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Abstract: The quantum harmonic oscillator is a fundamental piece of physics. In this paper, we present
a self-contained full-fledged analytical solution to the quantum harmonic oscillator. To this end, we use
an eight-step procedure that only uses standard mathematical tools available in natural science,
technology, engineering and mathematics disciplines. This solution is accessible not only for physics
students but also for undergraduate engineering and chemistry students. We provide interactive
web-based graphs for the reader to observe the shape of the wave functions for an electron and a
proton when both are subject to the same potential. Each of the eight steps in our solution procedure
is treated as a separate problem in order to allow the reader to quickly consult any step without the
need to review the entire article.
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1. Introduction

Currently, most of the materials science graduate programs offered at various universities worldwide
have a strong multi- and interdisciplinary character [1,2]. Therefore, graduates who aspire to join these
programs must possess competent knowledge in mathematics, engineering, physics, and chemistry.
To achieve this goal, some universities offer short preparatory courses, which allow applicants to
overcome possible deficiencies inherent to their respective undergraduate curricula. In this sense,
students who enroll in physics courses generally have academic backgrounds in engineering or
chemistry. Such students and their teachers are the principal motivation for this work.

The quantum harmonic oscillator (QHO) is a fundamental piece of physics. Many subjects converge
in the study of the QHO, among which modern physics [3–6], quantum chemistry [7], condensed
matter [8], structure of matter [9], and quantum mechanics [10–13] stand out. Understanding the QHO
solution provides the student with powerful tools to tackle more complex problems related to quantum
physics. Furthermore, the QHO can model and explain practical phenomena, including infrared and
Raman spectroscopies [14], blackbody radiation [15], stereomutation in chiral molecules [16], and entropy
calculations of single molecules [17].

However, the first-time student looking for reliable sources to study the QHO on his own may be
overwhelmed by the ubiquity of the topic and the great diversity in which it is addressed. The most
popular books in modern physics only present the QHO wave functions without discussing its
origin [3,4]. They also present disclaimers such as “the mathematical techniques involved in solving this
type of differential equation are standard in mathematical physics but unfamiliar to most students at this
level” [5] and “the mathematical technique for solving this equation is beyond the level of this text” [6].
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On the other hand, when the student consults books on quantum mechanics [10–13,18], the balance tips to
the other extreme. In those sources, one will find unfamiliar concepts that would take time to learn and
apply, such as Dirac’s notation [10], or the algebraic solution method that makes use of annihilation
and creation operators [11–13].

Although to a lesser extent, it is also possible to find introductory books on quantum physics.
That bibliography presents the analytical solution of the QHO, with an approach that attempts to
reconcile the prevailing scarcity in modern physics books with the “mathematical sophistication”
of quantum mechanics books [18–20]. However, in our understanding, those books do not ultimately
achieve the said goal; first, because they are intended for physics students who naturally have solid
foundations in mathematics. Additionally, none of those references offer detailed explanations of
the different stages that integrate the whole solution. According to our experience, those missing
explanations are of great value for inexperienced students in short courses.

In this paper, we present a full-fledged analytical solution to the QHO using an eight-step solution
procedure. We built this strategy over ten years of experience teaching short courses in quantum physics
and structure of matter to students with backgrounds in chemistry and engineering. Our procedure
is self-contained and implicitly includes detailed explanations to questions that recurrently appear
during our courses. We only use standard mathematical tools available in natural science, technology,
engineering and mathematics disciplines generally from the second college year. We believe this
document can help the beginning reader to understand, enjoy, and take advantage of other smart and
elegant ways to approach the QHO problem [21–26]. This methodology could also be useful for the
first-year physics student taking introductory subjects in quantum physics or modern physics.

2. Discussion

Heretofore, the beginning physics student should have worked with potentials that are constant
and discontinuous position functions. By studying the quantum harmonic oscillator (QHO), we will
take a step towards to a more realistic scenario. For this case, V(x) will be a continuous position
function of the type V(x) = α x2. The QHO can be used to describe almost any system in which a
certain entity makes small vibrations with respect to an equilibrium point.

In Figure 1a, we show a one-dimensional potential that is described with a solid line. This potential
has a minimum point, for which it is possible to approximate a parabolic function V(x) represented by
the dashed line.

Figure 1. (a) A “realistic” continuous potential is described by the solid gray line. At the minimum,
the “realistic” potential can be very well approximated by a quadratic potential (dashed black line).
(b) By setting the origin of the coordinate system at the minimum of the dashed quadratic potential,
we redefine the zero-potential energy V0 = 0.

If we set the origins of the position and energy axes to coincide at the minimum of the “realistic”
potential, then we can plot our parabolic approximation, as illustrated in Figure 1b. Equation (1),

V(x) = C
2 x2, (1)

describes this parabola, and we will discuss the precise origin of this expression in the first section of
our solution procedure
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The potential of Equation (1) is a quadratic function of the type y(x) = ax2 + bx + c. When the
constants b and c are zero, then the parabola vertex is at the origin. Meanwhile, the constant a narrows
the parabola as the value increases; in this case, constant a = C

2 .
A particle under the influence of Equation (1) potential experiences a linear restoring force equal

to that observed in Hooke’s law:
F(x) = − dV(x)

dx = −Cx,

where C can be interpreted as the spring force constant.
Before entering the solution procedure for the QHO, it is interesting and imperative to review the

classical results for a particle under the influence of a restoring force. If we call the restoring force Fs,
then we will have the following:

Fs = −Cx → Fs = max → −Cx = max → ax = − C
m x → d2x

dt2 = ax →
d2x
dt2 = − C

m x.

We can introduce ω2 = C
m , and then

d2x
dt2 = −ω2x.

The latter is a homogeneous differential equation with constant coefficients, whose solution is of
the type

x(t) = A cos(ωt + φ),

whereω is the angular frequency, and thus the frequency ν is ν = ω
2π .

Then, when the particle moves a distance A from its equilibrium point, it will oscillate in simple
harmonic motion with a frequency equal to

ν = 1
2π

√
C
m , (2)

where C is the restoring force constant and m is the particle’s mass.
We should also recall that, according to classical mechanics, the particle’s total energy E, which is

the sum of the kinetic (K.E.) and potential (P.E.) energies, is proportional to A2, and therefore E is
allowed to take any value. Let us verify this through the following expressions:

K.E. = 1
2 mv2,

x(t) = A cos(ωt + φ) → v(t) = d x(t)
dt = −ωA sin(ωt + φ),

K.E. = 1
2 mω2A2 sin2(ωt + φ) → due ω2 = C

m ,

K.E. = 1
2 CA2 sin2(ωt + φ),

P.E. = 1
2 Cx2

→
1
2 CA2 cos2(ωt + φ),

E = K.E. + P.E. = 1
2 CA2

[
sin2(ωt + φ) + cos2(ωt + φ)

]
.

By using the trigonometric identity sin2(ωt + φ) + cos2(ωt + φ) = 1, we have

E = 1
2 CA2.

Thus, it is clear, from a classical point of view, that a particle with simple harmonic motion can
take any energy value.

On the other hand, quantum mechanics predicts that a particle bound to a certain region of finite
size will have a set of discrete energy values, as in the case of a potential well. We will establish that
these discrete energy predictions also appear on the quantum harmonic oscillator.

To obtain a full-fledged analytical solution for the QHO, we propose a methodology divided
into eight segments. We present each section as an independent problem, very simple to solve,
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and explained in detail. The mathematical tools to follow the problem’s solution are available to
any engineering or science student. The sum of these eight small problems constitutes the analytical
solution for QHO. These sections are as follows:

1. Determination of the quadratic potential V(x);
2. Use of V(x) potential in the time-independent Schrödinger equation to obtain a dimensionless

differential equation;
3. Manipulation of the dimensionless differential equation to determine its solution’s form at infinity;
4. Determination of the recursion relation that allows us to obtain complete solutions for the

dimensionless differential equation;
5. Comparing successive power coefficients for the functions H(u) and eu2

and to determine the
quantization condition;

6. Writing the odd and even solutions using Hermite polynomials and writing the formulas for the
energy eigenvalues;

7. Obtaining non-normalized eigenfunctions;
8. Normalization of the eigenfunctions and graph for levels 0, 1, 2, and 10.

2.1. Determination of the Quadratic Potential V(x)

Consider the pair of particles of Figure 2. They have a simple harmonic oscillator behavior; i.e., the force
between them depends on a displacing distance x that is counted from an equilibrium position x0.

Figure 2. In this figure, we observe a central forces problem. It can be modeled as a single particle
problem of reduced mass µ. For simplicity, we will consider particle 1 to be anchored while particle
2 oscillates with amplitude x.

In this case, we can express the potential function as a Taylor series. The definition for the Taylor
series centered at the point a is

f (x) =
∞∑

n=0

f (n)(a)
n! (x− a)n.

We calculate some terms:

f (x) = f (a)
0! (x− a)0 +

f ′(a)
1! (x− a)1 +

f ′′(a)
2! (x− a)2 + · · ·

We want our function to be centered on the equilibrium point x0; therefore, a = x0:

f (x) = f (x0)
0! (x− x0)

0 +
f ′(x0)

1! (x− x0)
1 +

f ′′ (x0)
2! (x− x0)

2 + · · ·

For the first term, we have f (x0) = const = V0. Meanwhile, for the second term, we have
f ′(x0)

1! = const = V1, and the third term can be expressed as f ′′ (x0)
2! = 1

2 const = 1
2 V2.

Consequently, we can write our potential function as follows:

V(x) = V0 + V1(x− x0) +
1
2 V2(x− x0)

2 + · · ·

We only keep the first three terms of the series because the value (x− x0) is small for small
displacements from the equilibrium position x0.
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With the previous function in mind, one can see that at x = x0, we have a minimum, and in

consequence, dV(x)
dx = 0. For the above to be true, it requires that V1 = 0. Additionally, we can redefine

the zero-potential energy at V0 = 0 (Figure 1b). Then, one can immediately identify that the last
remaining term of the potential function V(x) is

1
2 V2x2.

This is the origin of the quadratic potential V(x) that appears in most modern and introductory
quantum physics books. We only need to replace the constant V2 with the constant C to obtain Equation (1)
that we presented previously,

V(x) = C
2 x2.

