Electron as a Tiny Mirror: Radiation from a Worldline with Asymptotic Inertia
Abstract
:1. Introduction: Fixed Radiation
2. Elements of Electrodynamics: Energy from Moving Electrons
3. GO Trajectory for Finite Energy Emission
4. Discussions: Mirrors, Electrons, and Black Holes
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moore, G.T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 1970, 11, 2679–2691. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum field theory in curved space-time. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A 1976, 348, 393–414. [Google Scholar] [CrossRef]
- Davies, P.C.W.; Fulling, S.A. Radiation from moving mirrors and from black holes. Proc. R. Soc. Lond. A 1977, 356, 237–257. [Google Scholar] [CrossRef]
- Nikishov, A.; Ritus, V. Emission of scalar photons by an accelerated mirror in (1+1) space and its relation to the radiation from an electrical charge in classical electrodynamics. J. Exp. Theor. Phys. 1995, 81, 615–624. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/81/4/p615?a=list (accessed on 30 December 2022).
- Ritus, V. The Symmetry, inferable from Bogoliubov transformation, between the processes induced by the mirror in two-dimensional and the charge in four-dimensional space-time. J. Exp. Theor. Phys. 2003, 97, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Ritus, V. Vacuum-vacuum amplitudes in the theory of quantum radiation by mirrors in 1+1-space and charges in 3+1-space. Int. J. Mod. Phys. A 2002, 17, 1033–1040. [Google Scholar] [CrossRef]
- Ritus, V. Symmetries and causes of the coincidence of the radiation spectra of mirrors and charges in (1+1) and (3+1) spaces. J. Exp. Theor. Phys. 1998, 87, 25–34. [Google Scholar] [CrossRef]
- Good, M.R.R.; Singha, C.; Zarikas, V. Extreme electron acceleration with fixed radiation energy. Entropy 2022, 24, 1570. [Google Scholar] [CrossRef]
- Ritus, V.I. Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in the vacuum. Phys.-Usp. 2022, 65, 468–486. [Google Scholar] [CrossRef]
- Good, M.R.R.; Davies, P.C.W. Infrared acceleration radiation. arXiv 2022, arXiv:2206.07291. [Google Scholar] [CrossRef]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Mirror reflections of a black hole. Phys. Rev. D 2016, 94, 065010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Ong, Y.C. Particle spectrum of the Reissner–Nordström black hole. Eur. Phys. J. C 2020, 80, 1169. [Google Scholar] [CrossRef]
- Good, M.R.R.; Foo, J.; Linder, E.V. Accelerating boundary analog of a Kerr black hole. Class. Quantum Grav. 2021, 38, 085011. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; Available online: https://www.scribd.com/doc/200995304/Classical-Electrodynamics-3rd-Ed-1999-John-David-Jackson (accessed on 30 December 2022).
- Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2012; Available online: https://faculty.kashanu.ac.ir/file/download/page/1604994434-modern-electrodynamics.pdf (accessed on 30 December 2022).
- Griffiths, D.J. Introduction to Electrodynamics; Cambridge University Press: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Rindler, W.A. Essential Relativity: Special, General and Cosmological; Springer-Verlag: Berlin/Heidelber, Germany, 1977. [Google Scholar] [CrossRef]
- Good, M.R.R.; Yelshibekov, K.; Ong, Y.C. On horizonless temperature with an accelerating mirror. J. High Energy Phys. 2017, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Myrzakul, A.; Xiong, C.; Good, M.R.R. CGHS black hole analog moving mirror and its relativistic quantum information as radiation reaction. Entropy 2021, 23, 1664. [Google Scholar] [CrossRef]
- Feynman, R.P. Feynman Lectures on Gravitation; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Walker, W.R. Particle and energy creation by moving mirrors. Phys. Rev. D 1985, 31, 767–774. [Google Scholar] [CrossRef]
- Carlitz, R.D.; Willey, R.S. Reflections on moving mirrors. Phys. Rev. D 1987, 36, 2327–2335. [Google Scholar] [CrossRef]
- Ford, L.H.; Vilenkin, A. Quantum radiation by moving mirrors. Phys. Rev. D 1982, 25, 2569–2575. [Google Scholar] [CrossRef]
- Good, M.R.; Linder, E.V.; Wilczek, F. Moving mirror model for quasithermal radiation fields. Phys. Rev. D 2020, 101, 025012. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Ruiz, A.; Bermudez, D. Optical analogue of the Schwarzschild–Planck metric. Class. Quant. Grav. 2022, 39, 145001. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Modified Schwarzschild metric from a unitary accelerating mirror analog. New J. Phys. 2021, 23, 043007. [Google Scholar] [CrossRef]
- Good, M.R.R.; Ong, Y.C. Signatures of energy flux in particle production: A black hole birth cry and death gasp. J. High Energy Phys. 2015, 7, 145. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Univercity Press: New York, NY, USA, 1982. [Google Scholar] [CrossRef]
- Good, M.R.R. Extremal Hawking radiation. Phys. Rev. D 2020, 101, 104050. [Google Scholar] [CrossRef]
- Good, M.R.R. Reflecting at the speed of light. In Memorial Volume for Kerson Huang; Phua, K.K., Low, H.B., Xiong, C., Eds.; World Scientific Co., Ltd.: Singapore, 2017; pp. 113–116. [Google Scholar] [CrossRef] [Green Version]
