Fractal Structures of Yang–Mills Fields and Non-Extensive Statistics: Applications to High Energy Physics
Abstract
:1. Introduction
2. Objectives
3. Theoretical Method
3.1. The Fractal Structures in Yang–Mills Fields
“A fireball is (*) a statistical equilibrium (hadronic black-body radiation) of an undetermined number of all kinds of fireballs, each o which, in turn, is considered to be (goto *)”.
3.2. Self-Similarity and Fractal Structure
3.3. Effective Coupling and -Function
3.4. Thermofractals
- Total energy is given by , where F is the kinetic energy, and E is the internal energy of N constituent subsystems, so that .
- The constituent particles are thermofractals. This means that the energy distribution is self-similar or self-affine, i.e., at level n of the hierarchy of subsystems, is equal to the distribution in any other level, with being a scale-free variable that can be given by in the case of thermofractals of the type-I, or for thermofractals of the type-II.
- At some level of the fractal structure, the internal energy fluctuation is small enough to be disregarded. In this case, the internal energy is considered to be equal to the component mass m.
3.5. Non-Extensive Self-Consistent Thermodynamics
3.6. Multiparticle Production
3.7. Non-Extensive Thermodynamics of Thermofractals
4. Application and Results
4.1. Transverse Momentum Distributions
4.2. Rapidity Distributions
4.3. Intermittency
4.4. Tsallis Statistics and QCD Thermodynamics
4.5. Discussion
5. Conclusions
- Analysis of distribution with high statistics, obtaining the behavior of T and q as a function of multiplicity for different particles.
- Investigation of self-similarity in jet and secondary particle distributions.
- Investigation of the rapidity distribution as predicted with the theory, and also of the distributions for 13 GeV.
- Investigation of intermittency in HEP data from LHC.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, C.N.; Mills, R.L. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 1954, 96, 191–195. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B 1972, 44, 189–213. [Google Scholar] [CrossRef] [Green Version]
- Politzer, H.D. Asymptotic freedom: an approach to strong interactions. Phys. Rep. 1974, 14, 129–180. [Google Scholar] [CrossRef]
- ’t Hooft, G. 50 Years of Yang–Mills Theory; World Scientific: Hackensack, NJ, USA, 2005. [Google Scholar]
- Batty, M.; Longley, P. Fractal Cities: A Geometry of Form and Function; Academic Press: London, UK, 1994. [Google Scholar]
- West, G. Scale, The Universal Laws of Life, Growth, and Death in Organisms, Cities, and Companies; Penguin Books: New York, NY, USA, 2018. [Google Scholar]
- Mandelbrot, B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1983. [Google Scholar]
- Tempesta, P. Group entropies, correlation laws and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalogeropoulos, N. Groups, nonadditive entropy and phase transitions. Int. J. Mod. Phys. B 2014, 28, 1450162. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Nonextensive statistical mechanics: a brief review of its present status. Anais da Academia Brasileira de Ciências 2002, 74, 3. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Dyson, F.J. The S-matrix in quantum electrodynamics. Phys. Rev. 1949, 75, 1736–1755. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Low, F.E. Quantum electrodynamics at small distances. Phys. Rev. 1954, 95, 1300–1312. [Google Scholar] [CrossRef]
- Callan, C.G., Jr. Broken scale invariance in scalar field theory. Phys. Rev. D 1970, 2, 1541–1547. [Google Scholar] [CrossRef]
- Symanzik, K. Small distance behavior in field theory and power counting. Commun. Math. Phys. 1970, 18, 227–246. [Google Scholar] [CrossRef]
- Deppman, A.; Megias, E.; Menezes, D.P. Fractals, non-extensive statistics and QCD. Phys. Rev. D 2020, 101, 034019. [Google Scholar] [CrossRef] [Green Version]