2.2. Use of V(x) Potential in the Time-Independent Schrödinger Equation to Obtain a Dimensionless
Differential Equation

Recall that the time-independent Schrödinger equation is [3].

−
}2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = E ψ(x).

Substituting the potential of Equation (1) into the time-independent Schrödinger equation, we have

−
}2

2m
d2ψ
dx2 + C

2 x2ψ = E ψ. (3)

On the other hand, Equation (2) defines the classical oscillation frequency υ in terms of the force
constant C and the particle’s mass m. Using that expression, we can obtain the value of C in terms of
υ, π, and m,

ν = 1
2π

√
C
m → ν2 = 1

4π2
C
m → C = ν24π2m.

We introduce constant C into Equation (3) to obtain,

−
}2

2m
d2ψ
dx2 + ν24π2m

2 x2ψ = E ψ → −
}2

2m
d2ψ
dx2 + 2mπ2ν2x2ψ = E ψ.

We rearrange the last expression as follows:

−
}2

2m
d2ψ
dx2 = E ψ− 2mπ2ν2x2ψ → −

}2

2m
d2ψ
dx2 = ψ

[
E− 2mπ2ν2x2

]
→

d2ψ
dx2 = − 2m

}2 ψ
[
E− 2mπ2ν2x2

]
→

d2ψ
dx2 +

[
2mE
}2 −

(
2mπν
}

)2
x2

]
ψ = 0.

We defining α and β values as

α = 2mπν
} and β = 2mE

}2 . (4)

We can write the equation as follows:

d2ψ
dx2 +

[
2mE
}2 −

(
2mπν
}

)2
x2

]
ψ = 0,

d2ψ
dx2 +

[
β− α2x2

]
ψ = 0. (5)

Let us pause briefly to identify the units of the α and β values. To this end, remember that

E =
(mass)(length)2

(time)2 = ML2

T2 ; } =
(mass)(length)2

(time) = ML2

T ; ν = 1
(time) =

1
T .

Hence for α and β, we have that
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α =
M( 1

T )
ML2

T

=
M
T

ML2
T

= MT
MTL2 = L−2 and β =

M
(

ML2

T2

)
(

ML2
T

)2 =
M2L2

T2

M2L4
T2

= M2L2T2

M2L4T2 = L−2.

In other words, Equation (5) is not yet a dimensionless equation. To make the equation
dimensionless, let us propose a variable change. Due to the units of α, a good proposal for the
new variable is u =

√
α x.

Since α = 2mπν
} and ν = 1

2π

√
C
m , then

√
α =

(
2πmν
}

) 1
2 . By carrying out the corresponding algebra

we have

α = 2πm
}

[
1

2π

(
C
m

) 1
2

]
→
√
α =

(
m
}

) 1
2
(

C
m

) 1
4 = m

1
2

}
1
2

C
1
4

m
1
4
→
√
α = m

1
4 C

1
4

}
1
2
→
√
α =

(Cm)
1
4

}
1
2

.

Consequently, we can also write u in the following way:

u =
√
α x =

(Cm)
1
4

}
1
2

x. (6)

Equation (5) is a differential equation where the unknown is the function ψ(x). We are proposing
a variable change from x to u; as a result, ψ(x) will become ψ(u). Since Equation (5) contains a
second derivative of the ψ(x) function, we need to calculate the corresponding second derivative
of ψ(u) function. We must use the well-known chain rule whenever we make a variable change in
a differentiable function. Let us use a very simple example to remember Leibniz’s notation for the
chain rule.

d
dx

[
sin

(
x2

)]
, u = x2,

d( f )
dx =

d( f )
du

du
dx ;[

d
du (sin u)

][
d

dx

(
x2

)]
= (cos u)(2x) = 2x cos

(
x2

)
.

Next, we will use the chain rule to get the first and second derivatives of the ψ(u) function:
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du
dx = d

dx

[√
α x

]
=
√
α.

Therefore,
dψ(x)

dx =
dψ(u)

du
du
dx =

√
α

dψ(u)
du .

For the second derivative case, the chain rule includes a product rule, and it is expressed as follows:

d2ψ(x)
dx2 =

d2ψ(u)
du2

(
du
dx

)2
+

dψ(u)
du

d2u
dx2 = α

d2ψ(u)
du2 .

Now, we substitute our previous results into Equation (5) to get a new equation in the variable u:

α
d2ψ(u)

du2 +
(
β− αu2

)
ψ(u) = 0.

Dividing this last equation by α, we get:

d2ψ(u)
du2 +

( β
α − u2

)
ψ(u) = 0.
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The reader can quickly identify that Equation (7) is actually a dimensionless equation because

α = β = L−2 u =
√
α x = 1

L (L) = (dimensionless)αβ = L−2

L−2 .

2.3. Manipulation of the Dimensionless Differential Equation to Determine Its Solution’s Form at Infinity

As previously mentioned, Equation (7) is a differential equation where the unknown is theψ(u) function.
In this section, we should start the procedures to find solutions to Equation (7), i.e., the ψ(u) function.

It is imperative to keep in mind that ψ(u) must retain the properties of valid wave functions.
That is, ψ(u) and ψ′(u) must be single-valued functions (each value in its domain corresponds to a
unique value in its range). They must also be continuous and finite for every value of u from −∞ to∞.

At this point, the requirement that we should be most attentive is that ψ(u) remains finite for very
large values of u, that is, when |u| → ∞ . In this regard, it is possible to identify that β/α is nothing more
than a dimensionless quantity that tells us the particle total energy. We can verify this by evaluating
this ratio:

β
α =

2mE
}2

2mπν
}

= E
πν} = E

π( ω
2π )}

= 2E
}ω .

For a finite particle’s energy, the β/α value appearing in Equation (7) is negligible compared to the
quantity u2 when |u| → ∞ . Therefore, for huge values of |u|, it is acceptable to transform Equation (7)
into Equation (8) as follows:

d2ψ(u)
du2 +

( β
α − u2

)
ψ(u) = 0. (7)

For very high values of |u|, the ratio β
α is negligible compared with u2, and therefore

d2ψ(u)
du2 − u2ψ(u) = 0 → d2ψ(u)

du2 = u2ψ(u),
d2ψ(u)

du2 = u2ψ for |u| → ∞.

Equation (8) is a special function called the Weber equation or “parabolic cylinder function”.
Weber equation has the following canonical form:

d2 f
dx2 +

(
ax2 + bx + c

)
f = 0.

For the particular case of Equation (8), we can see that a = −1, while b and c are equal to zero.

d2ψ
du2 +

[
−1u2 + (0)u + 0

]
ψ = 0,

d2ψ(u)
du2 = u2ψ. (8)

As we have repeated throughout this work, the unknown of a differential equation is a function,
ψ(u), in our case. What does Equation (8) tells us? The second derivative of function ψ(u) will be
equal to that same function multiplied by u2.

What function supports being derived while remaining the same function? This, of course, is the
exponential function. Thus, a clever first proposal for ψ(u) is eu.

If we propose ψ(u) = eu, then dψ
du =

d2ψ
du2 = eu.

We discard eu because its derivatives do not give us the term u2 that we expect to appear on the
right-hand side of the equation. When changing the argument of the exponential function and using
the chain rule, we observe the following:

ψ(u) = eu2

 z = u2,
dψ
du =

dψ
dz

dz
du →

dψ
du = eu2

2u.
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Hence, if ψ(u) = eu2
, then dψ

du = eu2
2u and d2ψ

du2 = 2eu2
u + 4eu2

u2.

With that behavior in mind, we can glimpse what the argument of the exponential function
that satisfies Equation (8) will be. Let us verify what happens when we use −u2

2 as argument of the

exponential function. If we propose ψ(u) = e−
u2
2 , we will have the following:

ψ(u) = e−
u2
2 →

dψ
du = −ue−

u2
2 →

d2ψ
du2 = u2e−

u2
2 − e−

u2
2 .

This proposal leads us to

d2ψ
du2 = u2ψ−ψ →

d2ψ
du2 =

(
u2
− 1

)
ψ. (9)

Notice that, for very large values of |u|, Equation (9) transforms itself into Equation (8); therefore,

ψ(u) = e−
u2
2 is a valid solution. Of course, this is only an asymptotic solution; however, our purpose

was to emphasize that, by using our intuition, we can identify the form of the functionψ(u) that satisfies
Equation (8). Consequently, we can write our function ψ(u) in the following manner:

ψ(u) = Ae−
u2
2 for |u| → ∞. (10)

2.4. Determination of the Recursion Relation that Allows Us to Obtain Complete Solutions for the Dimensionless
Differential Equation

Equation (10) gives us solutions for Equation (8). However, we must keep in mind that Equation (8)
is just a particularization of the Equation (7) for very high values of |u|.

Therefore, if we want a complete solution that can satisfy the dimensionless Equation (7), we must
add to the solution of Equation (10) a new function responsible for describing the behavior of ψ(u)
for small values of u.

The proposal will be to write the function ψ(u) as a product of the function presented in
Equation (10) and a “new” function that we do not yet know, H(u), as follows:

ψ(u) = Ae−
u2
2 H(u). (11)

In Equation (11), we have a function multiplication because, in quantum mechanics, a composite
system is defined by the tensorial product of its wave functions. This multiplicative character is due to
the fact that the wave functions do not represent the particles’ properties, but rather the probability
amplitudes of said properties. Therefore, an appropriate way to propose a complete solution composed
of two functions is not by adding them, but by multiplying them.

We must emphasize that we do not know the function H(u), but what we can be sure of is that when
|u| → ∞ , H(u) will vary very slowly. That is, at infinity, the behavior of Equation (11) will be dominated

by the function Ae−
u2
2 , whereas, for low values of u, the behavior of the function ψ(u) will be dominated

by H(u).
Since Equation (11) pretends to be the function that satisfies the differential Equation (7), we will

insert Equation (11) into Equation (7). With this strategy, we will transform Equation (7), whose unknown
is ψ(u), into a new differential equation whose unknown is H(u). To carry out this procedure, we need to
obtain the second derivative of Equation (11).

