Effects of Quantum Metric Fluctuations on the Cosmological Evolution in Friedmann-Lemaitre-Robertson-Walker Geometries
Abstract
:1. Introduction
2. Quantum Metric Fluctuations Induced Gravitational Field Equations
The Modified Poisson Equation
3. Cosmological Models with Quantum Metric Fluctuations
3.1. Metric and Field Equations
3.2. The Standard CDM Model
4. Specific Cosmological Models
4.1.
4.2.
4.3.
4.4.
5. Discussions and Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. The Generalized Friedmann Equations
References
- Hilbert, D. Die Grundlagen der Physik. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen–Mathematische-Physikalische Klasse; Vandenhoeck & Ruprecht: Göttingen, Germany, 1915; Volume 1915, pp. 395–407. [Google Scholar]
- Einstein, A. Die Feldgleichungen der Gravitation. In A. Königlich Preussische Akademie der Wissenschaften; Vandenhoeck & Ruprecht: Göttingen, Germany, 1915; Volume 25, pp. 844–847. [Google Scholar]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Annalen Phys. 1916, 49, 769. [Google Scholar] [CrossRef] [Green Version]
- Turyshev, S.G. Experimental Tests of General Relativity. Ann. Rev. Nucl. Part. Sci. 2008, 58, 207. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Marchi, F.D.; Cascioli, G. Testing General Relativity in the Solar System: Present and future perspectives. arXiv 2019, arXiv:1911.05561. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. LIGO Scientific and Virgo Collaborations. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. Event Horizon Telescope Collaboration, First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Bronstein, M. Quantum theory of weak gravitational fields. Phys. Z. Der Sowjetunion 1936, 9, 140, republished as Bronstein, M. Republication of: Quantum theory of weak gravitational fields. Gen. Relativ. Gravit. 2012, 44, 267. [Google Scholar] [CrossRef]
- Mukhanov, V.; Winitzki, S. Introduction to Quantum Effects in Gravity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kiefer, C. Quantum Gravity, 3rd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Utiyama, R. Invariant Theoretical Interpretation of Interaction. Phys. Rev. 1956, 101, 1597. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Lorentz invariance and the gravitational field. J. Math. Phys. 1961, 2, 212. [Google Scholar] [CrossRef] [Green Version]
- Moller, C. Conservation laws and absolute parallelism in general relativity. K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1961, 1, 1. [Google Scholar]
- Pellegrini, C.; Plebanski, J. Tetrad fields and gravitational fields. K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1962, 2, 1. [Google Scholar]
- Hayashi, K.; Nakano, T. Extended translation invariance and associated gauge fields. Prog. Theor. Phys. 1967, 38, 491. [Google Scholar] [CrossRef] [Green Version]
- Blagojevic, M. Gravitation and Gauge Symmetries; IOP Publishing: Bristol, UK, 2002. [Google Scholar]
- Ashtekar, A. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 1986, 57, 2244. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, A. New Hamiltonian formulation of general relativity. Phys. Rev. D 1987, 36, 1587. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, A. Lectures on Non-perturbative Canonical Gravity. Notes Prepared in Collaboration with R.S. Tate; World Scientific: Singapore, 1991. [Google Scholar]
- Funai, S.S.; Sugawara, H. Current Algebra Formulation of Quantum Gravity and Its Application to Cosmology. arXiv 2020, arXiv:2004.02151. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef] [Green Version]
- Connes, A. Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 1996, 182, 155. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Loop Quantum Gravity. Living Rev. Rel. 1998, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Gambin., R.; Pullin, J. Consistent Discretization and Loop Quantum Geometry. Phys. Rev. Lett. 2005, 94, 101302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashtekar, A. Gravity and the quantum. New J. Phys. 2005, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Horava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, E.P. On the Origin of Gravity and the Laws of Newton. JHEP 2011, 29, 1104. [Google Scholar]
