The Merger Rate of Black Holes in a Primordial Black Hole Cluster
Abstract
:1. Introduction
2. Estimations
3. Merger Rate of Black Holes
4. Results
5. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BHs | Black holes |
CBH | Central black hole |
PBHs | Primordial black holes |
References
- Chisholm, J.R. Clustering of primordial black holes: Basic results. Phys. Rev. D 2006, 73, 083504. [Google Scholar] [CrossRef]
- Matsubara, T.; Terada, T.; Kohri, K.; Yokoyama, S. Clustering of primordial black holes formed in a matter-dominated epoch. Phys. Rev. D 2019, 100, 123544. [Google Scholar] [CrossRef] [Green Version]
- Desjacques, V.; Riotto, A. Spatial clustering of primordial black holes. Phys. Rev. D 2018, 98, 123533. [Google Scholar] [CrossRef] [Green Version]
- Rubin, S.G.; Khlopov, M.Y.; Sakharov, A.S. Primordial black holes from non-equilibrium second order phase transition. Grav. Cosmol. 2000, S6, 51–58. [Google Scholar]
- Rubin, S.G.; Sakharov, A.S.; Khlopov, M.Y. The formation of primary galactic nuclei during phase transitions in the early Universe. J. Exp. Theor. Phys. 2001, 92, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Primordial structure of massive black hole clusters. Astropart. Phys. 2005, 23, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of primordial black holes. Eur. Phys. J. C 2019, 79, 246. [Google Scholar] [CrossRef] [Green Version]
- Stasenko, V.D.; Kirillov, A.A. Evolution of the cluster of primordial black holes within the Fokker-Planck approach. J. Phys. Conf. Ser. 2020, 1690, 012147. [Google Scholar] [CrossRef]
- Stasenko, V.D.; Kirillov, A.A. Dynamical evolution of a cluster of primordial black holes. Bled Workshop Phys. 2020, 21, 162–167. [Google Scholar]
- Ballesteros, G.; Serpico, P.D.; Taoso, M. On the merger rate of primordial black holes: Effects of nearest neighbours distribution and clustering. J. Cosmol. Astropart. Phys. 2018, 2018, 043. [Google Scholar] [CrossRef] [Green Version]
- De Luca, V.; Desjacques, V.; Franciolini, G.; Riotto, A. The clustering evolution of primordial black holes. J. Cosmol. Astropart. Phys. 2020, 2020, 028. [Google Scholar] [CrossRef]
- Korol, V.; Mandel, I.; Miller, M.C.; Church, R.P.; Davies, M.B. Merger rates in primordial black hole clusters without initial binaries. Mon. Not. R. Astron. Soc. 2020, 496, 994–1000. [Google Scholar] [CrossRef]
- Trashorras, M.; Garćia-Bellido, J.; Nesseris, S. The clustering dynamics of primordial black holes in N-body simulations. Universe 2021, 7, 18. [Google Scholar] [CrossRef]
- Quinlan, G.D.; Shapiro, S.L. Dynamical evolution of dense clusters of compact stars. Astrophys. J. 1989, 343, 725. [Google Scholar] [CrossRef]
- Lee, M.H. N-body evolution of dense clusters of compact stars. Astrophys. J. 1993, 418, 147. [Google Scholar] [CrossRef]
- Gürkan, M.A.; Freitag, M.; Rasio, F.A. Formation of massive black holes in dense star clusters. I. Mass segregation and core collapse. Astrophys. J. 2004, 604, 632–652. [Google Scholar] [CrossRef]
- Kritos, K.; Cholis, I. Evaluating the merger rate of binary black holes from direct captures and third-body soft interactions using the Milky Way globular clusters. Phys. Rev. D 2020, 102, 083016. [Google Scholar] [CrossRef]
- Choksi, N.; Volonteri, M.; Colpi, M.; Gnedin, O.Y.; Li, H. The star clusters that make black hole binaries across cosmic time. Astrophys. J. 2019, 873, 100. [Google Scholar] [CrossRef]
- Rodriguez, C.L.; Amaro-Seoane, P.; Chatterjee, S.; Kremer, K.; Rasio, F.A.; Samsing, J.; Ye, C.S.; Zevin, M. Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries. Phys. Rev. D 2018, 98, 123005. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.L.; Amaro-Seoane, P.; Chatterjee, S.; Rasio, F.A. Post-Newtonian dynamics in dense star clusters: Highly eccentric, highly spinning, and repeated binary black hole mergers. Phys. Rev. Lett. 2018, 120, 151101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weatherford, N.C.; Fragione, G.; Kremer, K.; Chatterjee, S.; Ye, C.S.; Rodriguez, C.L.; Rasio, F.A. Black hole mergers from star clusters with top-heavy initial mass functions. Astrophys. J. Lett. 2021, 907, L25. [Google Scholar] [CrossRef]
- Kritos, K.; De Luca, V.; Franciolini, G.; Kehagias, A.; Riotto, A. The astro-primordial black hole merger rates: A reappraisal. arXiv 2020, arXiv:2012.03585. [Google Scholar]
- Bahcall, J.N.; Wolf, R.A. Star distribution around a massive black hole in a globular cluster. Astrophys. J. 1976, 209, 214–232. [Google Scholar] [CrossRef]
- Lightman, A.P.; Shapiro, S.L. The distribution and consumption rate of stars around a massive, collapsed object. Astrophys. J. 1977, 211, 244–262. [Google Scholar] [CrossRef]
- Bahcall, J.N.; Wolf, R.A. The star distribution around a massive black hole in a globular cluster. II. Unequal star masses. Astrophys. J. 1977, 216, 883–907. [Google Scholar] [CrossRef]