As Equation (11) is a multiplication of functions, it is worth recalling the product rule:

d
dx ( f ·g) = d f

dx ·g + f · dg
dx .

Therefore, the first derivative of ψ(u) will be as follows:
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ψ(u) = Ae−
u2
2 H(u),

dψ
du = −Aue−

u2
2 H + Ae−

u2
2 dH

du .

Physics 2020, 2 FOR PEER REVIEW  9 

 

Since Equation (11) pretends to be the function that satisfies the differential Equation (7), we will 
insert Equation (11) into Equation (7). With this strategy, we will transform Equation (7), whose 
unknown is 𝜓(𝑢) , into a new differential equation whose unknown is 𝐻(𝑢) . To carry out this 
procedure, we need to obtain the second derivative of Equation (11). 

As Equation (11) is a multiplication of functions, it is worth recalling the product rule: ௗௗ௫ (𝑓 ∙ 𝑔) = ௗௗ௫ ∙ 𝑔 + 𝑓 ∙ ௗௗ௫. 

Therefore, the first derivative of 𝜓(𝑢) will be as follows: 𝜓(𝑢) = 𝐴𝑒ିೠమమ𝐻(𝑢), ௗటௗ௨ = −𝐴𝑢𝑒ିೠమమ𝐻 + 𝐴𝑒ିೠమమ ௗுௗ௨. 

 𝑑𝜓𝑑𝑢 = −𝐴𝑒ି௨ଶమ𝐻𝑢 + 𝐴𝑒ି௨ଶమ 𝑑𝐻𝑑𝑢  

   
   

term 

  

term 
For the second derivative, we have to identify that the first term of ௗటௗ௨ is a multiplication of 

three functions: (𝐴𝑒ିೠమమ) (𝐻) (𝑢). With the above in mind, we perform the second derivative term by 
term using the product rule. 

 term 

  

term  

  

   𝑑ଶ𝜓𝑑𝑢 = 𝐴𝑢𝑒ି௨ଶమ𝐻𝑢 + 𝐻 + 𝑑𝐻𝑑𝑢 𝑢൨ −𝐴𝑒ି௨ଶమ൨ − 𝐴𝑢𝑒ି௨ଶమ 𝑑𝐻𝑑𝑢 + 𝐴𝑒ି௨ଶమ 𝑑ଶ𝐻𝑑𝑢ଶ  

 ௗమటௗ௨ = −𝐴𝑒ିೠమమ𝐻 + 𝐴𝑢ଶ𝑒ିೠమమ𝐻 − 𝐴𝑢𝑒ିೠమమ ௗுௗ௨ − 𝐴𝑢𝑒ିೠమమ ௗுௗ௨ + 𝐴𝑒ିೠమమ ௗమுௗ௨మ.  

Factoring the term 𝐴𝑒ିೠమమ
, we have 𝑑ଶ𝜓𝑑𝑢 = 𝐴𝑒ି௨ଶమ ቆ−𝐻 + 𝑢ଶ𝐻 − 2𝑢 𝑑𝐻𝑑𝑢 + 𝑑ଶ𝐻𝑑𝑢ଶ ቇ. 

We insert the values of 𝜓 and ௗమటௗ௨  into Equation (7): 𝐴𝑒ି௨ଶమ ቆ−𝐻 + 𝑢ଶ𝐻 − 2𝑢 𝑑𝐻𝑑𝑢 + 𝑑ଶ𝐻𝑑𝑢ଶ ቇ + ൬𝛽𝛼 − 𝑢ଶ൰ ൬𝐴𝑒ି௨ଶమ𝐻൰ = 0 

    𝑑ଶ𝜓𝑑𝑢   𝜓(𝑢)  

Expanding the last equation, we have 𝐴𝑒ି௨ଶమ ቆ−𝐻 + 𝑢ଶ𝐻 − 2𝑢 𝑑𝐻𝑑𝑢 + 𝑑ଶ𝐻𝑑𝑢ଶ ቇ + ൬𝛽𝛼 𝐴𝑒ି௨ଶమ𝐻 − 𝐴𝑢ଶ𝑒ି௨ଶమ𝐻൰ = 0. 
Dividing both sides of the equation by 𝐴𝑒ିೠమమ

, we are left with −𝐻 + 𝑢ଶ𝐻 − 2𝑢 ௗுௗ௨ + ௗమுௗ௨మ + ఉఈ 𝐻 − 𝑢ଶ𝐻 = 0, 

For the second derivative, we have to identify that the first term of dψ
du is a multiplication of three

functions:
(
Ae−

u2
2

)
(H) (u). With the above in mind, we perform the second derivative term by term

using the product rule.
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d2ψ
du = −Ae−

u2
2 H + Au2e−

u2
2 H −Aue−

u2
2 dH

du −Aue−
u2
2 dH

du + Ae−
u2
2 d2H

du2 .

Factoring the term Ae−
u2
2 , we have

d2ψ
du = Ae−

u2
2
(
−H + u2H − 2u dH

du + d2H
du2

)
.

We insert the values of ψ and d2ψ
du into Equation (7):
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Expanding the last equation, we have

Ae−
u2
2
(
−H + u2H − 2u dH

du + d2H
du2

)
+

(
β
αAe−

u2
2 H −Au2e−

u2
2 H

)
= 0.

Dividing both sides of the equation by Ae−
u2
2 , we are left with

−H + u2H − 2u dH
du + d2H

du2 +
β
αH − u2H = 0,

−H − 2u dH
du + d2H

du2 +
β
αH = 0.

Rearranging the previous equation, we can write it in the form of a Hermite equation.

d2H
du2 − 2u dH

du +
( β
α − 1

)
H = 0. (12)

With the latter procedure, we have achieved our objective. We transform Equation (7) with unknown
ψ(u) into Equation (12) with unknown H(u).

Equation (12) is a special function called Hermite equation. Hermite equation can be solved using
the power series technique, which is one the most general techniques for obtaining analytical solutions
to a differential equation.
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To use the power series solution technique, we must start by assuming that the solution of the
equation, i.e., H(u), can be written as a power series in the independent variable.

Therefore, we will assume that H(u) is a polynomial with the following form:

H(u) =
∑
∞

`=0 a`u` ≡ a0u0 + a1u1 + a2u2 + a3u3 + . . . . (13)

In Equation (12), we see not only the function H, but also its first and second derivatives dH
du and

d2H
du2 . We must calculate these derivatives from Equation (13). Moreover, in Equation (12), the first
derivative dH

du is multiplied by the term −2u. Considering this pair of observations, we have to complete

two tasks: (1) calculate the second derivative d2H
du2 and express it as a sum from ` = 0 to ` = ∞;

(2) calculate the first derivative dH
du , multiply it by −2u, and express the result as a sum from ` = 0 to

` = ∞, such as with H(u) and d2H
du2 .

H(u) =
∑
∞

`=0 a`u`; −2u dH
du =

∑
∞

`=0 ?; d2H
du2 =

∑
∞

`=0?

Tasks 1 and 2 consist of finding the series’ elements for −2u dH
du and d2H

du2 indicated in the previous
expression with the question mark. These elements must be composed of a coefficient (whatever it is)
that multiplies the variable u`. By doing this, we will enable variable u` to be present in the three terms
H(u), −2u dH

du , and d2H
du2 . Consequently, we will be able to factor u` when we evaluate the terms H(u),

−2u dH
du , and d2H

du2 into Equation (12).

Task 1.

For d2H
du2 , we start from the term a`+2u`+2. This is because the derivation rules tell us that we must

subtract one unit from the superscript and lower it, multiplying the existing coefficient. Therefore,
the first two derivatives of the starting term are as follows:

• We start from a`+2u`+2;
• The first derivative is (`+ 2)a`+2u`+1;
• The second derivative is (`+ 1)(`+ 2)a`+2u`.

Thus, we have completed our task for d2H
du2 :

d2H
du2 = ? = (`+ 1)(`+ 2)a`+2u`.

Task 2.

In the case of −2u dH
du , we must start with the term a`u`: and complete the following:

• We start from a`u`;
• The first derivative is `(a`)u`−1;

• We multiply the first derivative by −2u: (−2u)
(
`a`u`−1

)
= −2`a`u`.

With the above, we have managed to express the elements of the series for H(u),−2u dH
du , and d2H

du2

as a coefficient that multiplies u` as follows:

d2H
du2 =

∑
∞

`=0(`+ 2)(`+ 1)a`+2u`,

−2u dH
du =

∞∑
`=0
−2`a`u`,( β

α − 1
)
H =

∑
∞

`=0

( β
α − 1

)
a`u`.
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Substituting these power series into the Hermite Equation (12), we have

∞∑
`=0

[
(`+ 2)(`+ 1)a`+2 − 2`a` +

( β
α − 1

)
a`

]
u` = 0,

which is nothing other than the differential Equation (12) expressed with the function H(u) and its
derivatives in a power series fashion.

For equality to be true, the equation must be valid for all values of u`. In other words, the validity
of the previous equation does not depend on the value of u`, and thus

(`+ 2)(`+ 1)a`+2 − 2`a` +
( β
α − 1

)
a` = 0.

Factoring a`,
(`+ 2)(`+ 1)a`+2 +

( β
α − 2` − 1

)
a` = 0.

Expressing a`+2 in terms of a` we have

(`+ 2)(`+ 1)a`+2 =
(
2`+ 1− β

α

)
a`,

a`+2 =

(
2`+1− βα

)
(`+2)(`+1)a`.

(14)

Equation (14) is known as the recursion relation that allows us to determine the coefficients of the
function H(u).

2.5. Comparing Successive Power Coefficients for the Functions H(u) and e−
−u2

2 and to Determine the
Quantization Condition

It can be identified that recursion relation of Equation (14) is fed by two initial conditions: a0 and
a1. If we give a0, the recursion relation gives us a2, a4, a6, . . .. If we give a1, recursion relation returns
us a3, a5, a7, . . . . This is precisely as it should be since the differential Equation (12) contains a double
derivative; in consequence, two arbitrary constants must appear in its general solution when integrated.

a0 is obtained by specifying the value of the function evaluated at zero, H(0) = a0, and generates
the even solution a0 + a2u2 + a4u4 + . . .. a1 is obtained from specifying the value of the first derivative
evaluated at zero, H′(0) = a1, and generates the odd solution a1u + a3u3 + a5u5 + . . ..