- Fermi, E. High-energy nuclear events. Prog. Theor. Phys. 1950, 5, 570–583. [Google Scholar] [CrossRef]
- Hagedorn, R. Statistical thermodynamics of strong interactions at high energies. Nuovo Cim. Suppl. 1965, 3, 147–186. [Google Scholar]
- Prochazka, V.; Zwicky, R. Finiteness of two- and three-point functions and the renormalization group. Phys. Rev. D 2017, 95, 065027. [Google Scholar] [CrossRef] [Green Version]
- Deppman, A. Thermodynamics with fractal structure, Tsallis statistics and hadrons. Phys. Rev. D 2016, 93, 054001. [Google Scholar] [CrossRef] [Green Version]
- Deppman, A.; Frederico, T.; Megias, E.; Menezes, D.P. Fractal structure and non-extensive statistics. Entropy 2018, 20, 633. [Google Scholar] [CrossRef] [Green Version]
- Deppman, A.; Megias, E. Fractal structure in gauge fields. Physics 2019, 1, 103. [Google Scholar]
- Gross, D.J.; Wilczek, F. Asymptotically free gauge theories. II. Phys. Rev. D 1974, 9, 980–993. [Google Scholar] [CrossRef]
- Czakon, M. The Four-loop QCD beta-function and anomalous dimensions. Nucl. Phys. B 2005, 710, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Frautschi, S.C. Statistical bootstrap model of hadrons. Phys. Rev. D 1971, 3, 2821–2834. [Google Scholar] [CrossRef] [Green Version]
- Hagedorn, R. How We Got to QCD Matter from the Hadron Side: 1984. Lect. Notes Phys. 1985, 221, 53–76. [Google Scholar]
- Yukalov, V.I.; Yukalova, E.P. Thermodynamics of strong interactions. Phys. Part. Nucl. 1997, 28, 37–65. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Redlich, K. Chemical and thermal freezeout parameters from 1A to 200A GeV. Phys. Rev. C 1999, 60, 054908. [Google Scholar] [CrossRef] [Green Version]
- Agasian, N.O. Nonperturbative vacuum and condensates in QCD below thermal phase transition. Phys. Lett. B 2001, 519, 71–77. [Google Scholar] [CrossRef]
- Tawfik, A. QCD phase diagram: a comparison of lattice and hadron resonance gas model calculations. Phys. Rev. D 2005, 71, 054502. [Google Scholar] [CrossRef] [Green Version]
- Megias, E.; Ruiz Arriola, E.; Salcedo, L.L. Trace anomaly, thermal power corrections and dimension two condensates in the deconfined phase. Phys. Rev. D 2009, 80, 056005. [Google Scholar] [CrossRef]
- Huovinen, P.; Petreczky, P. QCD equation of state and hadron resonance gas. Nucl. Phys. A 2010, 837, 26–53. [Google Scholar] [CrossRef] [Green Version]
- Borsanyi, S.; Endrodi, G.; Fodor, Z.; Jakovac, A.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabo, K.K. The QCD equation of state with dynamical quarks. JHEP 2010, 11, 077. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 2012, 85, 054503. [Google Scholar] [CrossRef] [Green Version]
- Megias, E.; Ruiz Arriola, E.; Salcedo, L.L. The Polyakov loop and the hadron resonance gas model. Phys. Rev. Lett. 2012, 109, 151601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noronha-Hostler, J.; Noronha, J.; Greiner, C. Hadron mass spectrum and the shear viscosity to entropy density ratio of hot hadronic matter. Phys. Rev. C 2012, 86, 024913. [Google Scholar] [CrossRef] [Green Version]
- Dashen, R.; Ma, S.K.; Bernstein, H.J. S Matrix formulation of statistical mechanics. Phys. Rev. 1969, 187, 345–370. [Google Scholar] [CrossRef]
- Cabibbo, N.; Parisi, G. Exponential hadronic spectrum and quark liberation. Phys. Lett. B 1975, 59, 67–69. [Google Scholar] [CrossRef]
- Hagedorn, R. Multiplicities, pT distributions and the expected hadron → quark - gluon phase transition. Riv. Nuovo Cim. 1983, 6, 1–50. [Google Scholar] [CrossRef]
- Bialas, A.; Peschanski, R.B. Moments of rapidity distributions as a measure of short range fluctuations in high-energy collisions. Nucl. Phys. B 1986, 273, 703–718. [Google Scholar] [CrossRef]