- Zhakenuly, A.; Temirkhan, M.; Good, M.R.R.; Chen, P. Quantum power distribution of relativistic acceleration radiation: Classical electrodynamic analogies with perfectly reflecting moving mirrors. Symmetry 2021, 13, 653. [Google Scholar] [CrossRef]
- Myhrvold, N.P. Thermal radiation from accelerated electrons. Ann. Phys. 1985, 160, 102–113. [Google Scholar] [CrossRef]
- Paithankar, K.; Kolekar, S. Role of the Unruh effect in Bremsstrahlung. Phys. Rev. D 2020, 101, 065012. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S.; Leinaas, J.M. Electrons as accelerated thermometers. Nucl. Phys. B 1983, 212, 131–150. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, E.; Smerlak, M. Last gasp of a black hole: Unitary evaporation implies non-monotonic mass loss. Gen. Rel. Grav. 2014, 46, 1809. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, E.; Smerlak, M. Entanglement entropy and negative energy in two dimensions. Phys. Rev. D 2014, 90, 041904. [Google Scholar] [CrossRef] [Green Version]
- Abdolrahimi, S.; Page, D.N. Hawking radiation energy and entropy from a Bianchi-Smerlak semiclassical black hole. Phys. Rev. D 2015, 92, 083005. [Google Scholar] [CrossRef] [Green Version]
- Carter, B. Global structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. The Dirac-Kerr electron. Grav. Cosmol. 2008, 14, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Schmekel, B.S. Quasilocal energy of a charged rotating object described by the Kerr-Newman metric. Phys. Rev. D 2019, 100, 124011. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. The Dirac electron consistent with proper gravitational and electromagnetic field of the Kerr–Newman solution. Galaxies 2021, 9, 18. [Google Scholar] [CrossRef]
- Letaw, J.R. Vacuum excitation of noninertial detectors on stationary world lines. Phys. Rev. D 1981, 23, 1709–1714. [Google Scholar] [CrossRef]
- Good, M.; Juárez-Aubry, B.A.; Moustos, D.; Temirkhan, M. Unruh-like effects: Effective temperatures along stationary worldlines. J. High Energy Phys. 2020, 06, 059. [Google Scholar] [CrossRef]
- Good, M.R.R.; Temirkhan, M.; Oikonomou, T. Stationary worldline power distributions. Int. J. Theor. Phys. 2019, 58, 2942–2968. [Google Scholar] [CrossRef] [Green Version]
- Kothawala, D.; Padmanabhan, T. Response of Unruh-DeWitt detector with time-dependent acceleration. Phys. Lett. B 2010, 690, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Zhakenuly, A.; Linder, E.V. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. Phys. Rev. D 2020, 102, 045020. [Google Scholar] [CrossRef]
- Castagnino, M.; Ferraro, R. A toy cosmology: Radiation from moving mirrors, the final equilibrium state and the instantaneous model of particle. Ann. Phys. 1985, 161, 1–20. [Google Scholar] [CrossRef]
- Akhmedov, E.T.; Buividovich, P.V.; Singleton, D.A. De Sitter space and perpetuum mobile. Phys. Atom. Nucl. 2012, 75, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.M. Decay of vacuum energy. Nucl. Phys. B 2010, 834, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, U. The case for a Casimir cosmology. Philos. Trans. R. Soc. A 2020, 378, 20190229. [Google Scholar] [CrossRef] [PubMed]
- Chen, P. et al. [AnaBHEL Collaboration] AnaBHEL (Analog Black Hole Evaporation via Lasers) experiment: Concept, design, and status. Photonics 2022, 9, 1003. [Google Scholar] [CrossRef]
- Nico, J.S.; Dewey, M.S.; Gentile, T.R.; Mumm, H.P.; Thompson, A.K.; Fisher, B.M.; Kremsky, I.; Wietfeldt, F.E.; Chupp, T.E.; Cooper, R.L.; et al. Observation of the radioactive decay mode of the free neutron. Nature 2006, 444, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Bales, M.J. et al. [RDK II Collaboration] Precision measurement of the radiative β decay of the free neutron. Phys. Rev. Lett. 2016, 116, 242501. [Google Scholar] [CrossRef] [Green Version]
- Lynch, M.H.; Good, M.R.R. Experimental observation of a moving mirror. arXiv 2022, arXiv:2211.14774. [Google Scholar] [CrossRef]
- Chen, P.; Mourou, G. Trajectory of a flying plasma mirror traversing a target with density gradient. Phys. Plasmas 2020, 27, 123106. [Google Scholar] [CrossRef]
- Chen, P.; Mourou, G. Accelerating plasma mirrors to investigate black hole information loss paradox. Phys. Rev. Lett. 2017, 118, 045001. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Good, M.R.R.; Ong, Y.C. Electron as a Tiny Mirror: Radiation from a Worldline with Asymptotic Inertia. Physics 2023, 5, 131-139. https://doi.org/10.3390/physics5010010
Good MRR, Ong YC. Electron as a Tiny Mirror: Radiation from a Worldline with Asymptotic Inertia. Physics. 2023; 5(1):131-139. https://doi.org/10.3390/physics5010010
Chicago/Turabian StyleGood, Michael R. R., and Yen Chin Ong. 2023. "Electron as a Tiny Mirror: Radiation from a Worldline with Asymptotic Inertia" Physics 5, no. 1: 131-139. https://doi.org/10.3390/physics5010010
APA StyleGood, M. R. R., & Ong, Y. C. (2023). Electron as a Tiny Mirror: Radiation from a Worldline with Asymptotic Inertia. Physics, 5(1), 131-139. https://doi.org/10.3390/physics5010010