after
an attack, it is typical to focus on the symptoms of an attack and fix the problem as needed.
Many times, the roots of an attack may still exist and manifest as a new attack. This process
goes on as a “cat and mouse” game in a never-ending cycle. It is essential to find and
remove the root causes of cyberattacks to eliminate them. In current information systems,
cyberattack roots are inherently hidden in the architecture, protocols, policies, procedures,
objectives, requirements, design, and implementation of these systems. Thus, it is harder to
remove them as it assumes global markets and users. The cyberattack space is infinitely
large, as shown in Figure 1, and it is difficult to comprehend and address all possibilities for
a given cyberattack. Eliminating the roots of cyberattacks may require revolutionary and
non-evolutionary approaches, which are not the focus of current cybersecurity research.

J. Cybersecur. Priv. 2024, 4

701

5.1. Overview of Selected Cyberattacks

In this section, we analyzed the chosen 22 cyberattacks. The related work and the
definitions of this cyberattack are provided in Section 2.1. We identified each attack’s
preventive mechanisms and some root causes using the existing literature. These root
causes will help to compare the security strengths and weaknesses of conventional and
BMC approaches.

5.1.1. Buffer Overflow

The following root causes and preventive methods are derived from [8,95].
Root Causes:

—_

Lack of bounds checking in functions.
2. Lack of input validation and sanitization by programmers.

Preventive Mechanisms:

1. Consistently update OSs, programming languages, and compilers to their latest
versions.

Implement code protection mechanisms.

Use safe functions; validate and sanitize input data.

Employ static code analysis tools.

Provide consistent training and reviews.

AR

5.1.2. Phishing Attack

The following root causes and preventive methods are derived from [9,96].
Root Causes:

Clicking links can trigger malware downloads or redirect to malicious websites.
Downloading files can contain malicious code.

Running downloaded code can execute malware and cause attacks.

Messages from unauthenticated users may trigger attacks.

Email addresses are easily obtained, aiding targeted attacks.

Email attachments are a common phishing attack vector.

Website phishing can mimic legitimate sites for credential theft.

N L=

Preventive Mechanisms:

Check website URLSs.

Scrutinize website design.

Beware of urgency-based tactics.

Enable two-factor authentication (2FA).
Report suspicious activity.

Utilize access control lists (ACLs).
Employ email filtering.

Use machine learning-based detection.
Maintain regular backups.

Prioritize strong passwords.

Educate employees on cybersecurity awareness.
Develop incident response plans.
Provide consistent training and reviews.

PNANA L=

e = e S Ve
PN =o

5.1.3. Ransomware

The following root causes and preventive methods are derived from [10,77,91,97,98].
Root Causes:

Downloading email attachments.

Downloading files from untrusted websites.
Allowing downloaded code to run automatically.
Attacker accessing OS APlIs.

L

J. Cybersecur. Priv. 2024, 4

702

G LN

N o

Attacker exploiting hardware vulnerabilities (TPM: Trusted Platform Model,
BIOS, firmware).

Freely available educational resources on cybersecurity vulnerabilities and attack
techniques.

Preventive Mechanisms:

Deploy IDS (Intrusion Detection System) and IPS (Intrusion Prevention System).
Utilize TPM. (Note: it was also found that TPM has security vulnerabilities).
Maintain regular backups.

Implement blacklist-based detection: block known malicious domains and IP addresses.
Employ advanced ransomware detection: Use rule-based, statistical, machine learning-
based, or hybrid techniques.

Change the file extensions randomly.

Provide consistent training and reviews.

5.1.4. Denial of Service (DoS) and Distributed Denial of Service (DDoS)

N

XN

The following root causes and preventive methods are derived from [11,99].
Root Causes:

Allowing attackers to use a legitimate machine and infect it.

Allowing attackers to flood requests.

Freely available educational resources on cybersecurity vulnerabilities and attack
techniques.

Preventive Mechanisms:

Information entropy.

Machine learning-based methods.
Artificial neural networks (ANN).
Statistical analysis.

Flow statistics.

Rate Limiting.

TCP Proxies.

Provide consistent training and reviews.

5.1.5. Man-in-the-Middle (MITM)

NN

The following root causes and preventive methods are derived from [12,78,100].
Root Causes:

Attacker using public Wi-Fi access points.

Using a secure socket layer provided by the OS.

Exploiting protocol vulnerabilities in ARP, DHCP, DNS, ICMP, and IP.

Using open-source automation tools.

Using open-source OSs.

Lack of proper authentication measures to validate users.

Freely available educational resources on cybersecurity vulnerabilities and attack
techniques.

Preventive Mechanisms:

Enable two-factor authentication (2FA).

ARP Spoofing Detection: cryptographic, voting-based, hardware, server-based, host-
based solutions.

DNS Spoofing Detection: entropy-based, cryptographic, artificial neural network
(ANN) solutions.

IP Spoofing Defense: router-based, host-based, hybrid solutions.

SSL/TLS Solutions: detecting forged certificates, certificate pinning, multipath probing,
forcing SSL/TLS connections, friendly MITM, TLS extensions.

Provide consistent training and reviews.

J. Cybersecur. Priv. 2024, 4

703

5.1.6. Password Attack

The following root causes and preventive methods are derived from [13,101].
Root Causes:

Exploiting OS vulnerabilities.

Attacker modifying the number of password entry limits.
Attacker accessing password files.

Attacker accessing OS APlIs.

Attacker accessing system calls.

Weak or predictable passwords.

SANRAEE IR A

Preventive Mechanisms:

Conduct penetration testing.

Enable two-factor authentication (2FA).

Enforce and manage strong password policies.
Monitor activity for suspicious behavior.

Employ a layered defense for a strong security posture.
Limit attempts to enter a correct password.

Change passwords frequently.

Avoid using the same password for multiple accounts.
Avoid passwords that are vulnerable to dictionary attacks.
Use a password manager.

Do not write down passwords.

Consider password-less authentication techniques.
Provide consistent training and reviews.

PNANA LD

e e e Y V)
PN =o

5.1.7. Trojan Horse

The following root causes and preventive methods are derived from [14,102,103].
Root Causes:

Users download either files or software.
Running the downloaded code automatically.
Exploiting OS vulnerabilities.

Attacker accessing system calls.

Attacker accessing OS APlIs.

An attacker using auto-run-in script files.

SR S e

Preventive Mechanisms:

Avoid opening suspicious emails.

Download software only from verified publishers.
Scan URLs before clicking.

Use antivirus software.

Deploy honeypots.

Provide consistent training and reviews.

SR e

5.1.8. Virus

The following root causes and preventive methods are derived from [15,104,105].
Root Causes:

User downloading email attachments.

User downloading software.

Users accessing fake websites.

User using an infected USB or other mass storage device.
Allowing script files in emails.

Attacker using batch files.

Exploiting OS vulnerabilities.

NN

J. Cybersecur. Priv. 2024, 4

704

SANRANE Sl A

Preventive Mechanisms:

Antivirus software.

Firewalls.

Keeping OSs up to date.

Regularly backing up digital records.
Scanning systems and USBs.

Provide consistent training and reviews.

5.1.9. Worms

N U L=

oG W=

The following root causes and preventive methods are derived from [16,106].

Root Causes:

Downloading software.

Downloading email attachments.

Accessing fake websites.

Using an infected USB or other mass storage device.
Allowing script files in emails.

Attackers using batch files.

Exploiting OS vulnerabilities.

Preventive Mechanisms:

Antivirus software.

Firewalls.

Keeping OSs up to date.

Frequent backups of digital records.
Scanning systems and USBs for malware.
Provide consistent training and reviews.

5.1.10. Spyware

NG N

N L=

The following root causes and preventive methods are derived from [17,107].

Root Causes:

Downloading software.

Downloading email attachments.

Accessing fake websites.

Using an infected USB or other mass storage device.
Allowing script files in emails.

Attackers using batch files.

Exploiting OS vulnerabilities.

Preventive Mechanisms:

Spyware detection algorithms.

Antivirus software.

Firewalls.

Keeping OSs up to date.

Regularly backing up digital records.
Scanning systems and USBs for malware.
Provide consistent training and reviews.

5.1.11. Adware

1.

The following root causes and preventive methods are derived from [18,108].

Root Causes:

Marketing.

J. Cybersecur. Priv. 2024, 4

705

SAE I

Preventive Mechanisms:

Uninstall adware.

Reset web browser settings.

Delete web browser caches and cookies.
Use antivirus software.

Provide consistent training and reviews.

5.1.12. Rootkit

RN

SARNANE IR A

The following root causes and preventive methods are derived from [19,109].
Root Causes:

Installing software online.

Downloading software.

Exploiting OS vulnerabilities.

Accessing fake websites.

Using an infected USB or other mass storage device.

Using devices with infected firmware.

Firmware vulnerabilities.

Freely available educational resources on cybersecurity vulnerabilities and attack
techniques.

Preventive Mechanisms:

Antivirus software.

Firewalls.

Rootkit scanners.

Avoiding phishing scams.

Keeping OSs up to date.

Provide consistent training and reviews.

5.1.13. Botnet

L

PNANA LD

The following root causes and preventive methods are derived from [20,110].
Root Causes:

Software vulnerabilities.

Downloading software.

Using an infected USB or other mass storage device.
Open ports.

Preventive Mechanisms:

Using an IDS (Intrusion Detection System) and an IPS (Intrusion Prevention System).
Firewalls.

Enforce and manage strong password policies.

Access Control Lists (ACLs).

Al and automation tools for security.

Using bot managers.

Enable two-factor authentication (2FA).

Provide consistent training and reviews.

5.1.14. Data Breach

Ll

The following root causes and preventive methods are derived from [21,111].
Root Causes:

User mistakes or negligence.
Malicious insiders.

Lack of physical security.
Downloading software.

J. Cybersecur. Priv. 2024, 4

706

Preventive Mechanisms:

Regularly back up digital records.

Cryptography.

Identity and access management (IAM), such as strong password policies.
Incident Response Plan (IRP).

Enable two-factor authentication.

Al and automation tools for security.

Provide consistent training and reviews.

N e b=

5.1.15. Advanced Persistent Threats (APT)

The following root causes and preventive methods are derived from [22,112].
Root Causes:

Downloading software.

Clicking on email attachments.

Using an infected USB or other mass storage device.

Accessing fake websites.

Exploiting OS vulnerabilities.

Freely available educational resources on cybersecurity vulnerabilities and attack
techniques.

oG W=

Preventive Mechanisms:

Access Control Lists (ACLs).

Controlling external media use.

Protecting valuable data.

Managing endpoint security.

Implementing Network Access Control (NAC).
Blocking high-risk applications.

Blocking known malware servers.

Analyzing security breaches for prevention.
Network and host hardening.

Provide consistent training and reviews.

PNANA L=

= O
o -

5.1.16. SQL Injection

The following root causes and preventive methods are derived from [23,113].
Root Causes:

—

System privileges are granted to the DBMS.
DBMS bypassing OS controls.
Failure to validate and authenticate user-entered data.

W N

Preventive Mechanisms:

Input validation and sanitization.

Using prepared statements.

Firewalls.

Controlling database permissions.

Scanning code for SQL vulnerabilities.

Using a secure ORM framework.

Using properly constructed stored procedures.

Applying the principle of least privilege to database accounts.
Prohibiting default root or admin access to applications.
Changing DBMS accounts from defaults to something else.
Provide consistent training and reviews.

PNNA L

—_ = O
_ o

J. Cybersecur. Priv. 2024, 4

707

5.1.17. Supply Chain

SANRAEE IR A

PNANA LD

[= Vo)
N = o

The following root causes and preventive methods are derived from [24,114].
Root Causes:

Providing backdoors in software and hardware.
Exploiting OS vulnerabilities.

Open-source code.

Downloading software.

Using an infected USB or other mass storage device.
Users accessing fake websites.

Preventive Mechanisms:

Implement honey tokens.

Secure privileged access management (PAM).
Implement a Zero Trust Architecture (ZTA).
Identify potential insider threats.