- Bialas, A.; Peschanski, R.B. Intermittency in multiparticle production at high energy. Nucl. Phys. B 1988, 308, 857–867. [Google Scholar] [CrossRef]
- Hwa, R.C. Fractal measures in multiparticle production. Phys. Rev. D 1990, 41, 1456. [Google Scholar] [CrossRef]
- Hwa, R.C.; Pan, J.C. Fractal behavior of multiplicity fluctuations in high-energy collisions. Phys. Rev. D 1992, 45, 1476–1483. [Google Scholar] [CrossRef]
- Hegyi, S.; Csorgo, T. On the intermittency signature of quark - gluon plasma formation. Phys. Lett. B 1992, 296, 256–260. [Google Scholar] [CrossRef]
- Hegyi, S. Monofractal density fluctuations and scaling laws for count probabilities and combinants. Phys. Lett. B 1993, 318, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Dremin, I.M.; Hwa, R.C. Quark and gluon jets in QCD: Factorial and cumulant moments. Phys. Rev. D 1994, 49, 5805–5811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkisyan, E.K.G. Description of local multiplicity fluctuations and genuine multiparticle correlations. Phys. Lett. B 2000, 477, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kittel, W.; de Wolf, E. Soft Multihadron Dynamics; World Scientific: Singapore, 2005. [Google Scholar]
- De Wolf, E.A.; Dremin, I.M.; Kittel, W. Scaling laws for density correlations and fluctuations in multiparticle dynamics. Phys. Rept. 1996, 270, 1–141. [Google Scholar] [CrossRef] [Green Version]
- Lastovicka, T. Selfsimilar properties of the proton structure at low x. Eur. Phys. J. C 2002, 24, 529–533. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions. Phys. Rev. C 2009, 79, 054903. [Google Scholar] [CrossRef] [Green Version]
- Tokarev, M.V.; Zborovský, I.; Kechechyan, A.O.; Dedovich, T.G. Verification of z-scaling in p+p, p¯+p and Au + Au collisions at RHIC, Tevatron and LHC. Phys. Part. Nucl. 2020, 51, 141–171. [Google Scholar] [CrossRef]
- Tokarev, M.; Kechechyan, A.; Zborovský, I. Validation of z -scaling for negative particle production in Au + Au collisions from BES-I at STAR. Nucl. Phys. 2020, 993, 121646. [Google Scholar] [CrossRef]
- Borland, L. Ito-Langevin equations within generalized thermostatistics. Phys. Lett. A 1998, 245, 67. [Google Scholar] [CrossRef]
- Deppman, A. Self-consistency in non-extensive thermodynamics of highly excited hadronic states. Physica A 2012, 391, 6380–6385. [Google Scholar] [CrossRef] [Green Version]
- Megias, E.; Menezes, D.P.; Deppman, A. Non extensive thermodynamics for hadronic matter with finite chemical potentials. Physica A 2015, 421, 15–24. [Google Scholar] [CrossRef]
- Sarkisyan, E.K.G.; Sakharov, A.S. On similarities of bulk observables in nuclear and particle collisions. arXiv 2004, arXiv:arXiv:hep-ph/0410324. [Google Scholar]
- Sarkisyan, E.K.G.; Sakharov, A.S. Multihadron production features in different reactions. AIP Conf. Proc. 2006, 828, 35–41. [Google Scholar]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; [Particle Data Group]; et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Marques, L.; Andrade-II, E.; Deppman, A. Nonextensivity of hadronic systems. Phys. Rev. D 2013, 87, 114022. [Google Scholar] [CrossRef] [Green Version]
- Marques, L.; Cleymans, J.; Deppman, A. Description of high-energy pp collisions using Tsallis thermodynamics: transverse momentum and rapidity distributions. Phys. Rev. D 2015, 91, 054025. [Google Scholar] [CrossRef] [Green Version]
- Bíró, G.; Barnaföldi, G.G.; Biró, T.S. Tsallis-thermometer: a QGP indicator for large and small collisional systems. J. Phys. G 2020, 47, 105002. [Google Scholar] [CrossRef]
- Fazio, S.; Fiore, R.; Jenkovszky, L.; Lavorini, A. Exclusive diffractive production of real photons and vector mesons in a factorized Regge-pole model with non-linear Pomeron trajectory. Phys. Rev. D 2012, 85, 054009. [Google Scholar] [CrossRef] [Green Version]