- Møller, C. Les théories Relativistes de la Gravitation; Colloques Internationaux CNRS vol 91; Tonnelat, A., Ed.; CNRS: Paris, France, 1962; pp. 1–96. [Google Scholar]
- Rosenfeld, L. On quantization of fields. Nucl. Phys. 1963, 40, 353. [Google Scholar] [CrossRef]
- Davies, P.C.W. Singularity avoidance and quantum conformal anomalies. Phys. Lett. B 1977, 6, 402. [Google Scholar] [CrossRef]
- Fischetti, M.V.; Hartle, J.B.; Hu, B.L. Quantum Effects in the early Universe. I. Influence of Trace Anomalies on Homogeneous, Isotropic, Classical Geometries. Phys. Rev. D 1979, 20, 1757. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Kibble, T.W.B.; Randjbar-Daemi, S. Non-linear coupling of quantum theory and classical gravity. J. Phys. A Math. Gen. 1980, 13, 141. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum deSitter cosmology and phantom matter. Phys. Lett. B 2003, 562, 147. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Quantum escape of sudden future singularity. Phys. Lett. B 2004, 595, 1. [Google Scholar]
- Carlip, S. Is Quantum Gravity Necessary? Class. Quant. Grav. 2008, 25, 154010. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.-M.; Kawai, H.; Matsuo, Y.; Yokokura, Y. Back reaction of 4D conformal fields on static black-hole geometry. JHEP 2018, 56, 11. [Google Scholar] [CrossRef] [Green Version]
- Han, M. Einstein equation from covariant loop quantum gravity in semiclassical continuum limit. Phys. Rev. D 2017, 96, 024047. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, E.A.; Krein, G.; de Paula Netto, T.; Shapiro, I.L. Stochastic quantization of a self-interacting nonminimal scalar field in semiclassical gravity. Phys. Lett. B 2019, 798, 134925. [Google Scholar] [CrossRef]
- Juárez-Aubry, A. Semi-classical gravity in de Sitter spacetime and the cosmological constant. Phys. Lett. B 2019, 797, 134912. [Google Scholar] [CrossRef]
- Satin, S. Correspondences of matter fluctuations in semiclassical and classical gravity for cosmological spacetime. Phys. Rev. D 2019, 100, 044032. [Google Scholar] [CrossRef] [Green Version]
- Matsui, H.; Watamura, N. Quantum spacetime instability and breakdown of semiclassical gravity. Phys. Rev. D 2020, 101, 025014. [Google Scholar] [CrossRef] [Green Version]
- Parisi, G.; Wu, Y.S. Perturbation Theory Without Gauge Fixing. Sci. Sin. 1981, 24, 483. [Google Scholar]
- Nelson, E. Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079. [Google Scholar] [CrossRef]
- Damgaard, P.H.; Huffel, H. Stochastic Quantization; World Scientific: Singapore, 1988. [Google Scholar]
- Namiki, M. Basic Ideas of Stochastic Quantization. Prog. Theor. Phys. Suppl. 1993, 1, 111. [Google Scholar] [CrossRef] [Green Version]
- Rumpf, H. Stochastic quantization of Einstein gravity. Phys. Rev. D 1986, 942, 33. [Google Scholar] [CrossRef]
- Rumpf, H. Stochastic Quantum Gravity in D Dimension. Prog. Theor. Phys. Suppl. 1993, 111, 63. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.L.; Roura, A.; Verdaguer, E. Induced quantum metric fluctuations and the validity of semiclassical gravity. Phys. Rev. D 2004, 70, 044002. [Google Scholar] [CrossRef] [Green Version]
- Satin, S.; Cho, H.T.; Hu, B.L. Conformally-related Einstein-Langevin equations for metric fluctuations in stochastic gravity. Phys. Rev. D 2016, 94, 064019. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.A. On the nature of quantum geometrodynamics. Ann. Phys. 1957, 2, 604. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Dzhunushaliev, V.; Folomeev, V.; Kleihaus, B.; Kunz, J. Modified gravity from the quantum part of the metric. Eur. Phys. J. C 2014, 74, 2743. [Google Scholar] [CrossRef] [Green Version]
- Dzhunushaliev, V.; Folomeev, V.; Kleihaus, B.; Kunz, J. Modified gravity from the nonperturbative quantization of a metric. Eur. Phys. J. C 2015, 75, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.-J. Effects of quantum fluctuations of metric on the universe. Phys. Dark Univ. 2016, 13, 87. [Google Scholar] [CrossRef] [Green Version]
- Dzhunushaliev, V. Nonperturbative quantization: Ideas, perspectives, and applications. arXiv 2015, arXiv:1505.02747. [Google Scholar]
- Dzhunushaliev, V.; Quevedo, H. Einstein equations with fluctuating volume. Gravit. Cosmol. 2017, 23, 280. [Google Scholar] [CrossRef] [Green Version]