Identify and protect vulnerable resources.
Minimize access to sensitive data.

Implement strict shadow IT rules.

Conduct regular third-party risk assessments.
Monitor vendor networks for vulnerabilities.
Identify all third-party data leaks.

Disable backdoors.

Provide consistent training and reviews.

5.1.18. URL Interpretation

o G W=

The following root causes and preventive methods are derived from [25,115].
Root Causes:

Attacker accessing private files through a URL link.
Preventive Mechanisms:

Input validation and sanitization.

URL encoding to prevent malicious characters.
Avoid using user input directly in code.
Implement strict access permissions.

Enable two-factor authentication (2FA).
Provide consistent training and reviews.

5.1.19. Insider Threats

N o=

LN

The following root causes and preventive methods are derived from [26,116].
Root Causes:

Failure to apply strong security policies to private data.

User mistakes or negligence.

Freely available educational resources on cybersecurity vulnerabilities and attack
techniques.

Preventive Mechanisms:
Implement proper access management.
Employ user behavior analytics to access private data.

Use offensive security measures.
Provide consistent training and reviews.

J. Cybersecur. Priv. 2024, 4

708

5.1.20. Eavesdropping

The following root causes and preventive methods are derived from [27,117].
Root Causes:

1. Freely available online automation tools.
Open Wi-Fi access at public places.

Preventive Mechanisms:
1. Cryptography.
2. Provide consistent training and reviews.

5.1.21. Cookies

The following root causes and preventive methods are derived from [28,118].
Root Causes:

1. Marketing tools and techniques online.
Attackers intruding into machines.
3. Exploiting vulnerable protocols to steal cookies.

Preventive Mechanisms:

1. Do not enable cookies and disable options in browser settings.
Provide consistent training and reviews.

5.1.22. Social Engineering

The following root causes and preventive methods are derived from [29,119].
Root Causes:

1. Marketing tools and techniques online.
Attackers are intruding into machines.
Social platforms and networks.

@ N

Preventive Mechanisms:

Do not click on malicious links.

Do not download malicious software.

Do not enable cookies and disable options in browser settings.
Do not engage in conversations with unknown users.

Provide consistent training and reviews.

G LN

5.2. Description and Analysis of Selected Cyberattacks

This section analyzes the data collected on the 22 selected cyberattacks described in
Section 5.1. Each cyberattack has root causes and preventive mechanisms, as shown in the
cybersecurity literature review.

5.2.1. Root Causes for the 22 Cyberattacks

This section provides all elements of analysis and evaluation of BMC for cybersecurity.
The 22 cyberattacks have some common root causes, as described in Section 5.1. All these
root causes were collected in a list, and duplicates were eliminated. The new list resulted in
the 53 root causes listed in Table 3. As these root causes are derived from the 22 chosen
cyberattacks, this list may not be a complete list of all root causes that may exist in the field
of cyberattacks. The names of the root causes are slightly modified to make them more
readable while preserving the original meaning.

J. Cybersecur. Priv. 2024, 4

709

Table 3. Root Causes.

O N W=

Allowing attackers to flood requests.

Allowing script files in emails.

Attacker accessing API.

Attacker accessing password files.

Attacker accessing private files from a URL link.
Attacker accessing system calls.

Attacker intruding into machines.

Attacker can modify the number of password entry limits.
Attacker using auto-run in script files.

Attacker using batch files.

Attacker using cookies.

Attacker using public Wi-Fi access point.

Attacker using website phishing.

DBMS by-passing OS.

Email addresses of users are easy to obtain.

Enabling adware to use browser apps.

Freely available educational resources on cybersecurity vulnerabilities and attack techniques.
Freely available online automation tools.

Attacker can use a legitimate machine and infect.
Hardware vulnerabilities.

Including attachments in emails.

Lack of bounds checking in functions.

Lack of data validation by developers.

Lack of physical security.

Malicious insiders.

Marketing tools and techniques online.

Not validating and authenticating user-entered data.
Open ports.

Open-source automation tools.

Open-source code.

Open-source OSs.

Open Wi-Fi access at public places.

OS vulnerabilities.

Protocol vulnerabilities in ARP, DHCP, DNS, ICMP, and IP.
Providing backdoors in software and hardware.
Receiving messages from unauthenticated users.
Running downloaded code automatically.

Secure sockets layer provided by the OS.

Software vulnerabilities.

Strong security policies are not applying to private data.
System privileges given to DBMS.

There is no proper authentication measure to validate users.
User accessing fake websites.

User clicking an unsolicited link.

User downloading a file from an unidentified website.
User downloading an unsolicited file.

User downloading email attachments.

User downloading software.

User installing software online.

User mistakes or negligence.

User using an infected USB.

User using infected firmware.

Firmware vulnerabilities.

5.2.2. Preventive Mechanisms for the 22 Selected Cyberattacks

The 22 chosen cyberattacks have some common preventive mechanisms, as described

in Section 5.1. All these preventive mechanisms were collected in a list, and duplicates
were eliminated. The new list has 97 individual preventive mechanisms, which are listed

J. Cybersecur. Priv. 2024, 4

710

in Table 4. As these preventive mechanisms are derived from the 22 chosen cyberattacks,
this list may not be a complete list of all preventive mechanisms that may exist in the field
of cyberattacks. The names of the preventive mechanisms are modified to make them more
readable while preserving the original meaning.

Table 4. Preventive Mechanisms.

Access control lists (ACL).

Al and automation tools.

Analyzing security breaches.

Anti-virus software.

Artificial neural networks.

Avoid opening suspicious emails.

Avoid using user input directly.

Avoiding phishing.

9. Beware of urgency.

10. Blacklist-based.

11. Blocking high-risk applications.

12. Blocking known malware servers.

13. Change file extensions randomly.

14. Change password frequently.

15. Changing DBMS accounts to something else.
16. Check bounds on string functions.

17. Check Website URLs.

18. Provide consistent training and reviews.

19. Controlling database permissions.

20. Controlling external media.

21. Cryptography.

22. Delete web browser caches and cookies.

23. Detection of ARP spoofing.

24. Detection of DNS spoofing.

25. Disable backdoor.

26. Do not click on malicious links.

27. Do not download malicious software.

28. Do not enable cookies and disable options in browser settings.
29. Do not write down passwords.

30. Download software from verified publishers.
31. Email filtering.

32. Enable two-factor authentication.

33. Enforce and manage strong passwords.

34. Firewalls.

35. Flow statistics.

36. Identify all potential insider threats.

37. Identify all third-party data leaks.

38. Identify and protect vulnerable resources.

39. Identity and access management (IAM), such as strong passwords.
40. Implement a Zero Trust Architecture (ZTA).
41. Implement honey tokens.

42. Implement proper access management.

43. Implement strict shadow IT rules.

44, Implementing NAC (Network Access Control).
45. Incident response plan (IRP).

46. Information entropy.

47. Input validation.

48. IP spoofing defense.

49. Keep operating systems up to date.

50. Layered defense for a strong security posture.

O N W=

J. Cybersecur. Priv. 2024, 4

711

Table 4. Cont.

51. Limit access permissions.

52. Limit the number of attempts to enter a correct password.
53. Machine learning-based method.

54. Managing endpoint security.

55. Minimize access to sensitive data.

56. Minimizing the privileges that are given to all database accounts.
57. Monitor activity.

58. Monitor vendor networks for vulnerabilities.

59. Network and host hardening.

60. No same password for all accounts.

61. Penetration testing.

62. Perform static code analysis.

63. Plan ahead of security attacks.

64. Prohibiting DBA or admin access to applications.
65. Protect code segment.

66. Protecting valuable data.

67. Ransomware detection techniques.

68. Rate limiting.

69. Regularly backup digital records.

70. Report suspicious activity.

71. Reset web browser settings.

72. Rootkit scanners.

73. Scan URLs.

74. Scanning code for SQL injection vulnerabilities.
75. Scanning system and USBs.

76. Scrutinize website design.

77. Secure privileged access management.

78. Send regular third-party risk assessments.

79. Spyware algorithm detection.

80. SSL/TLS solutions.

81. Statistical analysis.

82. Take password protection seriously.

83. TCP proxies.

84. TPM (Trusted Platform Module).

85. Uninstall adware.

86. URL encoding.

87. Use honeypot.

88. Use the latest OS, programming languages, and compilers.
89. Use offensive security measures.

90. Use password-less authentication.

91. Use password managers.

92. Use user behavior analytics for accessing private data.
93. Using an ORM framework.

94. Using bot manager.

95. Using IDS and IPS.

96. Using prepared statements.

97. Using properly constructed stored procedures.

5.3. Analysis of Cyberattacks

This section provides a discussion and analysis of 22 cyberattacks, root causes, preventive
mechanisms, and an evaluation of the BMC paradigm regarding cybersecurity vulnerabilities.

5.3.1. Root Causes vs. Cyberattacks

There are 22 chosen cyberattacks and 53 identified root causes. Figure 10 shows
a graph between the root causes and their corresponding cyberattacks. This figure shows
how many times a given root cause appears in the number of cyberattacks.

J. Cybersecur. Priv. 2024, 4

712

Root Causes vs Cyberattacks

. .
15
%14 .0 . .
Eli
=1 . . . L] o 00
[H
Q1o .
<9o .
Py o .
(O8]
6
3
4. . .
3
2
1 [
0
0 1 23 4 5 6 7 8 90 10111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 40 50 51 32 3 M
Root Causes

Figure 10. Root causes vs. cyberattacks.

Observations: When a root cause occurs in many cyberattacks, it needs more attention to
address it. That does not mean less frequency of root causes is not important. The following
discussions refer to Figure 10, where more frequent occurrences of root causes are the focus.

OS vulnerabilities (#33) are identified as a root cause of cyberattacks at 9/22, or 40%.
These vulnerabilities are a common source of attacks due to their complexity and their role
as middleware for all applications. Many OS design features are offered due to convenience
and evolution, which may be exploited by an attacker. Also, OS versions and releases
change often [2], while users continue to use older versions. Attackers have more OS
vulnerability space by mixing old and new version releases.

System calls are part of an OS that is provided to build user applications and does not
allow users to access the hardware directly. The OS middleware handles hardware control
using a mode bit. An attacker may escalate the mode bit privilege and take over the system.
An APl is provided for convenience to system programmers and helps to port the code
across many platforms. APIs can be used by attackers to exploit OS vulnerabilities. There
are many other examples that illustrate OS vulnerabilities at many levels of an OS.

Fake websites (#43) are identified as a root cause of cyberattacks in 7/22, or 31%. Fake
websites can be created easily with the existing procedures. These links can be put into
emails and lure users to access a fake website. There are many phishing attacks that cause
users to access fake websites.

Downloads (#48) are identified as a root cause of cyberattacks in 10/22, or 45%. This
indicates that many attacks can be triggered by downloads. Attackers can attach malware
to a download file, thus causing a cybersecurity vulnerability. Downloads are essential and
used for convenience, which is a vulnerable feature.

Infected USBs (#51) are identified as a root cause of cyberattacks in 7/22, or 31%. It
is easy to infect removable devices, and thus it contributes to more vulnerabilities. Once
an infected USB is plugged in, it may spread malicious software and make a file system
inaccessible or crash a system.

Other root causes can be read from the graph, and it can be observed that their
frequency of occurrence in cyberattacks is smaller. Some root causes with smaller frequencies
may also be important based on their effectiveness in a cyberattack. All root causes must
be addressed and removed from the system to achieve a higher level of security.

Many other root causes, such as downloads, script files, and sockets/open ports,
depend upon the underlying OS. This is an indirect involvement of the OS, which is not
directly counted in OS vulnerabilities. Otherwise, OS vulnerabilities may be higher than
what is shown in this section (40%).

5.3.2. Preventive Mechanisms vs. Cyberattacks

There are 22 chosen cyberattacks and 97 preventive mechanisms. Figure 11 shows
a graph between the preventive mechanisms and their corresponding cyberattacks. This
figure shows preventive mechanism usage in different types of cyberattacks.

