On the Difference between the Radii of Gluons and Quarks
Abstract
:1. Introduction
2. Theory and Methods
3. Results
3.1. The Model with Constant Temperature
3.2. Variable Temperature, q and Radius Fixed
3.3. Variable Radius, q and Temperature Fixed
3.4. Variable q, Temperature and Radius Fixed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halzen, F.; Martin, A.D. Quarks and Leptons: An Introductory Course in Modern Particle Physics; John Wiley and Sons: Singapore, 1980; p. 203. [Google Scholar]
- Sloan, T.; Smadja, G.; Voss, R. The quark structure of the nucleon from the cern muon experiments. Phys. Rep. 1988, 162, 46. [Google Scholar] [CrossRef]
- Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Panagopoulos, H.; Wiese, C. Gluon momentum fraction of the nucleon from lattice QCD. Phys. Rev. D 2017, 054503. [Google Scholar] [CrossRef] [Green Version]
- Xiangdong, J.; Tang, J.; Hoodbhoy, P. The spin structure of the nucleon in the ssymptotic limit. Phys. Rev. Lett. 1996, 76, 740. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-S.; Sun, W.-M.; Lü, X.-F.; Wang, F.; Goldman, T. Do gluons carry half of the nucleon momentum? Phys. Rev. Lett. 2009, 103, 062001. [Google Scholar] [CrossRef] [Green Version]
- Angelini, C.; Pazzi, R. Thermodynamical information on quark matter from the nucleon valence quark distribution. Phys. Lett. 1982, 113B, 343. [Google Scholar] [CrossRef]
- Angelini, C.; Pazzi, R. On the scaling violations of a thermodynamical valence quark distribution. Phys. Lett. 1984, 135B, 473. [Google Scholar] [CrossRef]
- Cleymans, J.; Thews, R.L. Statistical model for the structure functions of the nucleon. Z. Phys. C 1988, 37, 315. [Google Scholar] [CrossRef]
- Mac, E.; Ugaz, E. A statistical model of structure functions and quantum chromodynamics. Z. Phys. C 1989, 43, 655. [Google Scholar] [CrossRef]
- Mirez, C.; Tomio, L.; Trevisan, L.A.; Frederico, T. Quark sea asymmetry of the nucleon. Nucl. Phys. B (Proc. Suppl.) 2010, 199, 252–257. [Google Scholar] [CrossRef]
- Mirez, C.; Tomio, L.; Trevisan, L.A.; Frederico, T. Statistical Quark model for the nucleon structure function. AIP Conf. Proc. 2009, 1139, 202. [Google Scholar] [CrossRef] [Green Version]
- Mirez, C.; Tomio, L.; Trevisan, L.A.; Frederico, T. Improved statistical QCD model for the quark content of the nucleon. Int. J. Modern. Phys. D 2010, 19, 1697–1701. [Google Scholar] [CrossRef]
- Mirez, C. Improved statistical quark model for the nucleon structure function. AIP Conf. Proc. 2010, 1245, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, L.A.; Tomio, L.; Frederico, T. Strangeness content and structure function of the nucleon in a statistical quark model. Eur. Phys. J. C 1999, 11, 351. [Google Scholar] [CrossRef]
- Trevisan, L.A.; Frederico, T.; Mirez, C. Nucleon flavor asymmetry in a statistical quark model. Nucl. Phys. A 2007, 790, 522c–525c. [Google Scholar] [CrossRef]
- Trevisan, L.A.; Mirez, C.; Tomio, L.; Frederico, T. Quark sea structure functions of the nucleon in a statistical model. Eur. Phys. J. C 2008, 56, 211. [Google Scholar] [CrossRef]
- Bickerstaff, R.P.; Londergan, J.T. Proton and neutron structure functions in a Fermi-gas approximation. Phys. Rev. D 1990, 42, 3621. [Google Scholar] [CrossRef]
- Devanathan, V.; Karthiyayini, S.K. A Thermodynamical bag model for nucleon structure functions. Mod. Phys. Lett. A 1991, 9, 3455. [Google Scholar] [CrossRef]