We know that H(u) is a power series, but does this series converge, or should it be truncated at
some point? To answer that question, we will compare the behavior of H(u) with that of eu2

.
Remember that Equation (11) is the proposed solution for the dimensionless Equation (7). Equation (11)

is ψ(u) = Ae−
u2
2 H(u); since H(u) multiplies Ae−

u2
2 , we know that the function will go infinity if H(u)

grows faster than Ae−
u2
2 decreases. In other words, if H(u) were equal to eu2

, then the function ψ(u)
would tend towards∞ when |u| → ∞ ; if that were the case, the solution would not be an acceptable
wave function. That is why we propose eu2

to compare with H(u).
For that comparison, let us start by writing the recursion relation of Equation (14).

a`+2 =

(
2`+1− βα

)
(`+2)(`+1)a`.

Writing the ratio a`+2/a`, we have

a`+2
a`

=

(
2`+1− βα

)
(`+2)(`+1) .

What happens to the ratio a`+2/a` when the index ` is very large?
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Therefore, when ` is substantially big, the ratio of two successive coefficients for the function H(u)
is 2

` .
Let us do the same for the function eu2

. For this purpose, we need to express eu2
as a power series,

so we will use the definition of a Taylor series centered on a.

f (x) =
∑
∞

n=0
f (n)(a)

n! (x− a)n.

The Taylor series of ex centered at zero is

ex = 1 + 1
1! (x) +

1
2! (x)

2 + 1
3! (x)

3 + 1
4! (x)

4 + . . . ;

ex =
∑
∞

n=0
xn

n! ; ∀x, ∈ N.

To obtain the series of eu2
, we can use the series of ex as a base, making the following substitution:

x = u2. Wherever we find an x, we will replace it with a u2, respecting the external exponent:

f (u) = eu2
= 1 + u2 + 1

2!

(
u2

)2
+ 1

3!

(
u2

)3
+ 1

4!

(
u2

)4
,

f (u) = eu2
= 1 + u2 + 1

2! u
4 + 1

3! u
6 + 1

4! u
8 + . . . .

Now, we should compare the last expression with the following series:

f (u) = C0 + C2u2 + C4u4 + C6u6 + C8u8 + . . . .

We can readily identify that the constants multiplying the independent variable u in the series
expansion of eu2

can be expressed as
Cl =

1
(l/2)! .

Therefore,
Cl+2 = 1

( l+2
2 )!

= 1
(l/2+1)! .

Accordingly, the ratio of the two successive coefficients for the function eu2
is

Cl+2
Cl

=
1

(l/2+1)!
1

(l/2)!
.

For the denominator of the constant Cl+2, we should recall the following identity for factorial numbers:

x! = x·(x− 1)!

If we make a substitution where x = `
2 + 1,(

`
2 + 1

)
! =

(
`
2 + 1

)(
`
2 + 1− 1

)
! =

(
`
2 + 1

)(
`
2

)
!

Thus, we can write the ratio of the two successive coefficients of eu2
as follows:

Cl+2
Cl

=

1

( `2 +1)( `2 )!

1

( `2 )!

= 1
`
2+1
≈

1
`
2
= 2

` .
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Then, for very high ` values, the successive power ratios for H(u) and eu2
functions coincide.

Thence, we can assert that if we use an infinite number of terms for the H(u) function, then the solution
of Equation (11) would not be an acceptable wave function, because ψ(u) → ∞ when |u| → ∞ .

The above should not perturb us. We should only consider certain restrictions that allow us to
truncate H(u). Recall that the term β

α = 2E
}ω is the so-called particle’s dimensionless energy; this energy

cannot be infinite.
Because energy β

α cannot be infinite, then the H(u) series can be truncated if we force the energy
β
α to take specific values that equal 2`+ 1. By doing that, we will zero the numerator of the recursion
relation, and thus we will truncate the H(u) series:

β
α = 2`+ 1,

where
` = 1, 3, 5, 7, . . . for a0 = 0,
` = 0, 2, 4, 6, . . . for a1 = 0.

The equation above is called the quantization condition for the QHO, and we can write it in a
more familiar way if we substitute ` for n,

β
α = 2n + 1.

2.6. Writing the Odd and Even Solutions Using Hermite Polynomials and Writing the Formulas for the
Energy Eigenvalues

From the previous quantization condition, we must identify that it is not sufficient for β
α to have

a finite value with arbitrary energy. Any random finite energy does not bring the recursion relation
numerator to zero; then, the H(u) series are not truncated.

How many values of βα cause the H(u) series to end? The answer is infinite, but quantized. In other

words, for n = 0, there is a value of βα that truncates the series, another for n = 1, one more for n = 2, and so
on. As long as the H(u) series ends, we will have normalizable and, therefore, valid eigenfunctions.

The functions Hn(u) are polynomials of order n and are called Hermite polynomials. The recursion
relation of Equation (14) allows us to successively calculate the coefficients a2, a4, a6, . . . in terms of a0;
this is known as the even solution. Meanwhile, the coefficients a3, a5, a7, . . . are expressed in terms of
a1 and constitute the odd solution.

Thence, it is possible to express the general solution in two independent series written in the
following way:Physics 2020, 2 FOR PEER REVIEW  14 
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The series will truncate with an exponent equal to the number n of the quantization condition; 
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To conclude this section, remember that the quantization condition is 𝛽/𝛼 = 2𝑛 + 1, but in turn 𝛽/𝛼 is the so-called dimensionless energy defined as ఉఈ = ଶாℏன. 

By substituting this last value into the quantization condition, we can easily obtain the formulas 
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2.7. Obtaining Non-Normalized Eigenfunctions 

Now, we will calculate the first five eigenfunctions of the QHO. We will describe the procedure 
in detail for each of them. 

For 𝑛 = 0: 
(a) Evaluate 𝑛 = 0 in the dimensionless energy quantization condition to obtain the numerical 

value of ఉఈ, 

(b) Evaluate the numerical value of ఉఈ in the recursion relation to obtain the Hermite coefficients 
corresponding to 𝑛 = 0, 

𝑎ℓାଶ = ቀଶℓାଵିഁഀቁ(ℓାଶ)(ℓାଵ) 𝑎ℓ   𝑎ାଶ = (ଶ()ାଵିଵ)(ାଶ)(ାଵ) 𝑎    𝑎ଶ = ଶ 𝑎; 

For 𝑛 = 0, we only have 𝑎, which is an initial constant. 

(c) Evaluate, in Equation (15), the coefficients obtained from the recursion relation to get the 
Hermite polynomial corresponding to 𝑛 = 0, 𝐻(𝑢), 𝐻(𝑢) = 𝑎(1); 

(d) Write the complete eigenfunction by multiplying 𝐻(𝑢) and 𝐴𝑒షೠమమ , 

ఉఈ = 2𝑛 + 1   ఉఈ = 2(0) + 1  ఉఈ = 1 

𝑛 = 0 

The series will truncate with an exponent equal to the number n of the quantization condition;
that is,

H(u) = anun + an−2un−2 + an−4un−4 + . . .

For example, for n = 4, we will have an even solution and a polynomial Hn(u) of the type

H4(u) = a4u4 + a2u2 + a0.

For one with n = 5, it would be

H5(u) = a5u5 + a3u3 + a1u.
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To conclude this section, remember that the quantization condition is β/α = 2n + 1, but in turn
β/α is the so-called dimensionless energy defined as

β
α = 2E

}ω .

By substituting this last value into the quantization condition, we can easily obtain the formulas
for the quantum oscillator’s energy eigenvalues.

2E
}ω = 2n + 1 → 2E = (2n + 1)}ω,

E = (2n + 1) }ω2 → E =
(
n + 1

2

)
}ω,

E =
(
n + 1

2

)(
h

2π

)
(2πν) → E =

(
n + 1

2

)
hν.

2.7. Obtaining Non-Normalized Eigenfunctions

Now, we will calculate the first five eigenfunctions of the QHO. We will describe the procedure in
detail for each of them.

For n = 0:

(a) Evaluate n = 0 in the dimensionless energy quantization condition to obtain the numerical value

of β
α ,

β
α = 2n + 1 → β

α = 2(0) + 1 → β
α = 1

n = 0

(b) Evaluate the numerical value of β
α in the recursion relation to obtain the Hermite coefficients

corresponding to n = 0,

a`+2 =

(
2`+1− βα

)
(`+2)(`+1)a` → a0+2 =

(2(0)+1−1)
(0+2)(0+1)a0 → a2 = 0

2 a0;

For n = 0, we only have a0, which is an initial constant.
(c) Evaluate, in Equation (15), the coefficients obtained from the recursion relation to get the Hermite

polynomial corresponding to n = 0, H0(u),

H0(u) = a0(1);

(d) Write the complete eigenfunction by multiplying H0(u) and Ae
−u2

2 ,

ψ0(u) = A0e
−u2

2 ;

(e) Express the eigenfunction ψ0(u) as ψ0(x) by changing the variable u back to x,

u =
√
α x,

ψ0(x) = A0e
−αx2

2 .

For the following eigenfunctions, we will use the same five steps that we used for n = 0. For that
reason, we will only refer to them as (a), (b), (c), (d), and (e).

For n = 1:

(a) β
α = 3,

(b) a`+2 =

(
2`+1− βα

)
(`+2)(`+1)a` → a1+2 =

(2(1)+1−3)
(1+2)(1+1)a1 → a3 = 0

6 a1;

For n = 1, we only have a1, which is an initial constant,
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(c) H1(u) = a1(u),

(d) ψ1(u) = A1ue
−u2

2 ,

(e) u =
√
α x → ψ1(x) = A1

(√
α x

)
e
−αx2

2 .