J. Cybersecur. Priv. 2024, 4

713

23
22
21
20
19
18 .

17

16 .
15 e @ oo

14

13 ee
12

1

10

Cyberattacks

Preventive Mechanisms vs Cyberattacks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Preventive Mechanisms

Figure 11. Frequency of preventive mechanisms.

Observations: Some observations from this graph are the following: If a preventive

mechanism is used in more attacks, it indicates that it is more important to implement
it. The preventive mechanism of consistent training and reviews (#18) is used for all
cyberattacks. The preventive mechanisms, including antivirus software (#4), two-factor
authentication (#32), firewalls (#34), and regularly backing up digital records (#69), have
a frequency of occurrence of 6/22 (or 27%). The preventive mechanism “keep OS up to
date” (#49) has a frequency of occurrence of 4/22 (or 18%). The preventive mechanism
“scanning system and USB” has a frequency of occurrence of 3/22 (or 13.6%). Other
preventive measures have a frequency of occurrence of less than 9%. Notice that none of
these preventive mechanisms guarantee 100% protection from any cyberattack.

5.3.3. Conventional Root Causes Applicable to BMC Systems

Table 3 shows a list of root causes collected in Section 5.1. As these root causes
are derived from conventional systems, we need to validate their applicability to BMC
systems. Table 5 illustrates the applicability of the root causes to BMC systems with relevant
references and justifications. Figure 12 shows that 8/53 = 15% of root causes are applicable

to BMC systems.

Table 5. The conventional root causes applicable to BMC systems.

. Applicability to BMC
Seq. Conventional Root Cause BMC Preventive Mechanism Reference
1 Allowing attackers to flood requests NO: uses stateless server and lean UDP protocol [56]
. R . g . . Section 3.5.1
2 Allowing script files in emails NO: script files are not allowed in emails Ttom #14
. NO: Direct Hardware API (HAPI) is not available Section 3.5.2
3 Attacker accessing API externally (NO OS) Ttem #8
. . NO: A single bare machine at a time is used by a single | Section 3.5.2
4 Attacker accessing password files user; no passwords are stored in the bare machine. Item #28
5 Attacker accessing private files from YES: Uses URL encoding and limits access permissions Table 4
a URL link such as conventional systems. Items #51, #86
6 Attacker accessing system calls NO: No system cal.ls are available externally; only HAPI | Section 3.5.2
is used by applications Ttem #8
. .. . NO: A machine is bare; while running one user, another | Section 3.5.2
7 Attackers intruding into machines -
user cannot run an application Item #2
Attacker is able to modify the number of . . Section 3.5.2
8 password entry limits NO: Not Applicable Item #28

J. Cybersecur. Priv. 2024, 4

714

Table 5. Cont.

. Applicability to BMC
Seq. Conventional Root Cause BMC Preventive Mechanism Reference
9 An attacker using auto-run in script files | NO: script files are not allowed Isticntll(;qjal
10 Attacker using batch files NO: A batch file is not allowed; only bare applications run iicrg(;qjal
11 Attacker using cookies NO: Cookies are not allowed Section 3.5.1
Item #20
12 Attacker using public Wi-Fi access point | NO: Wireless is not allowed at this point. Istzcntll(;q; o1
NO: (1) In emails, website links are not allowed.
. . L (2) Only bare-to-bare users communicate on the bare Section 3.5.1
13 Attacker using Website phishing Internet. Although it is applicable but prevented in both | Item #18
of the above two cases.
14 | DBMS bypassing OS NO: Not possible (No OS) pection 352
15 Email addresses are easily obtained NO: Issuing of email addresses for bare users is restricted | Section 3.5.2
Y and physically controlled by a bare email administrator. | Item #23
16 Enabling Adware to use Browser Apps NO: No advertisements are allowed. Isticrg(#)#ri; o1
Freely available educational resources NO: no free education. One of the main reasons for .
. et . Section 3.5.1
17 on cybersecurity vulnerabilities and speedy cyberattacks is due to the fastest way to learn Ttem #6
attack techniques. attacking techniques freely using the Internet.
18 Freely available online automation tools | NO: A closed system, no freely available automation tools. Isteecntll(;g 93 21
19 Allowing attackers to use a legitimate NO: All legitimate machines are bare; nothing to Section 3.5.2
machine and infect infect them. Item #21
NO: Cannot get to hardware, as HAPI is not available .
s . c Section 3.5.2
20 Hardware vulnerabilities outside running applications. As the machine is bare, Ttem #21
physical attacks can only damage the machine.
. . . Section 3.5.1
21 Including attachments in emails NO: Attachments are not allowed. Ttom #15
2 Lack of bounds checking in functions NO: All strmg functions are strictly enforced for Table 4
bound checking. Item #16
YES: No exposure of attacks; all data entered by users is
checked for valid data and data types. Strict data Table 4
23 Lack of data validation by programmers | checking is conducted at a programming level. All bare Ttom #47
code is developed as one homogeneous entity; there is no
third-party software, no external models.
YES: Physical security is required when a user is running
an application suite on a bare machine (this is Section 3.5.2
24 Lack of physical security a mandatory requirement in the BMC paradigm). o
. . . ; Item #21
Otherwise, there is no need for physical security because
the machine is bare.
25 Malicious insiders YES: All insiders must be properly authorized and Section 3.5.2
trusted; otherwise, there is no security for any system. Item #23
26 Marketing tools and techniques online NO: Marketing tools and techniques are not online. Isti(‘z(#)#q; o1
o7 Not validating and authenticating user YES: User entered data must be validated and Table 4
entered data authenticated. Item #47
Section 3.5.2
28 Open ports NO: There are no open ports. Ttem #10
29 Open-source automation tools NO: There are no open-source automation tools. iiﬁc;q; =
30 Open-source code NO: Not allowed. Section 3.5.1
Item #2
Section 3.5.2
31 Open-source OSs NO: No OS. Ttem #1
32 Open Wi-Fi access at public places NO: Wi-Fi is not allowed at this point. Istee(;ﬁzﬁ 33 o1

J. Cybersecur. Priv. 2024, 4

715

Table 5. Cont.

. Applicability to BMC
Seq. Conventional Root Cause BMC Preventive Mechanism Reference
33 OS vulnerabilities NO: No OS. Section 3.5.2
Item #1
NO: We limit our protocols to Ethernet and IP. The other
protocols are not available outside the application running
on the machine. Furthermore, there are no protocol layers.
e These protocols are implemented within the bare .
Protocol vulnerabilities in ARP, DHCP, L5 . Section 3.5.2
34 DNS. ICMP . and IP application. The attacker does not have the path to invoke Ttom #27
! ! these protocols. Although IP spoofing can be conducted,
the attacker does not have bare user authentication. Bare
user authentication is used in every packet, encrypted and
validated for each message transmission.

35 Providing backdoors in software and NO: Do not allow any backdoors. Section 3.5.1
hardware Item #2
Receiving messages from Section 3.5.2

36 . NO: Only communicate with the authentication users.
unauthenticated users Item #23
Running a downloaded code NO: Th.ere. is no downloac.hng code, although there is no Section 3.5.2

37 . dynamic linking and loading to run a code. The bare
automatically . . . Item #5, #6

code is statically compiled.

38 Secure socket layer provided by OS NO: No socket concept. Istee(;E?#I; 352

YES: Buffer overflow was discussed in items 22 and 23.
There could be possible programming errors; however,
the intruder has no access to modify or exploit injecting
39 Software vulnerabiliti new code due to static binding. There are no Section 3.5.2
© vuine €s deserialization issues as intruder has no access to the Item #5, #6
flow control of application. Overall, any software
vulnerabilities cannot cause any harm as the application
code is statically bound.

40 Stljong security policies not applying to YES: Only if the attacker is an insider.
private data

41 System privileges given to DBMS NO: No OS. DBMS is part of an application suite. Isticntll(;q 352

42 There is no proper authentication NO: All users are properly authorized and authenticated. Section 3.5.2
measure to validate users Item #23

. . NO: Not applicable (Only access legitimate and Section 3.5.1

43 User accessing fake websites authenticated bare websites) Item #18

NO: No downloads in emails; no website links in emails Section 3.5.2
44 User clicking an unsolicited link (only access legitimate and authenticated bare websites o
R Item #19
using the Bare Internet)

45 User downloading a file from NO: No online downloading (only access legitimate and | Section 3.5.2

an unidentified website authenticated bare websites using the Bare Internet) Item #19
. . . NO: No online downloading (only access legitimate and | Section 3.5.1

46 User downloading an unsolicited file authenticated bare websites using the Bare Internet) Item #18

47 User downloading email attachments NO: No attachments in emails. IS:;CIE(:; 53 S

48 User downloading software NO: No online downloading for software (Use CDs/USBs | Section 3.5.2

& from authenticated bare application providers) Item #19
. Section 3.5.1
49 User installing software online NO: No installation software online. Ttom #12
50 User mistakes or negligence YES:. AH bare users must be properly trained to handle Section 3.5.1
sensitive data. Item #11
. . NO: Dual USBs (one for booting and second for Section 3.5.2

o1 User using an infected USB application). Both USBs must be physically secure. Item #25

52 User using infected firmware NO: Bundled with a domain-specific application suite iicrg(:;g'az

53 Firmware vulnerabilities NO: Bundled with a domain-specific application suite Istzcntlligg'az

J. Cybersecur. Priv. 2024, 4

716

m Yes mNo

Figure 12. Root causes applicability to BMC.

For BMC systems, using Table 1, system guidelines, 17 out of 20 are resilient to
cybersecurity vulnerabilities. Similarly, using Table 2, system characteristics: 26 out of
28 are resilient to cybersecurity vulnerabilities. This makes it likely that BMC systems are

resilient to cyberattacks by design.

5.3.4. Conventional Preventive Mechanisms Applicable to BMC Systems

The 97 preventive mechanisms, listed in Table 4, are studied in this section. The
applicability of these preventive mechanisms to BMC systems is listed in Table 6, with
some justifications. As shown in Figure 13, about 63% of these preventive mechanisms are
applicable to BMC systems, as these mechanisms are very general in nature.

Table 6. The conventional preventive mechanisms applicable to the BMC system.

Seq. | Conventional Preventive Mechanisms Applicability to BMC
1 Access Control Lists (ACL) YES
2 Al and automation tools YES
3 Analyzing security breaches YES
4 Anti-Virus software NO: No OS.
5 Artificial neural networks YES
6 Avoid opening suspicious emails YES
7 Avoid using user input directly YES
8 Avoiding phishing YES
9 Beware of urgency NO: Not applicable
10 Blacklist-Based NQ: Not applicable, not needed since only communicates
with trusted bare users.
11 Blocking high-risk applications NO: only runs intended domain-specific application suite
. NO: No OS; malware cannot be downloaded and it cannot
12 Blocking known malware servers . . . i - .
communicate with domain-specific application suite.
13 Change file extensions randomly ggrd I:Iv(;tr szlillc?g{i.l)gttackers Do not have access to file
14 Change password frequently YES
15 Changing DBMS accounts to something else EI O: Not a}.)plicab!e.. No O.S’ d.atabage application is part of
are domain-specific application suite.
16 Check bounds on string functions YES. Uses only functions with bounds checking.
17 Check Website URLSs YES
18 Consistent trainings and reviews YES
19 Controlling database permissions YES
20 Controlling external media YES

J. Cybersecur. Priv. 2024, 4

717

Table 6. Cont.

