Modeling the Magnetic Field of the Inner Corona in a Radially Expanding Solar Wind
Abstract
:1. Introduction
2. Some Explicit Solutions
3. Simulation of the Coronal Magnetic Field at the Time of the Solar Eclipse on 21 August 2017
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riley, P.; Lionello, R.; Linker, J.A.; Mikic, Z.; Luhmann, J.; Wijaya, J. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol. Phys. 2011, 274, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Yang, L.; Xiang, C.; Jiang, C.; Ma, X.; Wu, S.T.; Zhong, D.; Zhou, Y. Validation of the 3D AMR SIP-CESE solar wind model for four Carrington rotations. Sol. Phys. 2012, 279, 207–229. [Google Scholar] [CrossRef]
- Tóth, G.; van der Holst, B.; Sokolov, I.V.; de Zeeuw, D.L.; Gombosi, T.I.; Fang, F.; Manchester, W.B.; Meng, X.; Najib, D.; Powell, K.G.; et al. Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 2012, 231, 870–903. [Google Scholar] [CrossRef] [Green Version]
- Altschuler, M.D.; Newkirk, G., Jr. Magnetic Fields and the structure of the solar corona. I: Methods of calculating coronal fields. Sol. Phys. 1969, 9, 131–149. [Google Scholar] [CrossRef]
- Behannon, K.W. Mariner 10 interplanetary magnetic field results. In Physics of Solar Planetary Environments: Proceedings of the International Symposium on Solar-Terrestrial Physics, Boulder, CO, USA, 7–18 June 1976; Williams, D.J., Ed.; American Geophysical Union: Washington, DC, USA, 1976; Volume 1, pp. 332–345. [Google Scholar] [CrossRef]
- Parker, E.N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 1958, 120, 664–676. [Google Scholar] [CrossRef]
- Pneuman, G.W.; Kopp, R.A. Gas-magnetic field interactions in the solar corona. Sol. Phys. 1971, 18, 258–270. [Google Scholar] [CrossRef]
- Mackay, D.H.; Yeates, A.R. The Sun’s global photospheric and coronal magnetic fields: Observations and models. Liv. Rev. Sol. Phys. 2012, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Schrijver, C.J.; DeRosa, M.L.; Metcalf, T.R.; Liu, Y.; McTiernan, J.; Régnier, S.; Valori, G.; Wheatl, M.S.; Wiegelmann, T. Nonlinear force-free modeling of coronal magnetic fields. Part I: A quantitative comparison of method. Sol. Phys. 2006, 235, 161–190. [Google Scholar] [CrossRef]
- Yang, W.H.; Sturrock, P.A.; Antiochos, S.K. Force-free magnetic fields: The magneto-frictional method. Astrophys. J. 1986, 309, 383–391. [Google Scholar] [CrossRef]
- Mackay, D.H.; Upton, L.A. A comparison of global magnetofrictional simulations of the 2015 March 20 solar eclipse. Astrophys. J. 2022, 939, 9. [Google Scholar] [CrossRef]
- Rice, O.E.K.; Yeates, A.R. Global coronal equilibria with solar wind outflow. Astrophys. J. 2021, 923, 57. [Google Scholar] [CrossRef]
- Bogdan, T.J.; Low, B.C. The three-dimensional structure of magnetostatic atmospheres. II. Modeling the large-scale corona. Astrophys. J. 1986, 306, 271–283. [Google Scholar] [CrossRef]
- Chertkov, A.D. Solar Wind and Internal Structure of the Sun; Nauka Publishers: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Tlatov, A.G. Modeling of a large-scale magnetic field in a radially expanding corona with finite conductivity. Bull. Sol. Data [Bull. Solnech. Dannye] 1993, 8, 76–80. (In Russian) [Google Scholar]
- Tlatov, A.G.; Dormidontov, D.V.; Kirpichev, R.V.; Pashchenko, M.P.; Shramko, A.D.; Peshcherov, V.S.; Grigoryev, V.M.; Demidov, M.L.; Svidskii, P.M. Study of some characteristics of large-scale solar magnetic fields during the global field polarity reversal according to observations at the telescope-magnetograph Kislovodsk Observatory. Geomagn. Aeron. 2015, 55, 969–975. [Google Scholar] [CrossRef]
- Kislovodsk Mountain Astronomical Station. Available online: http://solarstation.ru (accessed on 3 January 2023).
- Mikić, Z.; Downs, C.; Linker, J.A.; Caplan, R.M.; Mackay, D.H.; Upton, L.A.; Riley, P.; Lionello, R.; Török, T.; Titov, V.S.; et al. Predicting the corona for the 21 August 2017 total solar eclipse. Nat. Astron. 2018, 2, 913–921. [Google Scholar] [CrossRef] [Green Version]
- Arge, C.N.; Pizzo, V.J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. Space Phys. 2000, 105, 10465–10479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlatov, A.G.; Berezin, I. Modeling the Magnetic Field of the Inner Corona in a Radially Expanding Solar Wind. Physics 2023, 5, 161-167. https://doi.org/10.3390/physics5010012
Tlatov AG, Berezin I. Modeling the Magnetic Field of the Inner Corona in a Radially Expanding Solar Wind. Physics. 2023; 5(1):161-167. https://doi.org/10.3390/physics5010012
Chicago/Turabian StyleTlatov, Andrey G., and Ivan Berezin. 2023. "Modeling the Magnetic Field of the Inner Corona in a Radially Expanding Solar Wind" Physics 5, no. 1: 161-167. https://doi.org/10.3390/physics5010012
APA StyleTlatov, A. G., & Berezin, I. (2023). Modeling the Magnetic Field of the Inner Corona in a Radially Expanding Solar Wind. Physics, 5(1), 161-167. https://doi.org/10.3390/physics5010012