For n = 2:

(a) β
α = 5,

(b) a`+2 =

(
2`+1− βα

)
(`+2)(`+1)a` → a2+2 =

(2(2)+1−5)
(2+2)(2+1)a2 → a4 = 0

12 a2 = 0;

a4 turns out to be zero. However, a2 will not, and we can express it in terms of a0,

a0+2 =
(2(0)+1−5)
(0+2)(0+1)a0 → a2 = −4

2 a0 → a2 = −2a0;

a0 is an initial constant,
(c) H2(u) = a0

(
1 + a2

a0
u2

)
= a0

(
1 + −2a0

a0
u2

)
;

H2(u) = a0
(
1− 2u2

)
,

(d) ψ2(u) = A0
(
1− 2u2

)
e
−u2

2 ,

(e) u =
√
α x → ψ2(x) = A0

(
1− 2αx2

)
e
−αx2

2 .

For n = 3:

(a) β
α = 7,

(b) a`+2 =

(
2`+1− βα

)
(`+2)(`+1)a` → a3+2 =

(2(3)+1−7)
(3+2)(3+1)a3 → a5 = 0

20 a3 = 0;

a5 turns out to be zero. However, a3 will not, and we can express it in terms of a1,

a1+2 =
(2(1)+1−7)
(1+2)(1+1)a1 → a3 = − 2

3 a1;

a1 is an initial constant,

(c) H3(u) = a1
(
u + a3

a1
u3

)
= a1

(
u +

−
2
3 a1
a1

u3
)
;

H3(u) = a1
(
u− 2

3 u3
)
,

(d) ψ3(u) = A1
(
u− 2

3 u3
)
e
−u2

2 ;
To remove the fraction that multiplies u3, we multiply by 3 and charge the “discrepancies” to the
constant A1,

ψ3(u) = A1
(
3u− 2u3

)
e
−u2

2 ,

(e) u =
√
α x → ψ3(x) = A1

(
3
(√
α x

)
− 2

(√
α x

)3
)
e
−αx2

2 ;

ψ3(x) = A1
(√
α x

)(
3− 2

√
α x2

)
e
−αx2

2 .

For n = 4:

(a) β
α = 9,

(b) Since we are working with n = 4, we know a6 will be zero. However, a4 and a2 will not, and we
can express them in terms of a0,

a2+2 =
(2(2)+1−9)
(2+2)(2+1)a2 → a4 = −4

12 a2 = − 1
3 a2;

a0+2 =
(2(0)+1−9)
(0+2)(0+1)a0 → a2 = −8

2 a0 = −4a0;



Physics 2020, 2 556

a0→ initial constant;
a2 = −4a0;

a4 = − 1
3 a2 = − 1

3 (−4a0) =
4
3 a0,

(c) H4(u) = a0
(
1 + a2

a0
u2 + a4a2

a2a0
u4

)
= a0

(
1 + (−4a0)

a0
u2 +

( 4
3 a0)(−4a0)

(−4a0)(a0)
u4

)
;

H4(u) = a0
(
1− 4u2 + 4

3 u4
)
,

(d) ψ4(u) = A0
(
1− 4u2 + 4

3 u4
)
e
−u2

2 ;
To remove the fraction that multiplies u4, we multiply by 3 and charge the “discrepancies” to the
constant A0,

ψ4(u) = A0
(
3− 12u2 + 4u4

)
e
−u2

2 ,

(e) u =
√
α x → ψ4(x) = A0

(
3− 12

(√
α x

)2
+ 4

(√
α x

)4
)
e
−αx2

2 ;

ψ4(x) = A0
(
3− 12

(
α x2

)
+ 4

(
α 2x4

))
e
−αx2

2 ;

ψ4(x) = A0
(
3 + 4α x2

(
−3 + α x2

))
e
−αx2

2 .

2.8. Normalization of the Eigenfunctions and Graph for Levels 0, 1, 2, and 10

In the previous eigenfunctions, the constant A0 appears for the even solutions, and A1 appears for
the odd solutions. In this section, we will determine those constants by normalization. Normalization
is defined as

∫
∞

−∞
Ψ∗(x, t)Ψ(x, t) dx = 1.

For time-independent potentials, we can express the wave function as Ψ(x, t) = ψ(x)e−iωt.
Its probability density is as follows: Ψ∗(x, t)Ψ(x, t) = ψ2(x)(e−iωte+iωt) = ψ2(x).
Consequently, the normalization for our wave functions will be

∫
∞

−∞
ψ2(x) dx = 1.

In this case, we are dealing with time-independent Schrödinger wave functions. However, this
methodology is equally valid for the normalization of time-dependent Schrödinger wave functions.
The interested reader can consult the proof in Appendix D, which is based on the discussions presented
in [27].

For n = 0:

(a) Square the function ψ0(x):
[
A0e

−αx2
2

][
A0e

−αx2
2

]
= A2

0e−αx2
→ ψ2

0(x) = A2
0e−αx2

,

(b) Integrate ψ2
0(x) from −∞ to∞:

∫
∞

−∞
A2

0e−αx2
dx,

This integral cannot be solved by analytical methods in variable x. However, in Appendix A,
we present a detailed procedure of its analytical solution in polar coordinates. We give the
result below:

∞∫
−∞

A2
0e−αx2

dx = A2
0

(
π
α

) 1
2 ,

(c) Determine the constant A0 by equating the result of the previous integral to 1:

A2
0

(
π
α

) 1
2 = 1 → A2

0 = 1

( πα )
1
2
= α

1
2

π
1
2
→ A0 =

(
π
α

) 1
4 ,

(d) Write the wave function by inserting A0 constant value into ψ0(x):

ψ0(x) = A0e
−αx2

2 where A0 =
(
α
π

) 1
4
→ ψ0(x) =

(
α
π

) 1
4 e
−αx2

2 .
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For n = 1:

(a) Square the function ψ1(x): ψ1(x) = A1
(√
α x

)
e
−αx2

2 ∴ ψ2
1(x) = A2

1

(
α x2

)
e−αx2

,

(b) Integrate ψ2
1(x) from −∞ to∞:

∫
∞

−∞
A2

1

(
α x2

)
e−αx2

dx → A2
1α

∫
∞

−∞
x2e−αx2

dx ,
To solve this integral, it is necessary to use the function’s Γ definition. We describe in detail this
procedure in Appendix B. We present the result below:

A2
1α

∫
∞

−∞
x2e−αx2

dx =
A2

1
√
π

2
√
α

,

(c) Determine the constant A1 by equating the result of the previous integral to 1:

A2
1
√
π

2
√
α

= 1 → A2
1 =

2
√
α

√
π
→ A1 =

√
2
(
α
π

) 1
4 ,

(d) Write the wave function by inserting A1 constant value into ψ1(x):

ψ1(x) = A1
(√
α x

)
e
−αx2

2 → ψ1(x) =
√

2
(
α
π

) 1
4
(√
α x

)
e
−αx2

2 ;

ψ1(x) =
(
α
π

) 1
4
√

2α x e
−αx2

2 .

For n = 2:

(a) Square the function ψ2(x):

ψ2(x) = A0
[
1− 2α x2

]
e
−αx2

2 ;

ψ2
2(x) = A2

0

(
1− 2α x2

)2
e−αx2

,

(b) Integrate ψ2
2(x) from −∞ to∞:

∫
∞

−∞
A2

0

(
1− 2α x2

)2
e−αx2

dx = 2
(
π
α

) 1
2 A2

0;

The function Γ is also involved in the solution of the latter integral. At this point, the student
knows that one can rely on the mathematical formula book that is cited Appendix B [28] or on
some mathematical software such as Wolfram Mathematica [29] to solve this kind of integral,

(c) Determine the constant A0 by equating the result of the previous integral to 1:

2
(
π
α

) 1
2 A2

0 = 1 → A2
0 = 1

2

(
α
π

) 1
2
→ A0 = 1

√
2

(
α
π

) 1
4 ,

(d) Write the wave function by inserting A0 constant value into ψ2(x):

ψ2(x) = A0
[
1− 2α x2

]
e
−αx2

2 → ψ2(x) = 1
√

2

(
α
π

) 1
4
[
1− 2α x2

]
e
−αx2

2 ;

ψ2(x) =
(
α
π

) 1
4
[

1
√

2
−
√

2α x2
]
e
−αx2

2 .

Before proceeding to the graphing of wave functions ψ0(x), ψ1(x), and ψ2(x), let us discuss a
particularity of normalized ψ2(x) wave function. In much of the available literature, the reader may
find that ψ2(x) is written as follows:

ψ2(x) =
(
α
π

) 1
4 1
√

2

[
2αx2

− 1
]
e
−αx2

2 .
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The only difference between the two representations is the sign of the Hermite polynomial of
order 2,

[
1− 2αx2

]
= −

[
2αx2

− 1
]
.

This is not an error that could have propagated through our procedure until our wave function
ψ2(x). Actually, the negative sign is related to the fact that in an “unaware” way, we select a0 to
be equal to one. We must not confuse the normalization constant A0 with the coefficient a0 of the
Hermite polynomials.

In this regard, the physicists’ community has adopted a convention where the constants a0 or
a1 are selected in such a way that allows the highest order power, in each Hermite polynomial, to
appear positive.

For the case of our wave function ψ2(x), it is only necessary to make a0 = −1. Following this
convention and using the recursion relation of Equation (14) and the H(u) solutions of Equation (15),
we present below the first 11 Hermite polynomials usable in the QHO.

H0(u) = 1,
H1(u) = u,

H2(u) = 2u2
− 1,

H3(u) = 2u3
− 3u,

H4(u) = 4u4
− 12u2 + 3,

H5(u) = 4u5
− 20u3 + 15u,

H6(u) = 8u6
− 60u4 + 90u2

− 15,
H7(u) = 8u7

− 84u5 + 210u3
− 105u,

H8(u) = 8u8
− 112u6 + 420u4

− 420u2 + 105,
H9(u) = 16u9

− 288u7 + 1512u5
− 2520u3 + 945u,

H10(u) = 32u10
− 720u8 + 5040u6

− 12, 600u4 + 9450u2
− 945.

Therefore, our wave function for level n = 2 is as follows:

ψ2(x) =
(
α
π

) 1
4 1
√

2

[
2αx2

− 1
]
e
−αx2

2 .

Furthermore, with the polynomials we have presented, it is relatively easy to obtain other wave
functions. Let us do it for n = 10.