- Deppman, A. Properties of hadronic systems according to the nonextensive self-consistent thermodynamics. J. Phys. G 2014, 41, 055108. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Worku, D. The Tsallis distribution in proton-proton collisions at s = 0.9 TeV at the LHC. J. Phys. G 2012, 39, 025006. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wilk, G.; Cirto, L.J.L.; Tsallis, C. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy pp and pp¯ collisions. Phys. Rev. D 2015, 91, 114027. [Google Scholar] [CrossRef] [Green Version]
- Rybczynski, M.; Wlodarczyk, Z. Similarities in multiparticle production processes in pp collisions as imprints of nonextensive statistics. Symmetry 2020, 12, 1339. [Google Scholar] [CrossRef]
- Cardoso, P.H.G.; Nunes da Silva, T.; Deppman, A.; Menezes, D.P. Quark matter revisited with non-extensive MIT bag model. Eur. Phys. J. A 2017, 53, 191. [Google Scholar] [CrossRef]
- Menezes, D.P.; Deppman, A.; Megias, E.; Castro, L.B. Non-extensive thermodynamics and neutron star properties. Eur. Phys. J. A 2015, 51, 155. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, S. Using the Tsallis distribution for hadron spectra in pp collisions: Pions and quarkonia at s = 5–13000 GeV. Phys. Rev. D 2017, 95, 056021. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, T.; Cleymans, J.; Marques, L.; Mogliacci, S.; Paradza, M.W. On the precise determination of the Tsallis parameters in proton–proton collisions at LHC energies. J. Phys. G 2018, 45, 055001. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Cleymans, J.; Hippolyte, B.; Paradza, M. A Comparison of p-p, p-Pb, Pb-Pb collisions in the thermal model: multiplicity dependence of thermal parameters. Phys. Rev. C 2019, 99, 044914. [Google Scholar] [CrossRef] [Green Version]
- Azmi, M.D.; Bhattacharyya, T.; Cleymans, J.; Paradza, M. Energy density at kinetic freeze-out in Pb–Pb collisions at the LHC using the Tsallis distribution. J. Phys. G 2020, 47, 045001. [Google Scholar] [CrossRef] [Green Version]
- Biro, G.; Barnafoldi, G.G.; Biro, T.S.; Urmossy, K.; Takacs, A. Systematic analysis of the non-extensive statistical approach in high energy particle collisions - experiment vs. theory. Entropy 2017, 19, 88. [Google Scholar] [CrossRef]
- Acharya, S. Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at s=5.02 and 13 TeV. Eur. Phys. J. C 2019, 79, 857. [Google Scholar] [CrossRef]
- Castorina, P.; Iorio, A.; Lanteri, D.; Spousta, M.; Satz, H. Universality in hadronic and nuclear collisions at high energy. Phys. Rev. C 2020, 101, 054902. [Google Scholar] [CrossRef]
- Konishi, K. A Simple Algorithm for QCD Jets: An Introduction to Jet Calculus. Phys. Scr. 1979, 19, 195–202. [Google Scholar] [CrossRef]
- Venugopalan, R.; Prakash, M. Thermal properties of interacting hadrons. Nucl. Phys. A 1992, 546, 718–760. [Google Scholar] [CrossRef]
- Biró, T.S.; Shen, K.M.; Zhang, B.W. Non-extensive quantum statistics with particle–hole symmetry. Physica A 2015, 428, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Rozynek, J.; Wilk, G. An example of the interplay of nonextensivity and dynamics in the description of QCD matter. Eur. Phys. J. A 2016, 52, 294. [Google Scholar] [CrossRef] [Green Version]
- Rożynek, J.; Wilk, G. Dynamical nonextensivity or nonextensive dynamics? Eur. Phys. J. ST 2020, 229, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Andrade, E.; Deppman, A.; Megias, E.; Menezes, D.P.; Nunes da Silva, T. Bag-type model with fractal structure. Phys. Rev. D 2020, 101, 054022. [Google Scholar] [CrossRef] [Green Version]
- Sena, I.; Deppman, A. Systematic analysis of pT -distributions in p + p collisions. Eur. Phys. J. A 2013, 49, 17. [Google Scholar] [CrossRef]
- Azmi, M.D.; Cleymans, J. Transverse momentum distributions in proton–proton collisions at LHC energies and Tsallis thermodynamics. J. Phys. G 2014, 41, 065001. [Google Scholar] [CrossRef] [Green Version]