- Devanathan, V.; McCarthy, J.S. A Thermodynamical bag model for the nucleon spin. Mod. Phys. Lett. A 1996, 11, 147. [Google Scholar] [CrossRef] [Green Version]
- Bhalerao, R.S. Statistical model for the nucleon structure functions. Phys. Lett. B 1996, 380, 1. [Google Scholar] [CrossRef] [Green Version]
- Chodos, A.; Jaffe, R.L.; Johnson, K.; Thorn, C.B.; Weisskopf, V.F. New extended model of hadrons. Phys. Rev. D 1974, 9, 3471. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, R.L. Deep-inelastic structure functions in an approximation to the bag theory. Phys. Rev. D 1975, 11, 1953. [Google Scholar] [CrossRef]
- Trevisan, L.A. The polarized structure function from the nonextensive statistics. Int. J. Mod. Phys. E 2016, 25, 165010. [Google Scholar] [CrossRef]
- Trevisan, L.A.; Mirez, C. A Nonextensive statistical model for the nucleon structure function. Int. J. Mod. Phys. E 2013, 22, 1350044. [Google Scholar] [CrossRef]
- Towell, R.S.; et al. [E866 Collaboration]. Improved measurement of the / asymmetry in the nucleon sea. Phys. Rev. D 2001, 64, 052002. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479. [Google Scholar] [CrossRef]
- Curado, E.M.F.; Tsallis, C. Generalized statistical mechanics: Connection with thermodynamics. J. Phys. A 1991, 24, L69–L72. [Google Scholar] [CrossRef]
- Bhalerao, R.; Kelkar, N.; Ram, B. Model for polarized and unpolarized parton density functions in the nucleon. Phys. Lett. B 2000, 476, 285. [Google Scholar] [CrossRef] [Green Version]
- Hwa, R.C. Evidence for valence-quark clusters in nucleon structure functions. Phys. Rev. D 1980, 22, 759. [Google Scholar] [CrossRef]
- Hwa, R.C. Clustering and hadronization of quarks: A treatment of the low-pT problem. Phys. Rev. D 1980, 22, 1593. [Google Scholar] [CrossRef]
- Deppman, A. Thermodynamics with fractal structure, Tsallis statistics, and hadrons. Phys. Rev. D 2016, 93, 054001. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, P.H.G.; da Silva, T.N.; Deppman, A.; Menezes, D.P. Quark matter revisited with non-extensive MIT bag model. Eur. Phys. J. A 2017, 53, 191. [Google Scholar] [CrossRef]
- Cottingham, W.N.; Greenwood, D.A. An Introduction to the Standard Model of Particle Physics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Parvan, A.S.; Bhattacharyya, T. Hadron transverse momentum distributions of the Tsallis normalized and unnormalized statistics. Eur. Phys. J. A 2020, 56. [Google Scholar] [CrossRef]
- Anthony, P.L.; et al. [E142 Collaboration]. Deep inelastic scattering of polarized electrons by polarized 3He and the study of the neutron spin structure. Phys. Rev. D 1996, 54, 6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K.; et al. [E143 Collaboration]. Measurements of the proton and deuteron spin structure functions g1 and g2. Phys. Rev. D 1998, 58, 112003. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; et al. [E154 Collaboration]. Next-to-leading order QCD analysis of polarized deep inelastic scattering data. Phys. Lett. B 1997, 405, 180. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; et al. [E154 Collaboration]. Precision Determination of the Neutron Spin Structure Function . Phys. Rev. Lett. 1997, 79, 26. [Google Scholar] [CrossRef] [Green Version]
- Adeva, B.; et al. [Spin Muon Collaboration]. Next-to-leading order QCD analysis of the spin structure function g1. Phys. Rev. D 1998, 58, 112002. [Google Scholar] [CrossRef] [Green Version]