Seq. | Conventional Preventive Mechanisms Applicability to BMC
21 Cryptography YES
22 Delete web browser caches and cookies NO: Not applicable. Cookies are not allowed.
23 Detection of ARP Spoofing YES
24 Detection of DNS Spoofing YES
25 Disable backdoor YES
26 Do not click on malicious links YES
27 Do not download malicious software NO: Not applicable. Downloads are not allowed.
28 Do not enable cookies and disable options in browser settings | NO: cookies are not allowed.
29 Do not write down passwords YES
30 Download software from verified publishers NO: Not applicable.
31 Email filtering YES
32 Enable two-factor authentication NO: Not applicable.
33 Enforce and manage strong passwords YES
34 Firewalls NO: No OS.
35 Flow statistics YES
36 Identify all potential insider threats YES
37 Identify all third-party data leaks YES
38 Identify and protect vulnerable resources YES
39 Identity and access management (IAM), such as strong YES
passwords
40 Implement a Zero Trust Architecture (ZTA) 11}10: By default, the BMC system is built based on the Zero
rust concept.
41 Implement Honey tokens NO: No OS.
42 Implement proper access management YES
43 Implement strict shadow IT rules NO: Not applicable.
44 Implementing NAC (Network Access Control) YES
45 Incident Response Plan (IRP) NO: Not applicable.
46 Information entropy YES
47 Input validation YES: Checks for data type and size.
48 IP Spoofing Defense YES
49 Keep operating systems up to date NO: Not applicable since there is no OS.
50 Layered defense for a strong security posture YES
51 Limit access permissions YES
52 Limit the number of attempts to enter the correct password | YES
53 Machine Learning-Based Method YES
54 Managing endpoint security YES
55 Minimize access to sensitive data YES
56 Minimizing the privileges that are given to all database NO: Not applicable; no OS, database application is part of
accounts bare domain-specific application suite.
57 Monitor activity YES
58 Monitor vendor networks for vulnerabilities YES
59 Network and host hardening YES
60 No same password for all accounts YES
61 Penetration testing YES: Applicable to applications only, as there is no OS
62 Perform static code analysis YES
63 Plan ahead of security attacks YES
64 Prohibiting DBA or Admin access to applications NO: Not applicable
65 Protect code segment YES
66 Protecting valuable data YES
67 Ransomware Detection Techniques NO: Not applicable; no OS.
68 Rate Limiting YES
69 Regularly backup digital records YES
70 Report suspicious activity YES

J. Cybersecur. Priv. 2024, 4 718

Table 6. Cont.

Seq. | Conventional Preventive Mechanisms Applicability to BMC
71 Reset web browser settings NO: Not applicable
72 Rootkit scanners NO: Not applicable; no OS.
73 Scan URLs YES
74 Scanning code for SQLI vulnerabilities YES
75 Scanning system and USBs YES
76 Scrutinize website design YES
77 Secure Privileged Access Management NO: No OS. All user accesses are part of domain-specific suite.
78 Send regular third-party risk assessments NO: No third-party software allowed.
79 Spyware algorithm detection NO: This algorithm is part of a domain-specific application.
80 SSL/TLS Solutions NO: Not sockets. TLS is part of a domain-specific application.
81 Statistical analysis YES
82 Take password protection seriously YES
83 TCP Proxies NO: Proxies are not allowed.
84 TPM (Trusted Platform Module) NO: The BIOS is bundled with application suites.
85 Uninstall adware NO: Not applicable. Adware is not allowed.
86 URL encoding YES
87 Use Honeypot NO: Not applicable; no OS.
88 Use the latest OS, Programming languages, and Compilers NO: Not apphcable; no OS. Need t(? use the latest
programming languages and compilers.
89 Use offensive security measures YES
90 Use Password-less authentication YES
91 Use password manager NO: Not applicable; no OS.
92 Use user behavior analytics for accessing private data YES
93 Using an ORM Framework NO: Not applicable
94 Using Bot Manager NO: No OS
95 Using IDS and IPS NO: No OS
96 Using Prepared Statements YES
97 Using properly constructed stored procedures YES

mYes = No

Figure 13. Preventive mechanisms applicability to BMC.

The remaining preventive mechanisms are not applicable, as most of them are related
to the OS. Tables 1 and 2 illustrate the resiliency to cybersecurity vulnerabilities by design
in BMC systems. Thus, additional preventive methods do not apply.

5.3.5. The Cyberattacks vs. the BMC Paradigm

Table 7 provides a final evaluation of the security strengths of the BMC paradigm and
its applications using BMC system guidelines, characteristics, and conventional preventive
measures as discussed before. Using the BMC approach, out of 22 cyberattacks studied,
only two of them do not have protection. These two cyberattacks are related to physical
security and the trust of insiders, which are applicable to all systems.

J. Cybersecur. Priv. 2024, 4 719
Table 7. Evaluation of Bare Machine Computing (BMC) for cyberattacks.
S % Prevent Prevent
v = BMC (Guidelines, Characteristics, events events
&= Root Cause and Preventive Mechanisms) Root Cause Attack
g < (Yes/No) (Yes/No)
2
S Uses only functions with bounds checking.
f; 1. Lack of bounds checking in functions Y Table 4, Item 16 & Yes
1 e - — Yes
o) 2. Lac.k.of lppuk’i validation and Checks for data type and size. Yes
E sanitization by programmers Table 4, Ttem 47
No Attachments and Links in il
1. User clicking an unsolicited link © aBMCe Glsliilelin;; (f 51) emats Yes
2. User downloading an unsolicited file No downloads are allowed. BMC
Characteristics (19) Yes
3. Running a downloaded code
4. Receiving messages from Each message contains encrypted bare
unauthenticated users user authentication, which is given in Yes
50 person. BMC Characteristics (24)
=]
2 < Y
é’ . f Only bare users can communicate with s
A~ 5. Emz;ﬂ a.ddress €5 Of USers are easy each other. All bare users must be Yes
to obtain physically authorized and authenticated.
BMC Characteristics (23)
. . . No Attachments and Links in emails
6. Including attachments in emails BMC Guidelines (15) Vs
Only bare users can communicate with
” Attack e Websi hishi each other. All bare users must be
: ttacker using Website phishing physically authorized and authenticated.
BMC Characteristics (23)
1. User downloading email attachments
2. User downloading a file from No downloads are allowed. BMC Yes
an unidentified Website Characteristics (19)
3. Running a downloaded code
automatically
% There are no system calls or APIs
2 . available to the outside world (outside
3 g 4 Attacker accessing OS API an application suite). BMC Yes Yes
§ Characteristics (8)
~
5. Attacker exploiting hardware A computing device (PC, Laptop,
vulnerabilities Smartphone, Server, Client, etc.) is bare Yes
BMC Characteristics (21)
6. Freely available educati(.)nal Education and Knowledge: Restricted to
resources on cybersecurity authorized bare users. Yes
vulnerabilities and attack techniques BMC Guidelines (6)

J. Cybersecur. Priv. 2024, 4

720
Table 7. Cont.
S ¥ Prevent Prevent:
v & BMC (Guidelines, Characteristics, events events
g: = Root Cause and Preventive Mechanisms) Root Cause Attack
g < (Yes/No) (Yes/No)
Allowing attackers to use A computing device (PC, Laptop,
a legitimate machine and infect Smartphone, Server, Client, etc.) is bare. Yes
» BMC Characteristics (21)
@]
8 Rate Limiti
ate Limiting.
4 f Allowing attackers to flood requests Table 4, Ttem 28 Yes Yes
Q
A Freely available educational o
resources on cybersecurity Free Educatlory is pot allowed. BMC Yes
vulnerabilities and attack techniques Guidelines (6)
Attacker ‘.lsmg public Wi-Fi Currently Wi-Fi is not supported. BMC Yes
access pomnt Guidelines (13)
No sockets exist in the BMC paradigm as
Secure socket layer provided by OS there is no OS. BMC Characteristics Yes
(1and 9)
Protocol vulnerabilities in ARP, Network Interfaces and Protocol
DHCP, DNS, ICMP, and IP Vulnerabilities. BMC Characteristics Yes
(17 and 27)
= Automated tools are designed to work
5 = Open-source automation tools with only bare computing devices and Yes Yes
= applications. BMC System Guidelines (19)
No operating system. BMC
Open-source OSs Characteristics (1) Yes
) o Only bare users can communicate with
There is no prcl)%er authentication each other. All bare users must be Yes
measure to validate users physically authorized and authenticated.
BMC Characteristics (23)
Freely available educational .)
resources on cybersecurity Education and Knowledge: Restricted to
vulnerabilities and attack authorlzeq ba're USELS. Yes
techniques BMC Guidelines (6)
. No operating system. BMC
OS vulnerabilities Characteristics (1) Yes
- Attacker modifying the number of
g password entry limits No password files are stored in bare Y
6 % machines. BMC Characteristics (28) €s Yes
12}
& Attacker accessing password files
) There are no system calls or APIs
Attacker accessing OS API available to the outside world (outside Y
an application suite). BMC s
Attacker accessing system calls Characteristics (8)

J. Cybersecur. Priv. 2024, 4

721
Table 7. Cont.
B = Prevents P t
9] cot. .. v revents
§: § Root Cause BI\;II? d(g;?:;?::’ﬁ::;:;ts;fs <5 Root Cause Attack
= (Yes/No) (Yes/No)
User downloading software No downloads are allowed. BMC Yes
L e
Running a downloaded code Characteristics (19)
automatically
?
- .
9] - No operating system. BMC
7 E OS vulnerabilities Characteristics (1) Yes Yes
'%) There are no system calls or APIs
E Attacker accessing system calls available to the outside world (outside Y,
an application suite). BMC ©s
Attacker accessing OS API Characteristics (8)
An'atta'cker using autorun in Script files are not allowed. BMC
script files Guidelines (14) Yes
User downloading email
attachments No downloads are allowed. BMC Y,
Characteristics (19) s
User downloading software
Onl to authenticated b
User accessing fake websites xe}{):iizzssﬁl\.j[éuGu?cllellcii:s (1§)r ¢ Yes
n
8 § Dual USBs (one for booting and a second Yes
§ User using an infected USB for application). Both USBs must be Yes
physically secure. BMC Characteristics (25)
Allowing script files in emails Scripts and batch files are not allowed. Y,
BMC Guidelines (14) s
Attacker using batch files
N ti tem. BM
OS Vulnerabilities © OCpilz'al?tge rsi}sI:iCQSH(ll) c Yes
Nod load llowed. BMC
User downloading software © OVVC?;);;::;SCSOXS) Yes
User downloading email attachments No Attachments and Links in emails Y
BMC Guidelines (15) ©s
Onl to authenticated b
User accessing fake Websites vrvle}‘;):ict:ssBl\.i[éuGueigellciiees (lg)r © Yes
2] .
9 g Yes
= Dual USBs (one for booting and
. . a second for application). Both USBs
User using an infected USB must be physically secure. BMC Yes
Characteristics (25)
Allowing script files in emails Script and batch files are not allowed. Y,
BMC Guidelines (14) s
Attacker using batch files
N t tem. BM
OS Vulnerabilities © O(I;Ez;agersi}s]tsicesn(ll) c Yes

J. Cybersecur. Priv. 2024, 4 722
Table 7. Cont.
—
~
8 o BMC (Guidelines, Characteristics, Prevents Prevents
Q= Root Cause and Preventive Mechanisms) Root Cause Attack
B < (Yes/No) (Yes/No)
. No downloads are allowed.
User downloading software BMC Characteristics (19) Yes
User downloading email No Attachments and Links in emails Yes
attachments BMC Guidelines (15)
. . Only access to authenticated bare
3 User accessing fake Websites websites. BMC Guidelines (18) Yes
[
10 i Dual USBs (one for booting and a second Yes
o User using an infected USB for application). Both USBs must be Yes
physically secure. BMC Characteristics (25)
. . . Script and batch files are not allowed.
Allowing script files in emails BMC Guidelines (14) Yes
. . Script and batch files are not allowed.
Attacker using batch files BMC Guidelines (14) Yes
- No operating system. BMC
OS Vulnerabilities Characteristics (1) Yes
. No downloads are allowed. BMC
User downloading software Characteristics (19) Yes
User downloading email No Attachments and Links in emails Yes
attachments BMC Guidelines (15)
. . Only access to authenticated bare
1 § User accessing fake Websites websites. BMC Guidelines (18) Yes Y
es
;ct’ Enabling adware to use Advertisements are not allowed. BMC Yes
browser apps Guidelines (17)
- No operating system. BMC
OS Vulnerabilities Characteristics (1) Yes
. . Cookies are not allowed. BMC Y,
Attacker using cookies Guidelines (20) es
User i i ¢ i Online installation is not allowed. BMC
ser installing software online Guidelines (12)
. No downloads are allowed. BMC
User downloading software Characteristics (19) Yes
- No operating system. BMC
OS Vulnerabilities Characteristics (1) Yes
0 . . Only access to authenticated bare
g User accessing fake websites websites. BMC Guidelines (18) Yes
12 5 Yes
;5_43 Dual USBs (one for booting and a second
User using an infected USB for application). Both USBs must be Yes
physically secure. BMC Characteristics (25)
User using infected firmware Bundled with the domain-specific Y,
Firmware vulnerabilities application suite. BMC Characteristics (26) s
Freely available educational Education and Knowledge: Restricted to
resources on cybersecurity authorized bare users. Yes

vulnerabilities and attack techniques

BMC Guidelines (6)

J. Cybersecur. Priv. 2024, 4

723

Table 7. Cont.