For n = 10:

(a) Write the general solution: ψn(u) = Ae−
u2
2 Hn(u),

(b) In the last equation, insert H10(u) polynomial to get ψ10(u):

ψ10(u) = A0
(
32u10

− 720u8 + 5040u6
− 12, 600u4 + 9450u2

− 945
)
e−

u2
2 ,

(c) Make the appropriate change of variable from u back to x:

u =
√
α x;

ψ10(x) = A0
(
32

(√
α x

)10
− 720

(√
α x

)8
+ 5040

(√
α x

)6
− 12, 600

(√
α x

)4
+

9450
(√
α x

)2
− 945

)
e−

αx2
2 ;

ψ10(x) = A0
(
32α5x10

− 720α4x8 + 5040α3x6
− 12, 600α2x4 + 9450αx2

− 945
)
e−

αx2
2 ,

(d) Square the function ψ10(x):

ψ2
10(x) = A2

0e−αx2(
32α5x10

− 720α4x8 + 5040α3x6
− 12, 600α2x4 + 9450αx2

− 945
)2

,
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(e) Integrate ψ2
10(x) from −∞ to∞:

∞∫
−∞

ψ2
10(x) = 3, 628, 800

(
π
α

) 1
2 A2

0,

(f) Determine the constant A0 by equating the result of the previous integral to 1:

3, 628, 800
(
π
α

) 1
2 A2

0 = 1→ A0 = 1
720
√

7

(
α
π

) 1
4 ,

(g) Write the wave function by inserting A0 constant value into ψ10(x):

ψ10(x) =
(
α
π

) 1
4 1

720(
√

7)

(
32α5x10

− 720α4x8 + 5040α3x6
− 12, 600α2x4 + 9450αx2

− 945
)
e−

αx2
2 .

Figure 3a–d shows the wave functions graphs for n = 0, 1, 2, and 10. The energy eigenvalues are
expressed as a function of the force constant C and the particle mass m. We have taken advantage of
this to show the electron and proton wave functions simultaneously under the same potential V(x).
Meanwhile, Figure 4 simultaneously presents the wave functions of levels n = 0, 1, 2, and 10 for electron
(a) and proton (b) waves. In both, it is possible to identify the wave functions are evenly spaced.

The plots in Figures 3 and 4 were made using Wolfram Mathematica software [28]. In Appendix C,
we discuss the necessary considerations to make the graphs. We also present the short Mathematica code
to reproduce our plots. The reader is free to use it to verify the present results. In case the reader does not
have access to the Wolfram Mathematica software, we also provide web links to interactive plots.

Figure 3. Electron and proton wave functions, when subjected to the same V(x) = (C/2)x2 potential,
for (a) n = 0, (b) n = 1, (c) n = 2, and (d) n = 10. It is possible to identify that the electron wave has
greater penetration in the classically excluded region than the proton wave.
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Figure 4. Wave functions of levels n = 0, 1, 2, and 10 for (a) electron particle and (b) proton particle.
In both cases, it is possible to identify that the wave functions of consecutive levels are evenly spaced.

3. Conclusions

We presented an eight-step procedure to solve the quantum harmonic oscillator analytically.
The mathematical tools we used to this end are available in all Science, Technology, Engineering and
Mathematics disciplines. Therefore, this solution is accessible not only for physics students but also for
undergraduate engineering and chemistry students. We provided interactive web-based graphs for
the reader to observe the shape of the wave functions for an electron and a proton when subject to the
same potential V(x). Each of the eight steps in our solution procedure is self-contained; this allows the
reader to consult any step of interest without the need to review the entire article.
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Appendix A. Analytic Solution of the Integral
∫
∞

−∞
A2

0e−αx2
dx

Define the integral to be equal to I: I =
∫
∞

−∞
A2

0e−αx2
dx.

Consequently, squaring I is equivalent to multiplying the integral by itself. Since it does not
matter if we express the integrals in terms of the x or y variables, we will calculate I2 using one integral
in terms of x and the other in terms of y.
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I2 = A4
0

∫
∞

−∞
e−αy2 ∫

∞

−∞
e−αx2

dxdy,

I2 = A4
0

∫
∞

−∞

∫
∞

−∞
e−αx2

−αy2
dxdy,

I2 = A4
0

∞∫
−∞

∞∫
−∞

e−α(x
2+y2)dxdy.

The latter is an integral in the x-y plane going from −∞ to∞. However, if we express that same
integral in polar coordinates, the x-y plane becomes the r-θ plane, and it goes from 0 to 2π in θ and
from 0 to∞ in r. Transformations from rectangular to polar coordinates are

x = r cosθ,
y = r sinθ,

r =
√

x2 + y2.

We identify immediately that it is possible to express the integrant e−α(x
2+y2) as e−αr2

.
Whenever we make a coordinate transformation, it is necessary to calculate the scale factor. This factor

is the determinant of the Jacobian matrix J. Matrix J is

J =


∂ f1
∂x1

∂ f1
∂x2

· · ·

∂ f2
∂x1

∂ f2
∂x2

· · ·

...
...

. . .

.

Since our coordinate transformation is x = r cosθ and y = r sinθ, then our Jacobian is

|J| = ∂(x, y)
∂(r, θ) =

∣∣∣∣∣∣ ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
∂(r cosθ)

∂r
∂(r cosθ)

∂θ
∂(r sinθ)

∂r
∂(r sinθ)

∂θ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ cosθ −r sinθ

sinθ r cosθ

∣∣∣∣∣∣ = r cos2 +r sin2 θ.

Because cos2 + sin2 θ = 1, the scale factor for this coordinate transformation is precisely r.
Now, we can write I2 as follows:

I2 = A4
0

∫
∞

0

∫ 2π
0 e−αr2

rdθdr.

The integrand of the integral respect to θ is a constant. Therefore, we only have to integrate dθ
from 0 to 2π, I2 = A4

0(2π)
∫
∞

0 e−αr2
r dr.

To integrate with respect to r, we should make a change of variable u = −αr2; du = −2αr dr. With that
change of variable, the limits of integration also change. The new lower limit remains 0; however,
the upper limit becomes −∞. Therefore, we have

I2 = A4
0(2π)

(
1
−2α

) −∞∫
0

eu du = −A4
0

(
2π
2α

)
[eu]∞0 = −A4

0

(
π
α

)
[0− 1] = A4

0

(
π
α

)
.

Recalling that our original integral is I and not I2, we must obtain the square root from the last

result, I =
[
A4

0

(
π
α

)] 1
2 = A2

0

(
π
α

) 1
2 .

Appendix B. Analytic Solution of the Integral
∫
∞

−∞
A2

1

(
αx2

)
e−αx2

dx

For this integral, we should identify that the integrand function (x2e−αx2
) is an even function.

We have an even function if f(−x) = f(x). Even functions are symmetrical about the ordinate axis,
and its integral from −∞ to∞ is equivalent to twice its integral from 0 to∞. As a result, we can write
the following: ∫

∞

−∞
A2

1

(
α x2

)
e−αx2

dx = 2A2
1α

∫
∞

0 x2e−αx2
dx.
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To carry out the above integration, it should be remembered that gamma function is an extension
of factorial function to the complex numbers and is defined as Γ(z) =

∫
∞

0 xz−1e−xdx.
The integral that we are trying to solve does not have the same form as the gamma function

definition. Nevertheless, it has a very similar structure; thus, it is possible to express its solution using
a particular gamma function arrangement. In [28], the reader will find countless useful formulas for
solving these types of integrals. For the problem we are dealing with here, we have the following:

∫
∞

0 xme−ax2
dx =

Γ(m+1
2 )

2a
m+1

2
.

This latter formula has the exact form of the integral that we seek to solve with m = 2 and
a = α. Thus,

2A2
1α

∫
∞

0 x2e−αx2
dx =

Γ( 2+1
2 )

2α
2+1

2
=

Γ( 3
2 )

2α
3
2

.

Since Γ
(

3
2

)
=
√
π

2 , we have 2A2
1α

∫
∞

0 x2e−αx2
dx =

√
π

2

2α
3
2

[
2A2

1α
]
=
√
π

4α
3
2

[
2A2

1α
]
=

A2
1
√
π

2
√
α

.

Appendix C. Some Considerations and Wolfram Mathematica Code for the QHO
Wavefunction Graphs

ψn are functions whose variable is position x. The mathematical expressions for the wave functions
we obtained in Section 2.8 include the parameter α. This is not a problem if we keep in mind what the

value of α is α = 2πmν
} = m

}

(
C
m

) 1
2 =

√
mC
} .

We can see that αwill become a constant once we have specified one value for particle’s mass m
and other for the potential force constant C. If we set } = 1 for simplicity, then α =

√
mC.

On the other hand, it should be noted that functions ψn we obtained do not include the energy
eigenvalue. Said value has to be added to the wave function as follows: En + ψn. In turn, En is a
constant, and, of course, it does not depend on the x position.

Like α, the energy eigenvalues En also depend on the particle’s mass m and potential force constant
C. To determine En as a function of m and C, we will use the relation β/α = 2n + 1, where α = 2mπν

}
and β = 2mE

}2 .

We make } = 1 for simplicity’s sake, then β = 2mE, and α =
√

mC. Consequently, βα = 2mE
√

mC
.

We set this last result equal to 2n + 1 and resolve for En.

2mE
√

mC
= 2n + 1 → En =

(2n+1)
√

mC
2m .

If we do not get rid of } by equating it to 1, we can identify that energy eigenvalues turn out to be

En =
(2n+1)

√
mC}

2m .
From the expressions of En, we can identify that energy levels are evenly spaced, and when } = 1,

they take the following values:

E0 =
√

mc
2m ; E1 = 3

2

√
mc
m ; E2 = 5

2

√
mc
m ; E10 = 21

2

√
mc
m .