- Cohn, H.; Kulsrud, R.M. The stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation. Astrophys. J. 1978, 226, 1087–1108. [Google Scholar] [CrossRef]
- Marchant, A.B.; Shapiro, S.L. Star clusters containing massive, central black holes. III—Evolution calculations. Astrophys. J. 1980, 239, 685–704. [Google Scholar] [CrossRef]
- Shapiro, S.L. Star clusters, self-interacting dark matter halos, and black hole cusps: The fluid conduction model and its extension to general relativity. Phys. Rev. D 2018, 98, 023021. [Google Scholar] [CrossRef] [Green Version]
- Murphy, B.W.; Cohn, H.N.; Durisen, R.H. Dynamical and luminosity evolution of active galactic nuclei: Models with a mass spectrum. Astrophys. J. 1991, 370, 60. [Google Scholar] [CrossRef]
- Alexander, T. Stellar processes near the massive black hole in the Galactic center [review article]. Phys. Rep. 2005, 419, 65–142. [Google Scholar] [CrossRef] [Green Version]
- Merritt, D. Evolution of Nuclear Star Clusters. Astrophys. J. 2009, 694, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Merritt, D. Gravitational encounters and the evolution of galactic nuclei. I. Method. Astrophys. J. 2015, 804, 52. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, E. A New Fokker-Planck approach for the relaxation-driven evolution of galactic nuclei. Astrophys. J. 2017, 848, 10. [Google Scholar] [CrossRef] [Green Version]
- Merritt, D. Dynamics and Evolution of Galactic Nuclei; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Merritt, D. Loss-cone dynamics. Class. Quant. Grav. 2013, 30, 244005. [Google Scholar] [CrossRef]
- Mouri, H.; Taniguchi, Y. Runaway merging of black holes: Analytical constraint on the timescale. Astrophys. J. Lett. 2002, 566, L17–L20. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Shapiro, S.L. The dissolution of globular clusters containing massive black holes. Astrophys. J. 1977, 217, 281–286. [Google Scholar] [CrossRef]
- Heggie, D.C.; Hut, P.; Mineshige, S.; Makino, J.; Baumgardt, H. The core radius of a star cluster containing a massive black hole. Publ. Astron. Soc. Jpn. 2007, 59, L11–L14. [Google Scholar] [CrossRef] [Green Version]
- Heggie, D.C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 1975, 173, 729–787. [Google Scholar] [CrossRef]
- Goodman, J. On Gravothermal oscillations. Astrophys. J. 1987, 313, 576. [Google Scholar] [CrossRef]
- Heggie, D.C.; Ramamani, N. Evolution of star clusters after core collapse. Mon. Not. R. Astron. Soc. 1989, 237, 757–783. [Google Scholar] [CrossRef] [Green Version]
- Hut, P.; McMillan, S.; Goodman, J.; Mateo, M.; Phinney, E.S.; Pryor, C.; Richer, H.B.; Verbunt, F.; Weinberg, M. Binaries in globular clusters. Publ. Astron. Soc. Pac. 1992, 104, 981. [Google Scholar] [CrossRef]
- Breen, P.G.; Heggie, D.C. Gravothermal oscillations in multicomponent models of star clusters. Mon. Not. R. Astron. Soc. 2012, 425, 2493–2500. [Google Scholar] [CrossRef] [Green Version]
- Hills, J.G.; Fullerton, L.W. Computer simulations of close encounters between single stars and hard binaries. Astron. J. 1980, 85, 1281–1291. [Google Scholar] [CrossRef]
- Hong, J.; Askar, A.; Giersz, M.; Hypki, A.; Yoon, S.J. MOCCA-SURVEY database I: Binary black hole mergers from globular clusters with intermediate mass black holes. Mon. Not. R. Astron. Soc. 2020, 498, 4287–4294. [Google Scholar] [CrossRef]
- Vaskonen, V.; Veermäe, H. Lower bound on the primordial black hole merger rate. Phys. Rev. D 2020, 101, 043015. [Google Scholar] [CrossRef] [Green Version]
- Ali-Haïmoud, Y.; Kovetz, E.D.; Kamionkowski, M. Merger rate of primordial black-hole binaries. Phys. Rev. D 2017, 96, 123523. [Google Scholar] [CrossRef] [Green Version]
- Raidal, M.; Vaskonen, V.; Veermäe, H. Gravitational waves from primordial black hole mergers. J. Cosmol. Astropart. Phys. 2017, 2017, 037. [Google Scholar] [CrossRef] [Green Version]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170104: Observation of a 50-Solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [Green Version]
- Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasenko, V.D.; Kirillov, A.A. The Merger Rate of Black Holes in a Primordial Black Hole Cluster. Physics 2021, 3, 372-378. https://doi.org/10.3390/physics3020026
Stasenko VD, Kirillov AA. The Merger Rate of Black Holes in a Primordial Black Hole Cluster. Physics. 2021; 3(2):372-378. https://doi.org/10.3390/physics3020026
Chicago/Turabian StyleStasenko, Viktor D., and Alexander A. Kirillov. 2021. "The Merger Rate of Black Holes in a Primordial Black Hole Cluster" Physics 3, no. 2: 372-378. https://doi.org/10.3390/physics3020026
APA StyleStasenko, V. D., & Kirillov, A. A. (2021). The Merger Rate of Black Holes in a Primordial Black Hole Cluster. Physics, 3(2), 372-378. https://doi.org/10.3390/physics3020026