Type of
Attack

Root Cause

BMC (Guidelines, Characteristics,
and Preventive Mechanisms)

Prevents
Root Cause
(Yes/No)

Prevents
Attack
(Yes/No)

13

Botnets

Software vulnerabilities

Yes, however, these software
vulnerabilities cannot be exploited by
the attacker as the domain-specific
application suite is statically bounded.
BMC Characteristics (2 and 5)

Yes

User downloading software

No downloads are allowed. BMC
Characteristics (19)

Yes

User using an infected USB

Dual USBs (one for booting and
a second for application). Both USBs
must be physically secure. BMC
Characteristics (25)

Yes

Open ports

There are no open ports in BMC
applications.
BMC Characteristics (10)

Yes

Yes

14

Data Breaches

User mistakes or negligence

Yes: BMC Guidelines (11).
Table 4, Item 18

Malicious insiders

Yes, all insiders must be properly
authorized and trusted. Otherwise, there
is no security for any system.

BMC Characteristics (23)

Lack of physical security

Yes: Physical security is required when
a user is running an application suite on
a bare machine (this is a mandatory
requirement in the BMC paradigm).
Otherwise, there is no need for physical
security because the machine is bare.
BMC Characteristics (21)

User downloading software

No downloads are allowed. BMC
Characteristics (19)

Yes

No, these
threats
are
related to
physical
security
abuse.

15

Advanced Persistent Threats

User downloading software

No downloads are allowed. BMC
Characteristics (19)

Yes

User using an infected USB

Dual USBs (one for booting and
a second for application). Both USBs
must be physically secure. BMC
Characteristics (25)

Yes

User accessing fake websites

Only access to authenticated bare
websites. BMC Guidelines (18)

Yes

OS Vulnerabilities

No operating system. BMC
Characteristics (1)

Yes

Freely available educational
resources on cybersecurity
vulnerabilities and attack
techniques

Education and Knowledge: Restricted to
authorized bare users.
BMC Guidelines (6)

Yes

16

SQL Injection

System privileges given to DBMS

No operating system. BMC
Characteristics (1)

Yes

DBMS by-passing OS

The DBMS is part of the specific-domain
application suite. BMC Characteristics (2)

Yes

Not validating and authenticating
user-entered data

Each message contains encrypted bare
user authentication, which is given in
person. BMC Characteristics (24)

Yes

Yes

J. Cybersecur. Priv. 2024, 4 724
Table 7. Cont.
Yy
o =4 Sy s e Prevents Prevents
g § Root Cause BI\;II(I: d(g;f:;t?;:’ﬁ::;:;t;;s:; s Root Cause Attack
2 < (Yes/No) (Yes/No)
There are no hardware backdoors, as the
devices are bare and physically secured.
Providing backdoors in software T‘};ere are no s'off'twarelpackdoorg as the Y
and hardware omain-specific app 1cat10n. suite can es
only perform intended functions. BMC
Guidelines (2) and BMC
Characteristics (2)
= .
‘3 s No operating system. BMC
(]
5 OS Vulnerabilities Characteristics (1) Yes
17 ~: Open-source code It is a closed system. BMC Guidelines (2) Yes Yes
Q.
=1 . No downloads are allowed. BMC
D User downloading software Characteristics (19) Yes
Dual USBs (one for booting and a second
. . for application). Both USBs must be
User using an infected USB physically secure. BMC Yes
Characteristics (25)
. . Only access to authenticated bare
User accessing fake Websites websites. BMC Guidelines (18) Yes
o
3
" E/(] g Attacker accessing private files Uses URL encodmg a.nd limited access y y
D 4 through a URL link PETMISSIONS. €s €s
3] Table 4, Items 51, 86
£
Strong security policies not Yes, if the attacker is an insider No
applying to private data
Yes: BMC Guideli 11). Table 4,
g *ﬁ User mistakes or negligence e ui ¢ 1nles (11). Table No
9| T 9 tem 18 No
92]
l= Freely available educational Education and Knowledge: Restricted to
resources on Cybersecurity authorized bare users. Yes
vulnerabilities and attack techniques BMC Guidelines (6)
b0 Automated tools are designed to work
& Freely available online with only bare computing devices and
a, y L Yes
& automation tools applications. BMC System
20 § Guidelines (19) Yes
] S,
Currently Wi-Fi not s orted. BMC
5 Open Wi-Fi access at public places " Y Gui delinesu(lig) Yes
Marketing tools and techniques Advertisements are not allowed. BMC
1. Yes
online Guidelines (17)
8 A computing device (PC, Laptop,
21 < Smartphone, Server, Client, etc.) is bare. Yes
8 Attackers are intruding into When one application suite is running, Yes
machines another one cannot run, thus there is no
intrusion from other applications. BMC
Characteristics (21)
0 Marketing tools and techniques Advertisements are not allowed. BMC
& . . Yes
& online Guidelines (17)
]
g A computing device (PC, Laptop,
22 go Smartphone, Server, Client, etc.) is bare. Yes
M Attackers are intruding into When one application suite is running,
= hi . Yes
-8 machines another one cannot run, thus there is no
&R intrusion from other applications. BMC
Characteristics (21)

J. Cybersecur. Priv. 2024, 4

725

6. Significant Contributions

The BMC paradigm results in a new approach to developing computer applications.
If all computing devices are bare, including PCs, laptops, and smartphones, there are no
resources to protect other than the hardware. Bare machines are ownerless and usable
by any user at any time by loading their own bare applications. There is nothing to
compromise on a bare machine other than a running application. A bare machine and bare
machine applications can survive for a long period of time without obsolescence. A single
bare machine can serve many users in a time-shared manner, one user at a time, without
dedicating an individual machine to each user. The BMC paradigm forces applications
to use abstractions and extensions instead of obsoleting them before their normal life
span. The focus on end-user applications instead of computer platforms will reduce waste,
dumping, and the obsolescence of hardware, software, and people skills.

When the OS is eliminated, all OS vulnerabilities are eliminated. While a given BMC
application suite is running, other applications cannot interfere with it since they cannot run
at the same time. A BMC application suite runs only intended functions and nothing else.
BMC systems are inherently secure by design and are likely to prevent many cybersecurity
attacks. This paper will put a seed in the ground for building future systems that are highly
secure. This paper also provides an alternative to conventional systems to build highly
secure systems.

Conventional systems are centralized, based on some flavor of an OS, and are potentially
exposed to cybersecurity vulnerabilities by their design. Since BMC systems are closed
systems, application information on system internals and security mechanisms is not
readily available except through reverse engineering. Such information may only be
useful for devising attacks against one BMC application, as other applications may have
completely different characteristics. The absence of an OS enables applications and
their hardware interfaces to be customized to improve security. Only a port currently
used by an application can be targeted by a DoS or DDoS attack. There are no OS
interfaces or protocols to easily compromise since they are hidden and integrated with
the application. BMC systems are not accessible by unauthorized global users unless they
steal the credentials of legitimate bare users. The inability to download software and open
email attachments and the unavailability of free and open specifications limit cybersecurity
vulnerabilities in BMC systems.

In a bare Internet, all devices are bare, and all authorized users are authenticated.
This offers an alternative to the current Internet, which is designed for a global market
and global users. The Internet is large, complex, and global in nature, whereas a bare
Internet is small and only serves a limited population of bare users. Solving cybersecurity
problems on the current Internet using global solutions is not practical. In a bare Internet, it
is possible to divide and conquer security problems by isolating bare users from the rest of
the Internet.

This work serves as a foundation for building secure computer and information
systems based on the BMC paradigm. BMC systems are simple, secure by design, and
easy to build. The BMC approach enables novel computer architectures and innovative
information system design to support domain-specific applications that are independent of
computer platforms.

7. Conclusions

We evaluated the BMC paradigm for its resilience against 22 popular cyberattacks. We
collected data for these attacks and identified their root causes and preventive methods. As
most of these attacks target conventional systems with some form of an OS, we identified
conventional system guidelines and characteristics and compared them with BMC system
guidelines and characteristics. In addition, we provided some background on BMC
applications and examined code snippets to give more insight into the BMC paradigm.

We found that in conventional system guidelines, 15 out of 20 have possible exposure
to cybersecurity vulnerabilities, whereas in BMC systems, 17 out of 20 have possible

J. Cybersecur. Priv. 2024, 4 726

resilience to cybersecurity vulnerabilities. Similarly, in conventional system characteristics,
17 out of 28 have possible exposure to cybersecurity vulnerabilities, whereas in BMC
systems, 26 out of 28 have possible resilience to cybersecurity vulnerabilities. Overall, BMC
systems show possible resiliency, and conventional systems indicate possible exposure to
cybersecurity vulnerabilities.

The following observations are made on root causes versus cyberattacks. Root
cause contributions for OS vulnerabilities are 40%, fake websites are 31%, downloads
are 45%, and infected USBs are 31%. This clearly indicates the dominance of operating
systems in cyberattacks. Similarly, the following observations are made on preventive
mechanisms versus cyberattacks. The preventive mechanism contribution for consistent
training and reviews is 100%. The preventive mechanism contributions for antivirus
software, two-factor authentication, firewalls, and regularly backing up digital records
are 27% for each. The preventive mechanism contribution for “keeping OS up to date” is
18%. The preventive mechanism contributions for “scanning system and USB” are 13.6%.
Other preventive mechanisms have contributions less than 9%. Notice that none of these
preventive mechanisms guarantee 100% protection from any cyberattack.

We also noted that for the BMC systems, the applicability of the root causes is 15%,
and the applicability of preventive mechanisms is 63%.

We conducted a comprehensive evaluation of the BMC paradigm using the selected
attacks and their root causes, which showed that 20 out of 22 attacks are preventable by
using this paradigm. The other two attacks, namely data breaches and insider threats,
are not preventable as they are caused by insiders who misuse their trust. We described
significant contributions of this research, which justify use of the BMC paradigm for
building real-world applications with intrinsic security. Future studies should further
investigate the inherent security strengths of the BMC paradigm and the resilience of BMC
applications against possible cyberattacks.

Author Contributions: Conceptualization, FA., RK.K., A LW, N.S. and A.R.; methodology, FA.,
RKK., ALW,N.S. and A.R; validation, FA., RK.K.,, ALW. and N.S.; investigation, FA., RK.K,,
A.LW,NS. and A.R; resources, FA.,, RK.K,, A LW, N.S. and A.R.; writing—original draft, RK.K,;
writing—review and editing, FA., RK.K,, ALW. and N.S.; supervision, RK.K. and A.L.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors acknowledge that the Grammarly Al tool was used to check and
correct English grammar and mistakes.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Statista. Number of Internet and Social Media Users Worldwide as of January 2024. Available online: https:/ /www.statista.com/
statistics /617136 /digital-population-worldwide/ (accessed on 27 March 2024).