- Dzhunushaliev, V.; Folomeev, V.; Quevedo, H. Nonperturbative Quantization à La Heisenberg: Modified Gravities, Wheeler-DeWitt Equations, and Monopoles in QCD. Gravit. Cosmol. 2019, 25, 1. [Google Scholar] [CrossRef]
- Liu, X.; Harko, T.; Liang, S.-D. Cosmological implications of modified gravity induced by quantum metric fluctuations. Eur. Phys. J. C 2016, 76, 420. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Knop, R.A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M.S.; Conley, A.; Deustua, S.E.; Doi, M.; Ellis, R.; et al. New Constraints on Ωm, ωΛ, and w from an Independent Set of Eleven High-Redshift Supernovae Observed with HST. Astrophys. J. 2003, 598, 102. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Strolger, L.-G.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Gold, B.; Challis, P.J.; Filippenko, A.V.; Jha, S.; Li, W.; et al. New Hubble Space Telescope Discoveries of Type Ia Supernovae at z > 1: Narrowing Constraints on the Early Behavior of Dark Energy. Astrophys. J. 2007, 659, 98. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M.S.; Conley, A.; Dawson, K.S.; Deustua, S.E.; et al. Spectra and Light Curves of Six Type Ia Supernovae at 0.511<z < 1.12 and the Union2 Compilation. Astrophys. J. 2010, 716, 712. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, D.H.; Mortonson, M.J.; Eisenstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational probes of cosmic acceleration. Phys. Rep. 2013, 530, 87. [Google Scholar] [CrossRef] [Green Version]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O.S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al. Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in pp Collisions at s=8 TeV with the ATLAS Detector. Phys. Rev. Lett. 2015, 115, 131801. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, T. Cosmological Constant—The Weight of the Vacuum. Phys. Repts. 2003, 380, 235. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.M.; Wesson, P.S. Dark Matter and Background Light. Phys. Rep. 2004, 402, 267. [Google Scholar] [CrossRef] [Green Version]
- Baer, H.; Choi, K.-Y.; Kim, J.E.; Roszkowski, L. Dark matter production in the early Universe: Beyond the thermal WIMP paradigm. Phys. Rep. 2015, 555, 1. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problems (Talk given at Dark Matter 2000, February, 2000). arXiv 2000, arXiv:astro-ph/0005265. [Google Scholar]
- Buchdahl, H.A. Non-Linear Lagrangians and Cosmological Theory. Mon. Not. Roy. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, A.; Trodden, M. Approaches to Understanding Cosmic Acceleration. Rept. Prog. Phys. 2009, 72, 096901. [Google Scholar] [CrossRef] [Green Version]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59. [Google Scholar] [CrossRef] [Green Version]
- Haghani, Z.; Harko, T.; Sepangi, H.R.; Shahidi, S. Matter may matter. Int. J. Mod. Phys. D 2014, 23, 1442016. [Google Scholar] [CrossRef] [Green Version]
- Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f(R) modified theories of gravity. Phys. Rev. D 2007, 75, 104016. [Google Scholar] [CrossRef] [Green Version]
- Harko, T. Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 2008, 669, 376. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N. f(R,Lm) gravity. Eur. Phys. J. C 2010, 70, 373. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Minazzoli, O. Extended f(R,Lm) gravity with generalized scalar field and kinetic term dependences. Phys. Rev. D 2013, 87, 047501. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R, T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Harko, T. Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling. Phys. Rev. D 2014, 90, 044067. [Google Scholar] [CrossRef] [Green Version]
- Haghani, Z.; Harko, T.; Lobo, F.S.N.; Sepangi, H.R.; Shahidi, S. Further matters in space-time geometry: f(R,T,RμνTμν) gravity. Phys. Rev. D 2013, 88, 044023. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Sáez-Gómez, D. f(R,T,RμνTμν) gravity phenomenology and ΛCDM universe. Phys. Lett. B 2013, 725, 437. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 2012, 85, 084016. [Google Scholar] [CrossRef] [Green Version]
- Tamanini, N.; Böhmer, C.G. Generalized hybrid metric-Palatini gravity. Phys. Rev. D 2013, 87, 084031. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Hybrid metric-Palatini gravity. Universe 2015, 1, 199. [Google Scholar] [CrossRef]