- Ackerstaff, K.; et al. [Hermes Collaboration]. Measurement of the neutron spin structure function with a polarized 3He internal target. Phys. Lett. B 1997, 404, 383. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.C. Flavor asymmetry of the nucleon sea. Nucl. Phys. A 2001, 684, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.C.; et al. [FNAL E866/NuSea Collaboration]. / asymmetry and the origin of the nucleon sea. Phys. Rev. D 1998, 58, 092004. [Google Scholar] [CrossRef] [Green Version]
- Politzer, H.D. μ-p scattering and the glue fraction of the proton. Nucl. Phys. 1977, B122, 237. [Google Scholar] [CrossRef]
- Abramowicz, H.; de Groot, J.G.H.; Knobloch, J.; May, J.; Palazzi, P.; Para, A.; Ranjard, F.; Savoy-Navarro, A.; Schlatter, D.; Steinberger, J.; et al. Neutrino and antineutrino charged-current inclusive scattering in iron in the energy range 20 < Ev < 300 GeV. Z. Phys. 1983, C17, 283. [Google Scholar] [CrossRef] [Green Version]
- De Groot, J.G.H.; Hansl, T.; Holder, M.; Knobloch, J.; May, J.; Paar, H.P.; Palazzi, P.; Para, A.; Ranjard, F.; Schlatter, D.; et al. Inclusive interactions of high-energy neutrinos and antineutrinos in iron. Z. Phys. 1979, C1, 143. [Google Scholar] [CrossRef]
- Jahan, A.; Choudhury, D.K. Momentum fractions of quarks and gluons in a self-similarity based model of proton. Mod. Phys. Lett. 2012, A27, 1250193. [Google Scholar] [CrossRef]
- Teweldeberhan, A.M.; Miller, H.G.; Tegen, R. Generalized statistics and the formation of a quark-gluon plasma. Int. J. Mod. Phys. E 2012. [Google Scholar] [CrossRef] [Green Version]
- Teweldeberhan, A.M.; Miller, H.G.; Tegen, R. Kappa deformed statistics and the formation of a quark gluon plasma. Int. J. Mod. Phys. E 2003. [Google Scholar] [CrossRef] [Green Version]
- Biró, T.S.; Barnafoldi, G.G.; Ván, P. Quark-gluon plasma connected to finite heat bath. Eur. Phys. J. A 2013, 49, 110. [Google Scholar] [CrossRef] [Green Version]
q | R (fm) | (MeV) | (MeV) | (MeV) | (MeV) | (MeV) |
---|---|---|---|---|---|---|
0.96 | 3.0 | 45.10 | 21.90 | 11.10 | 26.20 | −2.19 |
0.97 | 2.9 | 47.70 | 23.40 | 11.90 | 27.90 | −2.35 |
0.98 | 2.8 | 50.50 | 25.10 | 12.80 | 29.80 | −2.54 |
0.99 | 2.7 | 53.50 | 26.90 | 13.80 | 31.90 | −2.74 |
or | T (MeV) | |
---|---|---|
= | 15 | |
= | 3.5 | |
= = | 10–20 | |
= | 30–100 |
T (MeV) | ||
---|---|---|
10 | 0.22516 | 22.9032 |
20 | 0.45032 | 27.4064 |
30 | 0.67548 | 31.9096 |
40 | 0.90064 | 36.4128 |
45 | 1 | 38.4 |
T (MeV) | q | R (fm) | , (fm) | |||
---|---|---|---|---|---|---|
31 | 0.94 | 4.58 | 2.8 | 0.43 | 0.57 | 0.144 |
32 | 0.94 | 4.4 | 2.6 | 0.43 | 0.57 | 0.122 |
33 | 0.94 | 4.2 | 2.5 | 0.43 | 0.57 | 0.118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevisan, L.A.; Mirez, C.; da Silva, D.I. On the Difference between the Radii of Gluons and Quarks. Physics 2021, 3, 1155-1166. https://doi.org/10.3390/physics3040073
Trevisan LA, Mirez C, da Silva DI. On the Difference between the Radii of Gluons and Quarks. Physics. 2021; 3(4):1155-1166. https://doi.org/10.3390/physics3040073
Chicago/Turabian StyleTrevisan, Luis Augusto, Carlos Mirez, and Djalma Inacio da Silva. 2021. "On the Difference between the Radii of Gluons and Quarks" Physics 3, no. 4: 1155-1166. https://doi.org/10.3390/physics3040073
APA StyleTrevisan, L. A., Mirez, C., & da Silva, D. I. (2021). On the Difference between the Radii of Gluons and Quarks. Physics, 3(4), 1155-1166. https://doi.org/10.3390/physics3040073