2. Aslan, O; Aktug, S.S.; Ozkan-Okay, M.; Yilmaz, A.A.; Akin, E. A Comprehensive Review of Cyber Security Vulnerabilities,
Threats, Attacks, and Solutions. Electronics 2023, 12, 1333. [CrossRef]

3. Alenezi, M.; Zarour, M. On the Relationship between Software Complexity and Security. I[J]SEA 2020, 11, 51-60. [CrossRef]

4. Mellal, M.A. Obsolescence—A review of the literature. Technol. Soc. 2020, 63, 101347. [CrossRef]

5. Zallio, M.; Berry, D. Design and Planned Obsolescence. Theories and Approaches for Designing Enabling Technologies. Des. J.
2017, 20, S3749-53761. [CrossRef]

6. Aladeojebi, T.K. Planned Obsolescence. IRJSE 2013, 4, 1504-1508.

7. Malinauskaite, J.; Erdem, E.B. Planned Obsolescence in the Context of a Holistic Legal Sphere and the Circular Economy. Oxf. |.
Leg. Stud. 2021, 41, 719-749. [CrossRef]

8. Drozd, M.; Barabas, M.; Gregr, M.; Chmelar, P. Buffer overflow attacks data acquisition. In Proceedings of the 6th IEEE

International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Prague, Czech Republic, 15-17
September 2011; pp. 775-779. [CrossRef]

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://doi.org/10.3390/electronics12061333
https://doi.org/10.5121/ijsea.2020.11104
https://doi.org/10.1016/j.techsoc.2020.101347
https://doi.org/10.1080/14606925.2017.1352879
https://doi.org/10.1093/ojls/gqaa061
https://doi.org/10.1109/IDAACS.2011.6072875

J. Cybersecur. Priv. 2024, 4 727

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.
30.

31.

32.
33.

34.

35.

36.

37.

38.

Zieni, R.; Massari, L.; Calzarossa, M.C. Phishing or Not Phishing? A Survey on the Detection of Phishing Websites. IEEE Access
2023, 11, 18499-18519. [CrossRef]

Razaulla, S.; Fachkha, C.; Markarian, C.; Gawanmeh, A.; Mansoor, W.; Fung, B.C.M.; Assi, C. The Age of Ransomware: A Survey
on the Evolution, Taxonomy, and Research Directions. IEEE Access 2023, 11, 40698—40723. [CrossRef]

Tripathi, N.; Hubballi, N. Application Layer Denial-of-Service Attacks and Defense Mechanisms: A Survey. ACM Comput. Surv.
2021, 54, 86. [CrossRef]

Conti, M.; Dragoni, N.; Lesyk, V. A Survey of Man In The Middle Attacks. IEEE Commun. Surv. Tutor. 2016, 18, 3. [CrossRef]
Alkhwaja, I.; Albugami, M.; Alkhwaja, A.; Alghamdi, M.; Abahussain, H.; Alfawaz, F.; Almurayh, A.; Min-Allah, N. Password
Cracking with Brute Force Algorithm and Dictionary Attack Using Parallel Programming. Appl. Sci. 2023, 13, 5979. [CrossRef]
National Institute of Standards and Technology, Technology Administration, U.S. Department of Commerce. Guide to Malware
Incident Prevention and Handling for Desktops and Laptops; National Institute of Standards and Technology: Gaithersburg, MD, USA,
2013. Available online: https:/ /nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-83r1.pdf (accessed on 27 January 2024).
Khan, H.A.; Syed, A.; Mohammad, A.; Halgamuge, M.N. Computer virus and protection methods using lab analysis. In
Proceedings of the IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 10-12 March 2017;
pp. 882-886. [CrossRef]

Saudi, M.M.; Cullen, A.J.; Woodward, M.E. STAKCERT Framework in Eradicating Worms Attack. In Proceedings of the
International Conference on CyberWorlds, Bradford, UK, 7-11 September 2009; pp. 257-264. [CrossRef]

Naser, M.; Abu Al-Haija, Q. Spyware Identification for Android Systems Using Fine Trees. Information 2023, 14, 102. [CrossRef]
Umar, E; Khurana, S.S.; Singh, P.; Kumar, M. An Empirical Study on Detection of Android Adware Using Machine Learning
Techniques. Multimed Tools Appl. 2024, 83, 38753-38792. [CrossRef]

Kiithnhauser, W.E. Root Kits—An operating systems viewpoint. SIGOPS Oper. Syst. Rev. 2004, 38, 12-23. [CrossRef]

Owen, H.; Zarrin, J.; Pour, S.M. A Survey on Botnets, Issues, Threats, Methods, Detection and Prevention. J. Cybersecur. Priv. 2022,
2, 74-88. [CrossRef]

Fleury-Charles, A.; Chowdhury, M.M.; Rifat, N. Data Breaches: Vulnerable Privacy. In Proceedings of the IEEE International
Conference on Electro Information Technology (eIT), Mankato, MN, USA, 19-21 May 2022; pp. 538-543. [CrossRef]

Gan, C,; Lin, J.; Huang, D.-W.; Zhu, Q.; Tian, L. Advanced Persistent Threats and Their Defense Methods in Industrial Internet of
Things: A Survey. Mathematics 2023, 11, 3115. [CrossRef]

Alghawazi, M.; Alghazzawi, D.; Alarifi, S. Detection of SQL Injection Attack Using Machine Learning Techniques: A Systematic
Literature Review. J. Cybersecur. Priv. 2022, 2, 764-777. [CrossRef]

Sobb, T.; Turnbull, B.; Moustafa, N. Supply Chain 4.0: A Survey of Cyber Security Challenges, Solutions and Future Directions.
Electronics 2020, 9, 1864. [CrossRef]

Sharma, P.; Nagpal, B. A Study on URL Manipulation Attack Methods and Their Countermeasures. [JETCSE 2015, 15, 116-119.
Saxena, N.; Hayes, E.; Bertino, E.; Ojo, P.; Choo, K.-K.R.; Burnap, P. Impact and Key Challenges of Insider Threats on Organizations
and Critical Businesses. Electronics 2020, 9, 1460. [CrossRef]

Kim, M,; Suh, T. Eavesdropping Vulnerability and Countermeasure in Infrared Communication for IoT Devices. Sensors 2021,
21, 8207. [CrossRef] [PubMed]

Sivakorn, S.; Polakis, I.; Keromytis, A.D. The Cracked Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private Information.
In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22-26 May 2016; pp. 724-742. [CrossRef]
Salahdine, F.; Kaabouch, N. Social Engineering Attacks: A Survey. Future Internet 2019, 11, 89. [CrossRef]

CVE—Common Vulnerabilities and Exposures. MITRE Corporation. Available online: https://cve.mitre.org/ (accessed on
17 July 2024).

CWE—Common Weakness Enumeration. MITRE Corporation. Available online: https:/ /cwe.mitre.org/ (accessed on 17 July 2024).
MITRE ATT&CK®. MITRE Corporation. Available online: https:/ /attack.mitre.org/ (accessed on 17 July 2024).

IoT Business News. State of IoT 2023: Number of Connected IoT Devices Growing 16% to 16.0 Billion Globally—Wi-Fi, Bluetooth,
and Cellular Driving the Market. Available online: https://iotbusinessnews.com/2023/05/25/34645-state-of-iot-2023-number-
of-connected-iot-devices-growing-16-to-16-0-billion-globally-wi-fi-bluetooth-and-cellular-driving-the-market/ (accessed on
27 January 2024).

Zhang, Y.; Frank, R.; Warkentin, N.; Zakimi, N. Accessible from the open web: A qualitative analysis of the available open-source
information involving cyber security and critical infrastructure. J. Cybersecur. 2022, 8, tyac003. [CrossRef]

Mafamane, R.; Ouadou, M.; Hassani, A.T.J.; Minaoui, K. Study of the heterogeneity problem in the Internet of Things and Cloud
Computing integration. In Proceedings of the 2020 10th International Symposium on Signal, Image, Video and Communications
(ISIVC), Saint-Etienne, France, 7-9 April 2021; pp. 1-6. [CrossRef]

Evolution of Computing. The Problem of Growing Complexity in the Evolution of Computing. Available online: https:
/ /evolutionofcomputing.org/Multicellular /ProblemStatement.html (accessed on 27 January 2024).

Umejiaku, A.P; Dhakal, P.; Sheng, V.S. Balancing Password Security and User Convenience: Exploring the Potential of Prompt
Models for Password Generation. Electronics 2023, 12, 2159. [CrossRef]

Statista. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2023, with Forecasts from 2022 to 2030.
Available online: https:/ /www.statista.com/statistics /1183457 /iot-connected-devices-worldwide/ (accessed on 27 March 2024).

https://doi.org/10.1109/ACCESS.2023.3247135
https://doi.org/10.1109/ACCESS.2023.3268535
https://doi.org/10.1145/3448291
https://doi.org/10.1109/COMST.2016.2548426
https://doi.org/10.3390/app13105979
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-83r1.pdf
https://doi.org/10.1109/ICBDA.2017.8078765
https://doi.org/10.1109/CW.2009.13
https://doi.org/10.3390/info14020102
https://doi.org/10.1007/s11042-023-16920-7
https://doi.org/10.1145/974104.974105
https://doi.org/10.3390/jcp2010006
https://doi.org/10.1109/eIT53891.2022.9814044
https://doi.org/10.3390/math11143115
https://doi.org/10.3390/jcp2040039
https://doi.org/10.3390/electronics9111864
https://doi.org/10.3390/electronics9091460
https://doi.org/10.3390/s21248207
https://www.ncbi.nlm.nih.gov/pubmed/34960299
https://doi.org/10.1109/SP.2016.49
https://doi.org/10.3390/fi11040089
https://cve.mitre.org/
https://cwe.mitre.org/
https://attack.mitre.org/
https://iotbusinessnews.com/2023/05/25/34645-state-of-iot-2023-number-of-connected-iot-devices-growing-16-to-16-0-billion-globally-wi-fi-bluetooth-and-cellular-driving-the-market/
https://iotbusinessnews.com/2023/05/25/34645-state-of-iot-2023-number-of-connected-iot-devices-growing-16-to-16-0-billion-globally-wi-fi-bluetooth-and-cellular-driving-the-market/
https://doi.org/10.1093/cybsec/tyac003
https://doi.org/10.1109/ISIVC49222.2021.9487539
https://evolutionofcomputing.org/Multicellular/ProblemStatement.html
https://evolutionofcomputing.org/Multicellular/ProblemStatement.html
https://doi.org/10.3390/electronics12102159
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

J. Cybersecur. Priv. 2024, 4 728

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.
60.

61.

62.

63.

64.

65.

66.

Okafor, U.; Karne, R.K.; Wijesinha, A.L.; Appiah-Kubi, P. Eliminating the Operating System via the Bare Machine Computing
Paradigm. In Proceedings of the Fifth International Conference on Future Computational Technologies and Applications, Valencia,
Spain, 27 May-1 June 2013; pp. 1-6.

MisCircuitos. Difference between Bare Metal vs. Embedded Linux. Available online: https://miscircuitos.com/difference-
between-bare-metal-vs-embedded-linux/ (accessed on 27 January 2024).

IBM. What is a Bare Metal Server? Available online: https://www.ibm.com/topics/bare-metal-dedicated-servers (accessed on
27 January 2024).

Karne, R.K.; Wijesinha, A.L.; Liang, S.; Appiah-Kubi, P. A Bare PC Mass Storage USB Driver. Int. J. Comput. Appl. 2013, 21, 32.
Alotaibi, F.; Karne, R.K.; Wijesinha, A.; Soundararajan, N.; Rangi, A. A Chat Application on a Bare Internet. In Proceedings of the
2024 IEEE 48th Annual Computers, Software, and Applications (COMPSAC), Osaka, Japan, 2—4 July 2024; pp. 2411-2416.
Engler, D.R. The Exokernel Operating System Architecture. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1998.

Levis, P. Experiences from a decade of TinyOS development. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, Hollywood, CA, USA, 8-10 October 2012; pp. 207-220.