In the graphs presented in Figures 3 and 4, we have made that } = 1, C = 1.2, and m = 2.5.
Next, we present the code we used to make the graphs of Figures 3 and 4. To use it, the reader

just needs to copy and paste it into a Wolfram’s Mathematica notebook and then press the buttons
‘Shift’ and ‘Enter’ to execute it. The code generates a “manipulable” graph where it is possible to
identify how ψn evolves depending on the C and m values provided by the user. If the reader does not
have access to Wolfram’s Mathematica software [29], the following links lead to interactive web-based
graphs with the same traits.
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• Links to web-based interactive graphs:

n = 0: https://www.wolframcloud.com/obj/39dc0b83-d3dc-4668-b466-23aaae0f66e4
n = 1: https://www.wolframcloud.com/obj/2ec5314f-0c5e-476f-9efe-72c196afc1c5
n = 2: https://www.wolframcloud.com/obj/ffcde200-752b-423a-9c68-9b539116b5e8
n = 10: https://www.wolframcloud.com/obj/3005fcbd-2152-4e2d-98cb-d437add37a3a
n = 0, 1, 2, 10 (e−): https://www.wolframcloud.com/obj/2f38b1b3-7bf8-400b-a415-e9b914895d5b
n = 0, 1, 2, 10 (p+): https://www.wolframcloud.com/obj/291acd89-ce62-48ca-bd09-48c66fc1f9e5

• Wolfram’s Mathematica code to reproduce Figures 3 and 4 is as follows.

For n = 0

Manipulate[

Plot[{C/2*xˆ2,

Sqrt[m*C]/(

2*m) + ((m*Sqrt[C/m])ˆ(1/4) Eˆ(-(1/2) (xˆ2 m*Sqrt[C/m])))/\[Pi]ˆ(

1/4), Sqrt[1836*m*C]/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(1/4)

Eˆ(-(1/2) (xˆ2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]ˆ(1/4)}, {x, -3,

3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red,

Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True,

AxesLabel -> {Position x, Subscript[\[CapitalPsi], 0]},

PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\

\(\*SuperscriptBox[\(x\), \(2\)]\)",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(0\)]\) \

electron",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(0\)]\) \

proton"}], {C, 1, 5}, {m, 0.05, 3}]

For n = 1

Manipulate[

Plot[{C/2*xˆ2, (3*Sqrt[m*C])/(

2*m) + ((m*Sqrt[C/m])ˆ(1/4) *Sqrt[2 m*Sqrt[C/m]]*x*

Eˆ(-(1/2) (xˆ2 m*Sqrt[C/m])))/\[Pi]ˆ(1/4), (3*Sqrt[1836*m*C])/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(1/4) *Sqrt[

1836*2 m*Sqrt[C/(1836*m)]]*x*

Eˆ(-(1/2) (xˆ2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]ˆ(1/4)}, {x, -3,

3}, PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red,

Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True,

AxesLabel -> {Position x, Subscript[\[CapitalPsi], 1]},

PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\

\(\*SuperscriptBox[\(x\), \(2\)]\)",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(1\)]\) \

electron",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(1\)]\) \

proton"}], {C, 1, 5}, {m, 0.05, 3}]

https://www.wolframcloud.com/obj/39dc0b83-d3dc-4668-b466-23aaae0f66e4
https://www.wolframcloud.com/obj/2ec5314f-0c5e-476f-9efe-72c196afc1c5
https://www.wolframcloud.com/obj/ffcde200-752b-423a-9c68-9b539116b5e8
https://www.wolframcloud.com/obj/3005fcbd-2152-4e2d-98cb-d437add37a3a
https://www.wolframcloud.com/obj/2f38b1b3-7bf8-400b-a415-e9b914895d5b
https://www.wolframcloud.com/obj/291acd89-ce62-48ca-bd09-48c66fc1f9e5
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For n = 2

Manipulate[

Plot[{C/2*xˆ2, (5*Sqrt[m*C])/(

2*m) + ((m*Sqrt[C/m])ˆ(

1/4) (2 m*Sqrt[C/m] xˆ2 - 1) Eˆ(-(1/2) (xˆ2 m*Sqrt[C/m])))/(

Sqrt[2] \[Pi]ˆ(1/4)), (5*Sqrt[1836*m*C])/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(

1/4) (1836*2 m*Sqrt[C/(1836*m)] xˆ2 - 1) Eˆ(-(1/

2) (xˆ2 1836*m*Sqrt[C/(1836*m)])))/(

Sqrt[2] \[Pi]ˆ(1/4))}, {x, -3, 3},

PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red,

Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True,

AxesLabel -> {Position x, Subscript[\[CapitalPsi], 2]},

PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\

\(\*SuperscriptBox[\(x\), \(2\)]\)",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(2\)]\) \

electron",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(2\)]\) \

proton"}], {C, 1, 5}, {m, 0.05, 3}]

For n = 10

Manipulate[

Plot[{C/2*xˆ2, (21*Sqrt[m*C])/(

2*m) + ((m*Sqrt[C/m])ˆ(1/4)/(

720 Sqrt[7] \[Pi]ˆ(1/4)))*(32*(Sqrt[m*Sqrt[C/m]]*x)ˆ10 -

720*(Sqrt[m*Sqrt[C/m]]*x)ˆ8 + 5040*(Sqrt[m*Sqrt[C/m]]*x)ˆ6 -

12600*(Sqrt[m*Sqrt[C/m]]*x)ˆ4 + 9450*(Sqrt[m*Sqrt[C/m]]*x)ˆ2 -

945)* Eˆ(-((xˆ2 m*Sqrt[C/m])/2)), (21*Sqrt[1836*m*C])/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(1/4)/(

720 Sqrt[7] \[Pi]ˆ(

1/4)))*(32*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ10 -

720*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ8 +

5040*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ6 -

12600*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ4 +

9450*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ2 - 945)*

Eˆ(-((xˆ2 1836*m*Sqrt[C/(1836*m)])/2))}, {x, -3, 3},

PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Red,

Thickness[0.007]}, {Blue, Thickness[0.0035]}}, Axes -> True,

AxesLabel -> {Position x, Subscript[\[CapitalPsi], 10]},

PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\

\(\*SuperscriptBox[\(x\), \(2\)]\)",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(10\)]\) \

electron",

"Wave function \!\(\*SubscriptBox[\(\[CapitalPsi]\), \(10\)]\) \

proton"}], {C, 1, 5}, {m, 0.05, 3}]
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For n = 0, 1, 2, 10 electron

Manipulate[

Plot[{C/2*xˆ2,

Sqrt[m*C]/(

2*m) + ((m*Sqrt[C/m])ˆ(1/4) Eˆ(-(1/2) (xˆ2 m*Sqrt[C/m])))/\[Pi]ˆ(

1/4), (3*Sqrt[m*C])/(

2*m) + ((m*Sqrt[C/m])ˆ(1/4) *Sqrt[2 m*Sqrt[C/m]]*x*

Eˆ(-(1/2) (xˆ2 m*Sqrt[C/m])))/\[Pi]ˆ(1/4), (5*Sqrt[m*C])/(

2*m) + ((m*Sqrt[C/m])ˆ(

1/4) (2 m*Sqrt[C/m] xˆ2 - 1) Eˆ(-(1/2) (xˆ2 m*Sqrt[C/m])))/(

Sqrt[2] \[Pi]ˆ(1/4)), (21*Sqrt[m*C])/(

2*m) + ((m*Sqrt[C/m])ˆ(1/4)/(

720 Sqrt[7] \[Pi]ˆ(1/4)))*(32*(Sqrt[m*Sqrt[C/m]]*x)ˆ10 -

720*(Sqrt[m*Sqrt[C/m]]*x)ˆ8 + 5040*(Sqrt[m*Sqrt[C/m]]*x)ˆ6 -

12600*(Sqrt[m*Sqrt[C/m]]*x)ˆ4 + 9450*(Sqrt[m*Sqrt[C/m]]*x)ˆ2 -

945)* Eˆ(-((xˆ2 m*Sqrt[C/m])/2))}, {x, -3, 3},

PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Blue,

Thickness[0.003]}, {Pink, Thickness[0.003]}, {Red,

Thickness[0.003]}, {Brown, Thickness[0.003]}}, Axes -> True,

AxesLabel -> {Position x, Subscript[\[CapitalPsi], n]},

PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\

\(\*SuperscriptBox[\(x\), \(2\)]\)",

"\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(0\)]\)",

"\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(1\)]\)",

"\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(2\)]\)",

"\!\(\*SuperscriptBox[\(e\), \(-\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(10\)]\)"}], {C, 1, 5}, {m, 0.05, 3}]

For n = 0, 1, 2, 10 proton

Manipulate[

Plot[{C/2*xˆ2,

Sqrt[1836*m*C]/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(1/4)

Eˆ(-(1/2) (xˆ2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]ˆ(1/4), (

3*Sqrt[1836*m*C])/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(1/4) *Sqrt[

1836*2 m*Sqrt[C/(1836*m)]]*x*

Eˆ(-(1/2) (xˆ2 1836*m*Sqrt[C/(1836*m)])))/\[Pi]ˆ(1/4), (

5*Sqrt[1836*m*C])/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(

1/4) (1836*2 m*Sqrt[C/(1836*m)] xˆ2 - 1) Eˆ(-(1/

2) (xˆ2 1836*m*Sqrt[C/(1836*m)])))/(Sqrt[2] \[Pi]ˆ(1/4)), (

21*Sqrt[1836*m*C])/(

1836*2*m) + ((1836*m*Sqrt[C/(1836*m)])ˆ(1/4)/(

720 Sqrt[7] \[Pi]ˆ(

1/4)))*(32*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ10 -



Physics 2020, 2 566

720*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ8 +

5040*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ6 -

12600*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ4 +

9450*(Sqrt[1836*m*Sqrt[C/(1836*m)]]*x)ˆ2 - 945)*

Eˆ(-((xˆ2 1836*m*Sqrt[C/(1836*m)])/2))}, {x, -3, 3},

PlotStyle -> {{Dashed, Black, Thickness[0.001]}, {Blue,

Thickness[0.002]}, {Pink, Thickness[0.002]}, {Red,

Thickness[0.003]}, {Brown, Thickness[0.002]}}, Axes -> True,

AxesLabel -> {Position x, Subscript[\[CapitalPsi], n]},

PlotLegends -> {"Potential V(x)=\!\(\*FractionBox[\(C\), \(2\)]\)\!\

\(\*SuperscriptBox[\(x\), \(2\)]\)",

"\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(0\)]\)",

"\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(1\)]\)",

"\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(2\)]\)",

"\!\(\*SuperscriptBox[\(p\), \(+\)]\) \!\(\*SubscriptBox[\(\

\[CapitalPsi]\), \(10\)]\)"}], {C, 1, 5}, {m, 0.05, 3}]

Appendix D. Normalization Proof for Time-Dependent Schrödinger Wave Functions

We will consider a one-dimensional wave function, i.e., a function of position x and time t.
We know that the absolute value of the square of the wave function is proportional to its probability

density. For the case of a wave function like the one we are proposing, ψ(x, t), the probability density
gives us the probability of finding the particle at a given time t in the interval x2 > x > x1.