- Azmi, M.D.; Cleymans, J. The Tsallis distribution at large transverse momenta. Eur. Phys. J. C 2015, 75, 430. [Google Scholar] [CrossRef] [Green Version]
- Rybczynski, M.; Wlodarczyk, Z.; Wilk, G. On the possibility of q-scaling in high energy production processes. J. Phys. G 2012, 39, 095004. [Google Scholar] [CrossRef] [Green Version]
- Wilk, G.; Wlodarczyk, Z. Self-similarity in jet events following from pp collisions at LHC. Phys. Lett. B 2013, 727, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Agababyan, N.M. Self-affine fractality in π+p and K+p collisions at 250 GeV/c. Phys. Lett. B 1996, 382, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R. A Monte Carlo study of multiplicity fluctuations in Pb-Pb collisions at LHC energies. arXiv 2015, arXiv:arXiv:1501.03773. [Google Scholar]
- Ajinenko, I.V. Intermittency patterns in π+p and K+p collisions at 250 GeV/c. Phys. Lett. B 1989, 222, 306. [Google Scholar] [CrossRef] [Green Version]
- Albajar, C. Multifractal analysis of minimum bias events in s=630 GeV p¯p collisions. Z. Phys. C 1992, 56, 37–46. [Google Scholar]
- Sarkisyan, E.K.; Gelovani, L.K.; Sakharov, G.I.; Taran, G.G. Fractal analysis of pseudorapidity fluctuations in 4.5 A GeV/c C- (Ne, Cu) central collisions. Phys. Lett. B 1993, 318, 568–574. [Google Scholar] [CrossRef]
- Rasool, M.H.; Ahmad, M.A.; Ahmad, S. Multifractal study and multifractal specific heat of singly charged particles produced in 32S–Em interactions at 200 A GeV. Chaos, Solitons & Fractals 2015, 81(A), 197–202. [Google Scholar]
- Singh, G.; Jain, P.L. Multifractal analysis of 197Au-emulsion collisions at 10.6A GeV. Phys. Rev. C 1994, 50, 2508–2515. [Google Scholar] [CrossRef]
- Ghosh, D.; Deb, A.; Chattopadhyay, R.; Sarkar, S.; Jafry, A.K.; Lahiri, M.; Das, S.; Purkait, K.; Biswas, B.; Roychoudhury, J. Evidence of multifractal nature of target-evaporated slow particles produced in ultrarelativistic heavy ion interactions. Phys. Rev. C 1998, 58, 3553–3559. [Google Scholar] [CrossRef]
- Tawfik, A. A Universal description for the freezeout parameters in heavy-ion collisions. Nucl. Phys. A 2006, 764, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 2006, 73, 034905. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 2006, 772, 167–199. [Google Scholar] [CrossRef] [Green Version]
- Agakishiev, G. Hyperon production in Ar+KCl collisions at 1.76A GeV. Eur. Phys. J. A 2011, 47, 21. [Google Scholar] [CrossRef] [Green Version]
- Lopez, X. Subthreshold production of Σ(1385) baryons in Al+Al collisions at 1.9A GeV. Phys. Rev. C 2007, 76, 052203. [Google Scholar] [CrossRef]
- Lavagno, A.; Pigato, D. Nonextensive statistical effects in protoneutron stars. Eur. Phys. J. A 2011, 47, 52. [Google Scholar] [CrossRef] [Green Version]
- Feal, X.; Pajares, C.; Vazquez, R.A. Thermal behavior and entanglement in Pb-Pb and p-p collisions. Phys. Rev. C 2019, 99, 015205. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deppman, A.; Megías, E.; P. Menezes, D. Fractal Structures of Yang–Mills Fields and Non-Extensive Statistics: Applications to High Energy Physics. Physics 2020, 2, 455-480. https://doi.org/10.3390/physics2030026
Deppman A, Megías E, P. Menezes D. Fractal Structures of Yang–Mills Fields and Non-Extensive Statistics: Applications to High Energy Physics. Physics. 2020; 2(3):455-480. https://doi.org/10.3390/physics2030026
Chicago/Turabian StyleDeppman, Airton, Eugenio Megías, and Débora P. Menezes. 2020. "Fractal Structures of Yang–Mills Fields and Non-Extensive Statistics: Applications to High Energy Physics" Physics 2, no. 3: 455-480. https://doi.org/10.3390/physics2030026
APA StyleDeppman, A., Megías, E., & P. Menezes, D. (2020). Fractal Structures of Yang–Mills Fields and Non-Extensive Statistics: Applications to High Energy Physics. Physics, 2(3), 455-480. https://doi.org/10.3390/physics2030026