Lange, J.; Pedretti, K.; Hudson, T,; Dinda, P; Cui, Z; Xia, L.; Bridges, P.; Gocke, A.; Jaconette, S.; Levenhagen, M.; et al. Palacios
and Kitten: New High Performance Operating Systems For Scalable Virtualized and Native Supercomputing. In Proceedings
of the 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), Atlanta, GA, USA, 19-23 April 2010;
pp. 1-12. [CrossRef]

Isaac, O.; Okokpujie, K.; Akinwumi, H.; Juwel, J.; Otunuya, H.; Alagbe, O. An Overview of Microkernel Based Operating Systems.
IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012052. [CrossRef]

Kong, X.; Chen,].; Bai, W.; Xu, Y.; Elhaddad, M.; Raindel, S.; Padhye, J.; Lebeck, A.R.; Zhuo, D. Understanding RDMA
Microarchitecture Resources for Performance Isolation. In Proceedings of the 20th USENIX Symposium on Networked Systems
Design and Implementation, Boston, MA, USA, 17-19 April 2023; pp. 31-48.

Pai, V.S.; Druschel, P.; Zwaenepoel, W. IO-Lite: A Unified I/O Buffering and Caching System. ACM Trans. Comput. Syst. 2000, 18,
37-66. [CrossRef]

Zhang, I; Liu, J.; Austin, A.; Roberts, M.L.; Badam, A. I'm Not Dead Yet! The Role of the Operating System in a Kernel-Bypass
Era. In Proceedings of the Workshop on Hot Topics in Operating Systems, Bertinoro, Italy, 13-15 May 2019; pp. 73-80. [CrossRef]
Baccelli, E.; Glindogan, C.; Hahm, O.; Kietzmann, P.; Lenders, M.S.; Petersen, H.; Schleiser, K.; Schmidt, T.C.; Wahlisch, M. RIOT:
An Open Source Operating System for Low-End Embedded Devices in the IoT. IEEE Internet Things]. 2018, 5, 6. [CrossRef]
Sen, S.; Guérin, R.; Hosanagar, K. Functionality-rich Versus Minimalist Platforms: A Two-sided Market Analysis. ACM SIGCOMM
Comput. Commun. Rev. 2011, 41, 36—43. [CrossRef]

Soundararajan, N.; Karne, R.; Wijesinha, A.; Ordouie, N.; Chang, H. Design Issues in Running a Webserver on Bare PC Multi-Core
Architecture. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC),
Madrid, Spain, 13-17 July 2020; pp. 555-564. [CrossRef]

Appiah-Kubi, P; Karne, R K.; Wijesinha, A.L. A Bare PC TLS Webmail Server. In Proceedings of the 2012 International Conference
on Computing, Networking and Communications (ICNC), Maui, HI, USA, 30 January-2 February 2012; pp. 149-153. [CrossRef]
Wikipedia. Available online: https:/ /en.wikipedia.org/wiki/Security_through_obscurity (accessed on 20 August 2024).
Alotaibi, F.; Karne, R.K.; Wijesinha, A. A Stateless Bare PC Web Server. In Proceedings of the 19th International Conference on
Web Information Systems and Technologies (WEBIST 2023), Rome, Italy, 15-17 November 2023; pp. 406—413. [CrossRef]

The SSL Store. Executing a Man-in-the-Middle Attack in Just 15 Minutes. Available online: https://www.thesslstore.com/blog/
man-in-the-middle-attack-2 (accessed on 27 March 2024).

Alwis, C.D.; Porambage, P.; Dev, K.; Gadekallu, T.R.; Liyanage, M. A Survey on Network Slicing Security: Attacks, Challenges,
Solutions and Research Directions. IEEE Commun. Surv. Tutor. 2024, 26, 534-570. [CrossRef]

Harrison, R. Reducing complexity in securing heterogeneous networks. Netw. Secur. 2015, 10, 11-13. [CrossRef]

Li, L.; Daoyuan, L.; Bissyandé, T.F,; Klein, J.; Trao, Y.L.; Lo, D.; Cavallaro, L. Understanding Android app piggybacking:
A systematic study of malicious code grafting. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1269-1284. [CrossRef]

Alhamry, M.; Elmedany, W. Exploring Wi-Fi WPA2 KRACK Vulnerability: A Review Paper. In Proceedings of the 2022
International Conference on Data Analytics for Business and Industry (ICDABI), Sakhir, Bahrain, 25-26 October 2022; pp. 766-772.
Vondrécek, M.; Pluskal, J.; RySavy, O. Automated Man-in-the-Middle Attack Against Wi-Fi Networks. J. Digit. Forensic. Secur.
Law 2018, 13, 9. [CrossRef]

Pan, Z; Shen, W.; Wang, X.; Yang, Y.; Chang, R.; Liu, Y; Liu, C; Liu, Y.; Ren, K. Ambush From All Sides: Understanding Security
Threats in Open-Source Software CI/CD Pipelines. IEEE Trans. Dependable Secur. Comput. 2024, 21, 403—-418. [CrossRef]

Duman, S.; Biichler, M.; Egele, M.; Kirda, E. Pellucid Attachment: Protecting Users from Attacks via E-mail Attachments. IEEE
Trans. Dependable Secure Comput. 2023, 21, 1342-1354. [CrossRef]

Hakak, S.; Khan, W.Z.; Imran, M.; Choo, K.R.; Shoaib, M. Have You Been a Victim of COVID-19-Related Cyber Incidents? Survey,
Taxonomy, and Mitigation Strategies. IEEE Access 2020, 8, 124134-124144. [CrossRef]

Cengiz, A.B.; Kalem, G.; Boluk, P.S. The Effect of Social Media User Behaviors on Security and Privacy Threats. IEEE Access 2022,
10, 57674-57684. [CrossRef]

https://miscircuitos.com/difference-between-bare-metal-vs-embedded-linux/
https://miscircuitos.com/difference-between-bare-metal-vs-embedded-linux/
https://www.ibm.com/topics/bare-metal-dedicated-servers
https://doi.org/10.1109/IPDPS.2010.5470482
https://doi.org/10.1088/1757-899X/1107/1/012052
https://doi.org/10.1145/332799.332895
https://doi.org/10.1145/3317550.3321422
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1145/2043165.2043171
https://doi.org/10.1109/COMPSAC48688.2020.0-195
https://doi.org/10.1109/ICCNC.2012.6167399
https://en.wikipedia.org/wiki/Security_through_obscurity
https://doi.org/10.5220/0012207400003584
https://www.thesslstore.com/blog/man-in-the-middle-attack-2
https://www.thesslstore.com/blog/man-in-the-middle-attack-2
https://doi.org/10.1109/COMST.2023.3312349
https://doi.org/10.1016/S1353-4858(15)30091-X
https://doi.org/10.1109/TIFS.2017.2656460
https://doi.org/10.15394/jdfsl.2018.1495
https://doi.org/10.1109/TDSC.2023.3253572
https://doi.org/10.1109/TDSC.2023.3279032
https://doi.org/10.1109/ACCESS.2020.3006172
https://doi.org/10.1109/ACCESS.2022.3177652

J. Cybersecur. Priv. 2024, 4 729

67.

68.

69.

70.

71.

72.

73.
74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Chang, V,; Golightly, L.; Xu, Q.A.; Boonmee, T.; Liu, B.S. Cybersecurity for children: An investigation into the application of social
media. Enterp. Inf. Syst. 2023, 17,2188122. [CrossRef]

Masri, R.; Aldwairi, M. Automated malicious advertisement detection using VirusTotal, URLVoid, and TrendMicro. In Proceedings
of the 2017 8th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 4-6 April 2017;
pp. 336-341. [CrossRef]

Pooranian, Z.; Conti, M.; Haddadi, H.; Tafazolli, R. Online Advertising Security: Issues, Taxonomy, and Future Directions. IEEE
Commun. Surv. Tut. 2020, 23, 2494-2524. [CrossRef]

Shantanu, B.; Janet, J.; Arul Kumar, R.J. Malicious URL Detection: A Comparative Study. In Proceedings of the 2021 International
Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25-27 March 2021; pp. 1147-1151. Available
online: https:/ /ieeexplore.ieee.org/document/9396014 (accessed on 20 August 2024).

Aljabri, M.; Altamimi, H.S.; Albelali, S.A.; Al-Harbi, M.; Alhuraib, H.T.; Alotaibi, N.K.; Alahmadi, A.A.; Alhaidari, F; Mohammad,
R.M.A; Salah, K. Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions. IEEE Access
2022, 10, 121395-121417. [CrossRef]

Cunningham, B.; Fuller, E.; Little, C.; Schack, T.; Dykstra, T.; Hoagberg, M.; Miles, G.; Rogers, R. Network Security Evaluation Using
the NSA IEM; Syngress: Rockland, MA, USA, 2005; ISBN 978-1-59749-035-1.

Gao, Z.; Ansari, N. Tracing cyber attacks from the practical perspective. IEEE Commun. Mag. 2005, 43, 123-131. [CrossRef]
Yang, J. Analysis on cookies and cybersecurity. In Proceedings of the Third International Symposium on Computer Engineering
and Intelligent Communications (ISCEIC 2022), Xi’an, China, 16-18 September 2022; Volume 12462, pp. 217-224.

Bhurtel, M.; Rawat, D.B. Unveiling the Landscape of Operating System Vulnerabilities. Future Internet 2023, 15, 248. [CrossRef]
Jang, M.; Kim, H.; Yun, Y. Detection of DLL Inserted by Windows Malicious Code. In Proceedings of the 2007 International
Conference on Convergence Information Technology (ICCIT 2007), Gwangju, Republic of Korea, 21-23 November 2007;
pp. 1059-1064. [CrossRef]

Alzahrani, S.; Xiao, Y.; Sun, W. An Analysis of Conti Ransomware Leaked Source Codes. IEEE Access 2022, 10, 100178-100193.
[CrossRef]

Chordiya, A.R.; Majumder, S.; Javaid, A.Y. Man-in-the-Middle (MITM) Attack Based Hijacking of HTTP Traffic Using Open
Source Tools. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI,
USA, 3-5 May 2018; pp. 438—443. [CrossRef]

Sang, F.L.; Nicomette, V.; Deswarte, Y. I/O Attacks in Intel PC-based Architectures and Countermeasures. In Proceedings of the
First SysSec Workshop, Amsterdam, The Netherlands, 6 July 2011; pp. 19-26. [CrossRef]

Gozman, D.; Willcocks, L. The emerging Cloud Dilemma: Balancing innovation with cross-border privacy and outsourcing
regulations. J. Bus. Res. 2019, 97, 235-256. [CrossRef]

Benaroch, M. Third-party induced cyber incidents—Much ado about nothing? J. Cybersecur. 2021, 7, tyab020. [CrossRef]

Shah, M.; Soni, V.; Shah, H.; Desai, M. TCP/IP network protocols—Security threats, flaws and defense methods. In Proceedings
of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India,
16-18 March 2016; pp. 2693-2699.

Liu, R; Yu, B.; Wang, B.; Ye, J.; Huang, J.; Kong, X. SEEKER: A Root Cause Analysis Method Based on Deterministic Replay for
Multi-Type Network Protocol Vulnerabilities. In Proceedings of the 2022 IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), Wuhan, China, 9-11 December 2022; pp. 131-138. [CrossRef]

Geetha, K.; Sreenath, N. SYN flooding attack—Identification and analysis. In Proceedings of the International Conference on
Information Communication and Embedded Systems (ICICES2014), Chennai, India, 27-28 February 2014; pp. 1-7.

AbdAllah, E.G.; Hassanein, H.S.; Zulkernine, M. A Survey of Security Attacks in Information-Centric Networking. IEEE Commun.
Surv. Tut. 2015, 17, 1441-1454. [CrossRef]

Kalafut, A.; Acharya, A.; Gupta, M. A study of malware in peer-to-peer networks. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, Rio de Janeriro, Brazil, 25-27 October 2006; pp. 327-332.