We can write the above in the following way:

P(x1, x2) = A
∫ x2

x1

∣∣∣ψ(x, t)
∣∣∣2dx. (A1)

For the previous expression, A is a constant that does not depend on the variable x.
Of course, we can determine constant A by saying that the probability of finding the particle

somewhere in space is equal to 100%; i.e.,

1 = A
∫ +∞

−∞

∣∣∣ψ(x, t)
∣∣∣2dx. (A2)

It could happen that the integral of the previous equation does not converge. In this case, the constant
A would have to be zero, and therefore the equality of Equation (A2) would not be satisfied.

However, seeing Equation (A1), we would know that if A = 0, it would mean that the probability
of finding the particle in any finite interval must also be zero.

As the above does not correspond to situations that have a physical meaning, we come to an
important conclusion: ifψ (x, t) is a wave function that we want to use for Schrödinger wave mechanics,
then

∣∣∣ ψ (x, t)
∣∣∣ 2 must be an integrable function of x for all values of t.

From the above, we impose the condition that integral of Equation (A2) must converge.
Now that the square of ψ (x, t) is “integrable”, we can define a new wave function, ψn(x, t),

as follows:
ψa(x, t) =

√
Aψ(x, t), (A3)

where A can be obtained from Equation (A2).
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The wave function ψa(x, t) from Equation (A3) has the property that∫ +∞

−∞

∣∣∣ψa(x, t)
∣∣∣2dx = 1 ; P(x1, x2) =

∫ x2

x1

∣∣∣ψa(x, t)
∣∣∣2dx. (A4)

That is, the probability density is equal to the absolute value of ψa(x, t) squared.
If there is a function ψa(x, t) that satisfies the first equation of expression Equation (A4), then we

can call that ψa(x, t) a normalizable wave function.
Now let us recall that we start this discussion by assuming that the wave function ψ (x, t) is a

function that satisfies the Schrödinger equation; i.e.,

−
}
2m

∂2

∂x2 [ψ(x, t)] + V(x)ψ(x, t) = i} ∂
∂t [ψ(x, t)]. (A5)

However, in Equation (A3), we define a new wave function ψa(x, t).
ψa(x, t) also satisfies the Schrödinger equation as long as the constant A is not time-dependent.
Let us proceed to our analysis by stating the following:
If ψ (x, t) satisfies Equation (A5) and also tends to zero as x tends to +∞ or −∞, then

d
dt

∫ +∞

−∞
dx

∣∣∣ψ(x, t)
∣∣∣2 = 0. (A6)

To prove the previous theorem, we differentiate the function that is inside the integral in the
following way:

∂
∂t

∣∣∣ψ(x, t)
∣∣∣2= ∂

∂t [ψ
∗(x, t) ψ(x, t)].

Applying the product rule, we have

∂
∂t

∣∣∣ψ(x, t)
∣∣∣2 = ψ∗(x, t) ∂ψ(x,t)

∂t +
∂ψ∗(x,t)
∂t ψ(x, t). (A7)

Observe that on the right side of Equation (A5), we find an expression that is the partial derivative
with respect to time of the function ψ (x, t).

Meanwhile, in Equation (A7), we have the partial derivative with respect to time of the complex

conjugate of ψ (x, t), i.e., ∂ψ
∗(x,t)
∂t .

If we take the complex conjugate from Equation (A5), we can obtain an expression for ∂ψ∗(x,t)
∂t ,

and so
i} ∂
∂t [ψ

∗(x, t)] = −}2

2m
∂2

∂x2 [ψ
∗(x, t)] −V(x)ψ∗(x, t). (A8)

Observe that in the previous expression, we leave the function V (x) unchanged; this is because
we assume that V (x) is not a complex function but a real one. This makes total sense for any classical
problem in Schrödinger wave mechanics since the potentials that a particle “faces” are real.

Now, from Equation (A5), we solve for ∂
∂t [ψ(x, t)]:

∂
∂t [ψ(x, t)] = i}

2m
∂2

∂x2 [ψ(x, t)] − i
}V(x) ψ(x, t). (A9)

We also solve ∂
∂t [ψ

∗(x, t)] from Equation (A8):

∂
∂t [ψ

∗(x, t)] = − i}
2m

∂2

∂x2 [ψ
∗(x, t)] + i

}V(x)ψ∗(x, t). (A10)

We evaluate Equations (A9) and (A10) in Equation (A7):
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∂
∂t

∣∣∣ψ(x, t)
∣∣∣2 = ψ∗(x, t)

⌈
i}
2m

∂2

∂x2 [ψ(x, t)] − i
}V(x) ψ(x, t)

⌉
+ ψ(x, t)

⌈
−

i}
2m

∂2

∂x2 [ψ
∗(x, t)] + i

}V(x)ψ∗(x, t)
⌉

∂
∂t

∣∣∣ψ(x, t)
∣∣∣2 = i}

2mψ
∗(x, t) ∂

2

∂x2 [ψ(x, t)] − i
}ψ
∗(x, t)V(x)ψ(x, t)

−
i}
2mψ(x, t) ∂

2

∂x2 [ψ
∗(x, t)] + i

}ψ(x, t)V(x)ψ∗(x, t)

= i}
2m

(
ψ∗(x, t) ∂

2

∂x2 [ψ(x, t)] − ψ(x, t) ∂
2

∂x2 [ψ
∗(x, t)]

)
,

which we can also write as

∂
∂t

∣∣∣ψ(x, t)
∣∣∣2 = i}

2m
∂
∂x

(
ψ∗(x, t) ∂ψ(x,t)

∂x − ψ(x, t) ∂ψ
∗(x,t)
∂x

)
. (A11)

Let us rewrite Equation (A2) again:

d
dt

∫ +∞

−∞
dx

∣∣∣ψ(x, t)
∣∣∣2 = 0.

As we had already mentioned, we can put the differential operator d
dt inside the integral; therefore,

∫ +∞

−∞

∂
∂t dx

[∣∣∣ψ(x, t)
∣∣∣2] = 0.

We can arrange the differential operator ∂
∂t to operate on

∣∣∣ψ(x, t)
∣∣∣2 as follows:∫ +∞

−∞
dx ∂

∂t

∣∣∣ψ(x, t)
∣∣∣2 = 0.

We evaluate the result of Equation (A11) in this last expression as follows:∫ +∞

−∞

[
i}
2m

∂
∂x

(
ψ∗(x, t) ∂ψ(x,t)

∂x − ψ(x, t) ∂ψ
∗(x,t)
∂x

)]
dx = 0.

Taking the constants out of the integral, we have

i}
2m

∫ +∞

−∞

∂
∂x

(
ψ∗(x, t) ∂ψ(x,t)

∂x − ψ(x, t) ∂ψ
∗(x,t)
∂x

)
dx = 0.

In the integrand, we have the derivative of some functions, which can be interpreted as the integral
“canceling” the derivative; therefore, we can safely write

i}
2m

[
ψ∗(x, t) ∂ψ(x,t)

∂x − ψ(x, t) ∂ψ
∗(x,t)
∂x

]+∞
−∞

.

Using this last result, we can write

d
dt

∫ +∞

−∞
dx

∣∣∣ψ(x, t)
∣∣∣2 = i}

2m

[
ψ∗(x, t) ∂ψ(x,t)

∂x − ψ(x, t) ∂ψ
∗(x,t)
∂x

]+∞
−∞

. (A12)

Although we do not evaluate the derivatives enclosed in square brackets, we know that the
right-hand side of Equation (A12) will disappear because, from the beginning, we had assumed that
ψ(x, t) becomes zero at x = ±∞.

Therefore, the theorem of Equation (A6) is consistent, and consequently, the A of Equation (A2)
is a constant independent of time.

All of this tells us that the function ψa(x, t) is also a genuine Schrödinger wave function or, in other
words, a solution to the Schrödinger equation.

So, we can always form a normalized wave function from a given wave function, and if it is
convenient, we can work with functions normalized to 1 [27].
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All this discussion is valid for the three-dimensional case, and its proof is analogous to the one we
present for the one-dimensional case.

It is worth making a final consideration regarding the following wave function:

ψ(x, t) = e
ixp
} −

itp2

2m} . (A13)

This is a function whose square is not integrable (in the terms we have already discussed), and so,
according to our discussion, it is not a normalizable wave function.

The above prompts us to conclude that a precisely defined momentum wave function that depends

on the independent variable x through the exponential function e
ixp
} does not correspond to a physical

state of “realizable” motion of the particle.
Nevertheless, we are not prevented from considering a wave that, over a very large interval on the

x axis, depends on x through the factor e
ixp
} , provided that this wave function tends to zero as x tends

to +∞ or −∞.
For this reason, we can solve our dilemma if we agree that when we talk about waves with

precisely defined momentum, it does not mean that the wave is actually everywhere with a shape e
ixp
} .

We are aware that the wave function must tend to zero at infinity, but we assume that the wave
function is in this form over a very large interval of the x-axis that includes the region in which we are
most interested. Therefore, the monochromatic waves in Equation (A13) must be understood as almost
monochromatic waves. With this clarification, we can continue talking about waves that depend

on the independent variables x and t through the factors e
ixp
} just like it is done in most quantum

mechanics texts.
We can consider normalized waves as limit cases of normalizable waves, and if we want, we can

refer to functions belonging to this last wave function type as “improper wave functions”. The term
“improper wave functions” is also useful for soothing mathematical rigorists who could be alarmed
about how physicists talk about and use the term plane wave as if they were genuine Schrödinger
wave functions [27].
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