- Haghani, Z.; Harko, T.; Sepangi, H.R.; Shahidi, S. Weyl-Cartan-Weitzenböck gravity as a generalization of teleparallel gravity. JCAP 2012, 10, 061. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.; Rubiera-Garcia, D. Coupling matter in modified Q gravity. Phys. Rev. D 2018, 98, 084043. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.-D. f(Q, T) gravity. Eur. Phys. J. C 2019, 79, 708. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Otalora, G.; Saridakis, E.N. f(T,) gravity and cosmology. JCAP 2014, 21, 12. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Saridakis, E.N. Cosmology with higher-derivative matter fields. Int. J. Geom. Meth. Mod. Phys. 2016, 13, 1650102. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N. Generalized Curvature-Matter Couplings in Modified Gravity. Galaxies 2014, 2, 410. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Harko, T.; Lobo, F.S.N. Irreversible thermodynamic description of interacting dark energy—Dark matter cosmological models. Phys. Rev. D 2013, 87, 044018. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N.; Mimoso, J.P.; Pavón, D. Gravitational induced particle production through a nonminimal curvature-matter coupling. Eur. Phys. J. C 2015, 75, 386. [Google Scholar] [CrossRef] [Green Version]
- Parker, L. Particle Creation in Expanding Universes. Phys. Rev. Lett. 1968, 21, 562. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. Particle Production in Cosmology. J. Exper. Theor. Phys. Lett. 1970, 12, 307. [Google Scholar]
- Parker, L. Quantized Fields and Particle Creation in Expanding Universes. II. Phys. Rev. D 1971, 3, 2546. [Google Scholar] [CrossRef]
- Fulling, S.A. Aspects of Quantum Field Theory in Curved Space-Time; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Parker, L.E.; Toms, D.J. Quantum Field Theory in Curved Spacetime-Quantized Fields and Gravity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lee, J.-W. Are galaxies extending? Phys. Lett. B 2009, 681, 118. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-G.; Hwang, J.-C.; Noh, H. Axion as a cold dark matter candidate: Low-mass case. Phys. Rev. D 2012, 86, 083535. [Google Scholar] [CrossRef] [Green Version]
- Boucher, W.; Traschen, J. Semiclassical physics and quantum fluctuations. Phys. Rev. D 1988, 37, 3522. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M.; De Martino, I.; Formisano, M.; Odintsov, S.D. Jeans analysis of self-gravitating systems in f(R) gravity. Phys. Rev. D 2012, 85, 044022. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef] [Green Version]
- de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; et al. A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation. Nature 2000, 404, 955. [Google Scholar] [CrossRef]
- Hanany, S.; Ade, P.; Balbi, A.; Bock, J.; Borrill, J.; Boscaleri, A.; de Bernardis, P.; Ferreira, P.G.; Hristov, V.V.; Jaffe, A.H.; et al. MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on angular scales of 10 arcminutes to 5 degrees. Astrophys. J. 2000, 545, L5. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.; Casertano, S.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R.A. 3% Solution: Determination of the Hubble Constant with the Hubble space Telescopr and Wide Field Camera 3. Astrophys. J. 2011, 730, 119. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck collaboration, Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghani, Z.; Harko, T. Effects of Quantum Metric Fluctuations on the Cosmological Evolution in Friedmann-Lemaitre-Robertson-Walker Geometries. Physics 2021, 3, 689-714. https://doi.org/10.3390/physics3030042
Haghani Z, Harko T. Effects of Quantum Metric Fluctuations on the Cosmological Evolution in Friedmann-Lemaitre-Robertson-Walker Geometries. Physics. 2021; 3(3):689-714. https://doi.org/10.3390/physics3030042
Chicago/Turabian StyleHaghani, Zahra, and Tiberiu Harko. 2021. "Effects of Quantum Metric Fluctuations on the Cosmological Evolution in Friedmann-Lemaitre-Robertson-Walker Geometries" Physics 3, no. 3: 689-714. https://doi.org/10.3390/physics3030042
APA StyleHaghani, Z., & Harko, T. (2021). Effects of Quantum Metric Fluctuations on the Cosmological Evolution in Friedmann-Lemaitre-Robertson-Walker Geometries. Physics, 3(3), 689-714. https://doi.org/10.3390/physics3030042