Lalonde Lévesque, F; Chiasson, S.; Somayaji, A.; Fernandez,].M. Technological and Human Factors of Malware Attacks:
A Computer Security Clinical Trial Approach. ACM Trans. Priv. Secur. 2018, 21, 18. [CrossRef]

Faruk, M.J.H.; Shahriar, H.; Valero, M.; Barsha, E.L.; Sobhan, S.; Khan, A.; Whitman, M.; Cuzzocrea, A.; Lo, D.; Rahman, A.;
et al. Malware Detection and Prevention using Artificial Intelligence Techniques. In Proceedings of the 2021 IEEE International
Conference on Big Data (Big Data), Orlando, FL, USA, 15-18 December 2021; pp. 5369-5377. [CrossRef]

Syafitri, W.; Shukur, Z.; Mokhtar, U.A.; Sulaiman, R.; Ibrahim, M.A. Social Engineering Attacks Prevention: A Systematic
Literature Review. IEEE Access 2022, 10, 39325-39343. [CrossRef]

Shokeen, R.; Shanmugam, B.; Kannoorpatti, K.; Azam, S.; Jonkman, M.; Alazab, M. Vulnerabilities Analysis and Security
Assessment Framework for the Internet of Things. In Proceedings of the 2019 Cybersecurity and Cyberforensics Conference
(CCC), Melbourne, Australia, 8-9 May 2019; pp. 22-29. [CrossRef]

Winter, J.; Dietrich, K. A hijacker’s guide to communication interfaces of the trusted platform module. Comput. Math. Appl. 2013,
65,748-761. [CrossRef]

Ylli, E.; Fejzaj,]. Man in the Middle: Attack and Protection. In Proceedings of the 4th International Conference on Recent Trends
and Applications in Computer Science and Information Technology, Tirana, Albania, 21-22 May 2021; pp. 198-204.

https://doi.org/10.1080/17517575.2023.2188122
https://doi.org/10.1109/IACS.2017.7921994
https://doi.org/10.1109/COMST.2021.3118271
https://ieeexplore.ieee.org/document/9396014
https://doi.org/10.1109/ACCESS.2022.3222307
https://doi.org/10.1109/MCOM.2005.1453433
https://doi.org/10.3390/fi15070248
https://doi.org/10.1109/ICCIT.2007.320
https://doi.org/10.1109/ACCESS.2022.3207757
https://doi.org/10.1109/EIT.2018.8500144
https://doi.org/10.1109/SysSec.2011.10
https://doi.org/10.1016/j.jbusres.2018.06.006
https://doi.org/10.1093/cybsec/tyab020
https://doi.org/10.1109/TrustCom56396.2022.00029
https://doi.org/10.1109/COMST.2015.2392629
https://doi.org/10.1145/3210311
https://doi.org/10.1109/BigData52589.2021.9671434
https://doi.org/10.1109/ACCESS.2022.3162594
https://doi.org/10.1109/CCC.2019.00-14
https://doi.org/10.1016/j.camwa.2012.06.018

J. Cybersecur. Priv. 2024, 4 730

93.
94.
95.
96.
97.
98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.
117.

118.

119.

Otta, S.P;; Panda, S.; Gupta, M.; Hota, C. A Systematic Survey of Multi-Factor Authentication for Cloud Infrastructure. Future
Internet 2023, 15, 146. [CrossRef]

Lockheed Martin. Gaining the Advantage: Cyber Kill Chain®. Available online: https://www.lockheedmartin.com/content/
dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf (accessed on 27 January 2024).
Pirry, C.; Marco-Gisbert, H.; Begg, C. A Review of Memory Errors Exploitation in x86-64. Computers 2020, 9, 48. [CrossRef]
Alabdan, R. Phishing Attacks Survey: Types, Vectors, and Technical Approaches. Future Internet 2020, 12, 168. [CrossRef]

Oz, H.; Aris, A.; Levi, A.; Uluagac, A.S. A Survey on Ransomware: Evolution, Taxonomy, and Defense Solutions. ACM Comput.
Surv. 2022, 54, 238. [CrossRef]

Yamany, B.; Elsayed, M.S.; Jurcut, A.D.; Abdelbaki, N.; Azer, M.A. A Holistic Approach to Ransomware Classification: Leveraging
Static and Dynamic Analysis with Visualization. Information 2024, 15, 46. [CrossRef]

Saghezchi, F.B.; Mantas, G.; Violas, M.A.; de Oliveira Duarte, A.M.; Rodriguez, J. Machine Learning for DDoS Attack Detection in
Industry 4.0 CPPSs. Electronics 2022, 11, 602. [CrossRef]

Morsy, S.M.; Nashat, D. D-ARP: An Efficient Scheme to Detect and Prevent ARP Spoofing. IEEE Access 2022, 10, 49142-49153.
[CrossRef]

C6es, I1.; Petrov, M. Android Password Managers and Vault Applications: Data Storage Security Issues Identification. J. Inf.
Secur. Appl. 2022, 67, 103152. [CrossRef]

Gudipati, VK.; Vetwal, A.; Kumar, V.; Adeniyi, A.; Abuzneid, A. Detection of Trojan Horses by the analysis of system behavior
and data packets. In Proceedings of the 2015 Long Island Systems, Applications and Technology, Farmingdale, NY, USA, 1 May
2015; pp. 1-4. [CrossRef]

Chen, N.; Chen, B. Defending against OS-Level Malware in Mobile Devices via Real-Time Malware Detection and Storage
Restoration. J. Cybersecur. Priv. 2022, 2, 311-328. [CrossRef]

Djenna, A.; Bouridane, A.; Rubab, S.; Marou, .M. Artificial Intelligence-Based Malware Detection, Analysis, and Mitigation.
Symmetry 2023, 15, 677. [CrossRef]

Vander—Pallen, M.A.; Addai, P,; Isteefanos, S.; Mohd, T.K. Survey on Types of Cyber Attacks on Operating System Vulnerabilities
since 2018 onwards. In Proceedings of the 2022 IEEE World Al IoT Congress (AlloT), Seattle, WA, USA, 6-9 June 2022; pp. 01-07.
[CrossRef]

Syeda, D.Z.; Asghar, M.N. Dynamic Malware Classification and API Categorisation of Windows Portable Executable Files Using
Machine Learning. Appl. Sci. 2024, 14, 1015. [CrossRef]

U.S. Cybersecurity and Infrastructure Security Agency (CISA). Protecting Your Home Computer from Spyware, U.S. Cybersecurity
and Infrastructure Security Agency (CISA). 2005. Available online: https://www.cisa.gov/sites/default/files /publications/
spywarehome_0905.pdf (accessed on 27 January 2024).

Vasani, V.; Bairwa, A K,; Joshi, S.; Pljonkin, A.; Kaur, M.; Amoon, M. Comprehensive Analysis of Advanced Techniques and Vital
Tools for Detecting Malware Intrusion. Electronics 2023, 12, 4299. [CrossRef]

Kumar, S.S.; Valavan, A.P; Prathiksha, V. Prevention of Kernel Rootkit in Cloud Computing. In Proceedings of the 2023 7th
International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 17-19 May 2023; pp. 732-739.
[CrossRef]

Thanh Vu, S.N.; Stege, M.; El-Habr, P.I; Bang, J.; Dragoni, N. A Survey on Botnets: Incentives, Evolution, Detection and Current
Trends. Future Internet 2021, 13, 198. [CrossRef]

Molitor, D.; Raghupathi, W.; Saharia, A.; Raghupathi, V. Exploring Key Issues in Cybersecurity Data Breaches: Analyzing Data
Breach Litigation with ML-Based Text Analytics. Information 2023, 14, 600. [CrossRef]

Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A Survey on Advanced Persistent Threats: Techniques, Solutions,
Challenges, and Research Opportunities. [IEEE Commun. Surv. Tutor. 2019, 21, 1851-1877. [CrossRef]

OWASP Foundation. SQL Injection Prevention Cheat Sheet. Available online: https://cheatsheetseries.owasp.org/cheatsheets/
SQL_Injection_Prevention_Cheat_Sheet.html (accessed on 27 January 2024).

Fan, L.; Zhang, B.; Xiong, S.; Li, Q. Secure Change Control for Supply Chain Systems via Dynamic Event Triggered Using
Reinforcement Learning under DoS Attacks. Electronics 2024, 13, 1136. [CrossRef]

S. M. Christey. Chapter 11: Preventing Common Problems. Available online: https://www.cgisecurity.com/owasp/html/ch11s0
4. html (accessed on 17 July 2024).

Lee, I. Analysis of Insider Threats in the Healthcare Industry: A Text Mining Approach. Information 2022, 13, 404. [CrossRef]
Chang, X.; Peng, L.; Zhang, S. Allocation of Eavesdropping Attacks for Multi-System Remote State Estimation. Sensors 2024, 24,
850. [CrossRef]

Alharbi, J.A.; Albesher, A.S.; Wahsheh, H.A. An Empirical Analysis of E-Governments’ Cookie Interfaces in 50 Countries.
Sustainability 2023, 15, 1231. [CrossRef]

Airehrour, D.; Vasudevan Nair, N.; Madanian, S. Social Engineering Attacks and Countermeasures in the New Zealand Banking
System: Advancing a User-Reflective Mitigation Model. Information 2018, 9, 110. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/fi15040146
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://doi.org/10.3390/computers9020048
https://doi.org/10.3390/fi12100168
https://doi.org/10.1145/3514229
https://doi.org/10.3390/info15010046
https://doi.org/10.3390/electronics11040602
https://doi.org/10.1109/ACCESS.2022.3172329
https://doi.org/10.1016/j.jisa.2022.103152
https://doi.org/10.1109/LISAT.2015.7160176
https://doi.org/10.3390/jcp2020017
https://doi.org/10.3390/sym15030677
https://doi.org/10.1109/AIIoT54504.2022.9817246
https://doi.org/10.3390/app14031015
https://www.cisa.gov/sites/default/files/publications/spywarehome_0905.pdf
https://www.cisa.gov/sites/default/files/publications/spywarehome_0905.pdf
https://doi.org/10.3390/electronics12204299
https://doi.org/10.1109/ICICCS56967.2023.10142886
https://doi.org/10.3390/fi13080198
https://doi.org/10.3390/info14110600
https://doi.org/10.1109/COMST.2019.2891891
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://doi.org/10.3390/electronics13061136
https://www.cgisecurity.com/owasp/html/ch11s04.html
https://www.cgisecurity.com/owasp/html/ch11s04.html
https://doi.org/10.3390/info13090404
https://doi.org/10.3390/s24030850
https://doi.org/10.3390/su15021231
https://doi.org/10.3390/info9050110

	Introduction
	Conventional Systems
	Conventional System Guidelines
	Conventional System Characteristics

	Bare Machine Computing (BMC) Systems
	BMC Paradigm
	Compilation Process
	Sample Direct Hardware Interfaces
	Creating, Inserting, and Running a Task
	Reading and Processing an Ethernet Packet

	Summary of the Above Code Snippets
	Properties of the BMC Paradigm
	BMC System Guidelines
	BMC Characteristics
	BMC Limitations

	Comparison of Conventional and BMC Systems
	Cyberattacks and Analysis
	Overview of Selected Cyberattacks
	Buffer Overflow
	Phishing Attack
	Ransomware
	Denial of Service (DoS) and Distributed Denial of Service (DDoS)
	Man-in-the-Middle (MITM)
	Password Attack
	Trojan Horse
	Virus
	Worms
	Spyware
	Adware
	Rootkit
	Botnet
	Data Breach
	Advanced Persistent Threats (APT)
	SQL Injection
	Supply Chain
	URL Interpretation
	Insider Threats
	Eavesdropping
	Cookies
	Social Engineering

	Description and Analysis of Selected Cyberattacks
	Root Causes for the 22 Cyberattacks
	Preventive Mechanisms for the 22 Selected Cyberattacks

	Analysis of Cyberattacks
	Root Causes vs. Cyberattacks
	Preventive Mechanisms vs. Cyberattacks
	Conventional Root Causes Applicable to BMC Systems
	Conventional Preventive Mechanisms Applicable to BMC Systems
	The Cyberattacks vs. the BMC Paradigm

	Significant Contributions
	Conclusions
	References

